
©Pritish Jetley 1

Static Dataflow: Compiling
Global Control into Local

Control

Pritish Jetley, Laxmikant V. Kalé
Department of Computer Science

University of Illinois at Urbana-Champaign

pjetley2@illinois.edu

2

The Need for Abstractions

● Traditional programming models don't provide
the right frameworks for complicated Science &
Engineering applications
– Modularity

– Separation of concerns

– Programming productivity

Images courtesy and ©David Kunzman 3

Modularity in MPI

● A must call B & C (no order)

Images courtesy and ©David Kunzman 4

Modularity in MPI

● A must call B & C (no order)
● In MPI, must serialize calls to

different modules

Images courtesy and ©David Kunzman 5

Modularity in MPI

● A must call B & C (no order)
● In MPI, must serialize calls to

different modules
● Or, insert cross-module

wildcard receives

6

Charm++
● Application composed of collections of objects

– Collections = arrays

7

Charm++
● Application composed of collections of objects

– Collections = arrays
● Object-based virtualization: adaptive overlap

8

Charm++
● Application composed of collections of objects

– Collections = arrays
● Object-based virtualization: adaptive overlap

● Communication = Asynch. method invocation

– Methods cannot be preempted

– Scheduler picks message and invokes on target

9

Charm++
● Application composed of collections of objects

– Collections = arrays
● Object-based virtualization: adaptive overlap

● Communication = Asynch. method invocation

– Methods cannot be preempted

– Scheduler picks message and invokes on target
● Array-like syntax for addressing

– array1(17).f();

– array2(F(x), G(z)).g();

– thisProxy(thisIndex).h();

10

Charm++
● Application composed of collections of objects

– Collections = arrays
● Object-based virtualization: adaptive overlap

● Communication = Asynch. method invocation

– Methods cannot be preempted

– Scheduler picks message and invokes on target
● Array-like syntax for addressing

– array1(17).f();

– array2(F(x), G(z)).g();

– thisProxy(thisIndex).h();
● Load balancing, communication optimization, etc.

Images courtesy and ©David Kunzman 11

Modularity in Charm++

● Many objects/processor

Images courtesy and ©David Kunzman 12

Modularity in Charm++

● Many objects/processor
● Scheduler sends messages to

appropriate recipients

Images courtesy and ©David Kunzman 13

Modularity in Charm++

● Many objects/processor
● Scheduler sends messages to

appropriate recipients
● Idle time of one overlapped with

computation of other

14

However...

● Reactive specification of
Charm++ programs

15

However...

● Reactive specification of
Charm++ programs
– Hard to follow global

control/data flow

16

However...

● Reactive specification of
Charm++ programs
– Hard to follow global

control/data flow

● Non-determinism in
message delivery
– Hard to reason about/debug

programs

entry void call(){
 A[x].fun_1();
 A[x].fun_2();
}

entry void fun_1(){
 var = 2;
}

entry void fun_2(){
 var = 3;
}

17

Can we do better?

● Most Science/Engineering applications follow
certain patterns of computation and
communication

18

Can we do better?

● Most Science/Engineering applications follow
certain patterns of computation and
communication

● What is common among the following
applications?
– Matrix mult.

– Jacobi

– FFT

– Unstructured Mesh Computations

– Cutoff-Based Molecular Dynamics

19

Can we do better?

● Most Science/Engineering applications follow
certain patterns of computation and
communication

● What is common among the following
applications?
– Matrix mult.

– Jacobi

– FFT

– Unstructured Mesh Computations

– Cutoff-Based Molecular Dynamics

Static communication
 pattern

20

Static Dataflow
● Static patterns of communication
● Objects produce and consume data

21

Jacobi in Charisma

foreach x,y in J

(lb[x,y],rb[x,y],tb[x,y],bb[x,y]) J[x,y].prodBorders();←

J[x,y].consume(lb[x+1,y],rb[x­1,y],tb[x,y+1],bb[x,y­1]);

end­foreach

22

Jacobi in Charisma

foreach x,y in J

(lb[x,y],rb[x,y],tb[x,y],bb[x,y]) J[x,y].prodBorders();←

J[x,y].consume(lb[x+1,y],rb[x­1,y],tb[x,y+1],bb[x,y­1]);

end­foreach

23

Charisma Semantics

● foreach statements
execute across
object arrays
– Have associated

methods

24

Charisma Semantics

● foreach statements
execute across
object arrays
– Have associated

methods

● Objects produce and
consume parameters

25

Charisma Semantics

● foreach statements
execute across
object arrays
– Have associated

methods

● Objects produce and
consume parameters

● Statements executed
on individual objects
in program order

26

Data Dependences
● A::f() produces p[]

