
A Comparative Analysis of Load Balancing Algorithms Applied to a Weather
Forecast Model

Eduardo R. Rodrigues Celso L. Mendes
Philippe O. A. Navaux Jairo Panetta Alvaro Fazenda Laxmikant V. Kale

Institute of Informatics Center for Weather Forecast and Science and Technology Department Parallel Programming Laboratory
Federal University of Climate Studies - INPE Federal University of Sao Paulo University of Illinois at

Rio Grande do Sul Cachoeira Paulista - Brazil Sao Jose dos Campos - Brazil Urbana-Champaign
Porto Alegre - Brazil panetta@cptec.inpe.br alvaro.fazenda@unifesp.br Urbana - USA

{errodrigues, navaux}@inf.ufrgs.br {cmendes, kale}@illinois.edu

Abstract

Among the many reasons for load imbalance in weather
forecasting models, the dynamic imbalance caused by lo-
calized variations on the state of the atmosphere is the hard-
est one to handle. As an example, active thunderstorms may
substantially increase load at a certain timestep with re-
spect to previous timesteps in an unpredictable manner –
after all, tracking storms is one of the reasons for running a
weather forecasting model. In this paper, we present a com-
parative analysis of different load balancing algorithms to
deal with this kind of load imbalance. We analyze the im-
pact of these strategies on computation and communication
and the effects caused by the frequency at which the load
balancer is invoked on execution time. This is done with-
out any code modification, employing the concept of proces-
sor virtualization, which basically means that the domain is
over-decomposed and the unit of rebalance is a sub-domain.
With this approach, we were able to reduce the execution
time of a full, real-world weather model.

1. Introduction

Currently, there is an increasing demand for higher reso-
lution weather forecasting simulations. Some weather fore-
cast centers are already running models at resolutions of a
few kilometers and those are soon expected to increase fur-
ther. However, increasing resolution is not just a matter of
running the same model code with a finer mesh. As resolu-
tion increases, the executed code changes to simulate new

This work was partially supported by grants from the National Coun-
cil for Scientific and Technological Development (CNPq-Brazil) and from
the US Dep.Energy (#DE-SC0001845). Our tests used NSF’s TeraGrid
machines, under grants TG-ASC050039N and TG-ASC050040N. The au-
thor Eduardo R. Rodrigues was supported by the Brazilian Ministry of
Education - CAPES, grant 1080-09-1.

phenomena that were previously in a sub-grid scale. Higher
resolution allows the representation of localized phenom-
ena that cannot be explicitly treated at larger scales. One
example is small to medium scale cloud formation, which is
treated by statistical methods at scales larger than the cloud
itself and by explicit methods at finer scales.

A concrete instance of this fact is cumulus convection.
At lower resolution, this phenomenon is usually parameter-
ized [8]. Meanwhile, at resolutions of a few kilometers, it is
possible to use cloud microphysics. This component is con-
cerned with the formation, growth and precipitation of rain-
drops and snowflakes. This atmospheric process does not
have horizontal data dependences, but it may suffer from
load imbalance. Indeed, it is well known that thunderstorms
cause this problem. Other sources of load imbalance are
chemical and biological processes, such as those involved
with burning of biomass.

Therefore, as a consequence of increasing resolution and
complexity, weather forecast models face load imbalance.
There has been some research on the usage of load bal-
ancing strategies in meteorological models, but virtually no
production code has this feature. The reason is that it is
hard to implement load balancing in legacy codes. Conse-
quently, comparing load balancing algorithms in the context
of weather models is difficult.

In this paper, we take a different approach: we use the
concept of processor virtualization. Instead of inserting the
load balancer into the application code, we use a virtual-
ized implementation of MPI to decouple the load balanc-
ing strategy from the model itself. The domain is over-
decomposed in more sub-domains than physical processors
and each sub-domain is assigned to a “virtual processor”.
Each physical processor handles a set of virtual processors.
Load imbalance is addressed by moving virtual processors
from overloaded physical processor to underloaded ones.

In this virtualized environment, we are able to compare
different algorithms to deal with load imbalance of a real-



world meteorological model. Here, we analyze the im-
pact of several load balancing strategies on computation
and communication and the effects of the frequency of the
load balancer invocation on execution time. In our study
case, we employed the weather forecasting model BRAMS,
which is a mesoscale model written in Fortran 90. The
source of imbalance is an active thunderstorm moving in
the Southeast region of Brazil.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work; Section 3 describes the load
balancing methodology that we use; Section 4 presents the
results from our experiments, and finally Section 5 draws
conclusions.

