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The Need for Abstractions

● Traditional programming models don't provide 
the right frameworks for complicated Science & 
Engineering applications
– Modularity

– Separation of concerns 

– Programming productivity
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Modularity in MPI

● A must call B & C (no order)
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Modularity in MPI

● A must call B & C (no order)
● In MPI, must serialize calls to 

different modules
● Or, insert cross-module 

wildcard receives
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Charm++
● Application composed of collections of objects

– Collections = arrays
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Charm++
● Application composed of collections of objects

– Collections = arrays
● Object-based virtualization: adaptive overlap

● Communication = Asynch. method invocation

– Methods cannot be preempted

– Scheduler picks message and invokes on target
● Array-like syntax for addressing

– array1(17).f();

– array2(F(x), G(z)).g();

– thisProxy(thisIndex).h();
● Load balancing, communication optimization, etc.
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Modularity in Charm++

● Many objects/processor
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Modularity in Charm++

● Many objects/processor
● Scheduler sends messages to 

appropriate recipients
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Modularity in Charm++

● Many objects/processor
● Scheduler sends messages to 

appropriate recipients
● Idle time of one overlapped with 

computation of other
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However...

● Reactive specification of 
Charm++ programs
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However...

● Reactive specification of 
Charm++ programs
– Hard to follow global 

control/data flow 

● Non-determinism in 
message delivery
– Hard to reason about/debug 

programs

entry void call(){
 A[x].fun_1();
 A[x].fun_2();
}

entry void fun_1(){
  var = 2;
}

entry void fun_2(){
  var = 3;
}
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● Most Science/Engineering applications follow 
certain patterns of computation and 
communication
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Can we do better?

● Most Science/Engineering applications follow 
certain patterns of computation and 
communication

● What is common among the following 
applications?
– Matrix mult.

– Jacobi

– FFT

– Unstructured Mesh Computations

– Cutoff-Based Molecular Dynamics

Static communication
       pattern
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Static Dataflow
● Static patterns of communication 
● Objects produce and consume data 
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Jacobi in Charisma

foreach x,y in J

(lb[x,y],rb[x,y],tb[x,y],bb[x,y])   J[x,y].prodBorders();←

J[x,y].consume(lb[x+1,y],rb[x­1,y],tb[x,y+1],bb[x,y­1]);

end­foreach
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Jacobi in Charisma

foreach x,y in J

(lb[x,y],rb[x,y],tb[x,y],bb[x,y])   J[x,y].prodBorders();←

J[x,y].consume(lb[x+1,y],rb[x­1,y],tb[x,y+1],bb[x,y­1]);

end­foreach
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– Have associated 
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Charisma Semantics

● foreach statements 
execute across  
object arrays
– Have associated 

methods

● Objects produce and 
consume parameters

● Statements executed 
on individual objects 
in program order
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Data Dependences
● A::f() produces p[]
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Data Dependences
● A::f() produces p[]

● f() has embedded 
produce() function

● B::h() consumes p[]
● Indices decide 

dependences



30

Program Order
● B[x].g() executes before B[x].h()

● But B[x].g() concurrent with B[y].h() if x ≠ y
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Ensuring Determinism

● Determinism = Data dependences + 
Program order
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Ensuring Determinism

● Determinism = Data dependences + 
Program order

● Data dependences enforce causal order on 
statements across objects

● Program order removes non-determinism within 
objects due to message-reordering
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Implementing Semantics

● Barrier after every for 
loop?
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Implementing Semantics
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● Does it work here?
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Implementing Semantics

● Barrier after every for 
loop?

● Does it work here?
● No, need barrier after 

each statement!
– Too much parallel 

overhead
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Programs are Distributed DAGS

fA,I fC,I

g2B,I

hB,I­1

gB,I­1

fA,I­1 fC,I­1

g1B,I
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Translation Strategy

● Use Charm++ for performance & productivity 
● Translate Charisma's global control and data 

flows into local behavior of Charm++ objects
● Instead of translating to Charm++ code, 

generate local DAGs specified in SDAG
– Abstract target

– Efficient implementation

– Easier to write compiler
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From Global to Local Flows (I)
● Generate unique targets
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From Global to Local Flows (I)
● Generate unique targets
● Project global control flow onto objects
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From Global to Local Flows (I)
● Generate unique targets
● Project global control flow onto objects

g1B,I

g2B,I

g1B,I­1

g2B,I­1 fA,I

fC,I

fC,I­1

fA,I­1

a) DAGB

b) DAGA

c) DAGC
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From Global to Local Flows (II)

● Generate asynch. 
message sends for 
data dependences
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From Global to Local Flows (II)

● Generate asynch. 
message sends for 
data dependences

● Generated code sets 
reference numbers to 
ensure match between 
sender and receiver 
iterations

fA,I

fC,I

g2B,I

hB,I­1

fC,I­1

fA,I­1 fC,I­1

g1B,I
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● Compare code generated by previous and new 
versions of Charisma compiler
– CTC: Charisma to Charm++

– CTS: Charisma to SDAG
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Performance Comparisons

● Compare code generated by previous and new 
versions of Charisma compiler
– CTC: Charisma to Charm++

– CTS: Charisma to SDAG

● CTS eliminates barriers at end of for loops

● Similar CTC implementation would have 
required significantly more construction effort
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3D FFT

  foreach x in planes1
    (pencildata[x,*]) <­ planes1[x].fft1d();
  end­foreach
  foreach y in planes2
    planes2[y].fft2d(pencildata[*,y]);
  end­foreach
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Cannon Matrix Multiplication

  for I = 1 to (N/T)
    foreach x,y in M
      (A[x,y], B[x,y]) <­ M[x,y].prodTiles();
      workers[x,y].mult(A[x+1, y], B[x, y+1]);
    end­foreach
  end­for
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  for I = 1 to 100
  foreach i,j in J
   (lb[i,j],rb[i,j],tb[i,j],bb[i,j])   J[i,j].← prodBorders();
   J[i,j].compute(lb[i+1,j],rb[i­1,j],tb[i,j­1],bb[i,j+1]);
  end­foreach
 end­for

Five-Point Jacobi Relaxation
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Conclusion

● Benefits of translating Charisma to SDAG
– Less impedance mismatch

● Compiler easier to write

– Existing dependence satisfaction, loop tagging 
frameworks

– Performance gain (!)
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