27

Data Dependences
● A::f() produces p[]

● f() has embedded
produce() function

28

Data Dependences
● A::f() produces p[]

● f() has embedded
produce() function

● B::h() consumes p[]

29

Data Dependences
● A::f() produces p[]

● f() has embedded
produce() function

● B::h() consumes p[]
● Indices decide

dependences

30

Program Order
● B[x].g() executes before B[x].h()

● But B[x].g() concurrent with B[y].h() if x ≠ y

31

Ensuring Determinism

● Determinism = Data dependences +
Program order

32

Ensuring Determinism

● Determinism = Data dependences +
Program order

● Data dependences enforce causal order on
statements across objects

33

Ensuring Determinism

● Determinism = Data dependences +
Program order

● Data dependences enforce causal order on
statements across objects

● Program order removes non-determinism within
objects due to message-reordering

34

Implementing Semantics

● Barrier after every for
loop?

35

Implementing Semantics

● Barrier after every for
loop?

● Does it work here?

36

Implementing Semantics

● Barrier after every for
loop?

● Does it work here?
● No, need barrier after

each statement!
– Too much parallel

overhead

37

Programs are Distributed DAGS

fA,I fC,I

g2B,I

hB,I­1

gB,I­1

fA,I­1 fC,I­1

g1B,I

38

Translation Strategy

● Use Charm++ for performance & productivity

39

Translation Strategy

● Use Charm++ for performance & productivity
● Translate Charisma's global control and data

flows into local behavior of Charm++ objects

40

Translation Strategy

● Use Charm++ for performance & productivity
● Translate Charisma's global control and data

flows into local behavior of Charm++ objects
● Instead of translating to Charm++ code,

generate local DAGs specified in SDAG
– Abstract target

– Efficient implementation

– Easier to write compiler

41

From Global to Local Flows (I)
● Generate unique targets

42

From Global to Local Flows (I)
● Generate unique targets
● Project global control flow onto objects

43

From Global to Local Flows (I)
● Generate unique targets
● Project global control flow onto objects

g1B,I

g2B,I

g1B,I­1

g2B,I­1 fA,I

fC,I

fC,I­1

fA,I­1

a) DAGB

b) DAGA

c) DAGC

44

From Global to Local Flows (II)

● Generate asynch.
message sends for
data dependences

45

From Global to Local Flows (II)

● Generate asynch.
message sends for
data dependences

● Generated code sets
reference numbers to
ensure match between
sender and receiver
iterations

46

From Global to Local Flows (II)

● Generate asynch.
message sends for
data dependences

● Generated code sets
reference numbers to
ensure match between
sender and receiver
iterations

fA,I

fC,I

g2B,I

hB,I­1

fC,I­1

fA,I­1 fC,I­1

g1B,I

47

Performance Comparisons

● Compare code generated by previous and new
versions of Charisma compiler
– CTC: Charisma to Charm++

– CTS: Charisma to SDAG

48

Performance Comparisons

● Compare code generated by previous and new
versions of Charisma compiler
– CTC: Charisma to Charm++

– CTS: Charisma to SDAG

● CTS eliminates barriers at end of for loops

49

Performance Comparisons

● Compare code generated by previous and new
versions of Charisma compiler
– CTC: Charisma to Charm++

– CTS: Charisma to SDAG

● CTS eliminates barriers at end of for loops

● Similar CTC implementation would have
required significantly more construction effort

50

3D FFT

 foreach x in planes1
 (pencildata[x,*]) <­ planes1[x].fft1d();
 end­foreach
 foreach y in planes2
 planes2[y].fft2d(pencildata[*,y]);
 end­foreach

51

Cannon Matrix Multiplication

 for I = 1 to (N/T)
 foreach x,y in M
 (A[x,y], B[x,y]) <­ M[x,y].prodTiles();
 workers[x,y].mult(A[x+1, y], B[x, y+1]);
 end­foreach
 end­for

52

 for I = 1 to 100
 foreach i,j in J
 (lb[i,j],rb[i,j],tb[i,j],bb[i,j]) J[i,j].← prodBorders();
 J[i,j].compute(lb[i+1,j],rb[i­1,j],tb[i,j­1],bb[i,j+1]);
 end­foreach
 end­for

Five-Point Jacobi Relaxation

53

Conclusion

● Benefits of translating Charisma to SDAG
– Less impedance mismatch

● Compiler easier to write

– Existing dependence satisfaction, loop tagging
frameworks

– Performance gain (!)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