2. Related Work

Conventional load-balancing techniques for parallel sys-
tems are divided in two classes: centralized and fully dis-
tributed. In centralized schemes [2, 15], the balancing de-
cision is made at a single point and communicated to the
entire system. These schemes have as their major advan-
tage the full knowledge of global information about system
status, which enables better load-balancing decisions. How-
ever, centralized schemes are inherently difficult to scale:
the single decision point may become a bottleneck, both to
receive information from the other processors and to store
all that information in a single processor’s memory. Mean-
while, fully distributed load-balancing methods [4, 12] are
designed to be scalable, but they tend to yield poor balance
quality on extremely large machines or tend to take much
longer time to yield good solutions in a rapidly changing
environment. With the recent growth in the size of par-
allel machines, a new class of hybrid balancers is emerg-
ing [19, 20]. These new balancers divide the processors in
groups, applying local balancing methods inside each group
and global methods across representatives of each group.
Hence, these hierarchical balancers tend to retain the ad-
vantages of both centralized and distributed schemes.

Load imbalance has been widely recognized as a prob-
lem in weather and climate models. Xue et al [18] re-
ported that sub-domains assigned to some processors may
incur 20%-30% additional computation due to active thun-
derstorms. They also claimed that the complexity of the as-
sociated algorithm and the overhead imposed by the move-
ment of load prevent using load balancing techniques. Due
to these difficulties, some models either ignore the imbal-
ance problem or adopt very simple, static techniques to ad-
dress it – a typical example is the assignment of “low” and
“high” latitudes to the same processor, such that the com-
bined number of grid points per processor remains uniform.

Foster and Toonen [6] conducted one of the few attempts
to dynamically balance the load in a climate code. They

http://brams.cptec.inpe.br/

proposed a scheme based on a carefully planned exchange
of data across processors at each timestep. When apply-
ing their scheme to the PCCM2 climate model [5], they
achieved an overall improvement of 10% on 128 proces-
sors, but that improvement degraded with more processors.
This technique requires a significant amount of data ex-
change between processors at each timestep. As the model
is scaled, this overhead may dominate execution and offset
any potential gains provided by load balancing. Also, im-
plementing this scheme requires intimate knowledge of the
application’s code, to determine which variables must be
exchanged between processors. To the best of our knowl-
edge, there is no existing dynamic load-balancing scheme
for weather and climate models that is independent of the
model’s code.

3. Balancing Methodology

In this section, we describe our methodology to balance
the load in BRAMS. We rely on AMPI [10], an MPI imple-
mentation based on Charm++. By using AMPI’s processor
virtualization, we can migrate work across processors dy-
namically, aiming to balance the load among them. After
presenting the major features of Charm++ and AMPI, we
discuss a formal solution to the balancing problem and the
various heuristics that we explored to address that problem.

3.1 Processor Virtualization

Charm++ is an object-oriented parallel programming
system aimed at improving productivity in parallel
programming while enhancing scalable parallel perfor-
mance [11]. A guiding principle behind the design of
Charm++ is to automate and optimize the division of labor
between the “system” and the programmer. In particular,
the programmer can specify what to do in parallel relatively
easily, while the system can best decide what processors
own which data units and what work units they execute.

Charm++ employs the idea of overdecomposition or pro-
cessor virtualization based on migratable objects. In this
approach, the programmer decomposes the application’s
data into a number of objects that is larger than the num-
ber of available processors. Those objects are automatically
mapped to the underlying processors by the Charm++ run-
time system. In addition, the objects can migrate across
processors during execution. Each of the objects residing
on a certain processor is implemented as a user-level thread,
which ensures fast context-switch, and is given control of
the CPU by a local scheduler provided by Charm++, in a
non-preemptive fashion.

From a programmer’s perspective, execution of a
Charm++ program proceeds as if each object had its own
processor, which we denote as a “virtual processor” (VP).



The set of objects, or virtual processors, selected by the
programmer is partitioned by the runtime system across the
available physical processors. The ratio between the total
number of virtual processors and the number of physical
processors is called the virtualization ratio. By employing
multiple virtual processors on each processor, when a vir-
tual processor blocks waiting for a message another virtual
processor may execute. This scheme greatly improves the
overlap between computation and communication.

Adaptive MPI (AMPI) is a full MPI implementation built
on top of Charm++ [10]. In AMPI, each MPI “rank” is
implemented as a user-level thread embedded in a Charm++
virtual processor. This approach ensures that the benefits of
Charm++ are available to the broad class of applications
written using MPI. Thus, an MPI program designed to be
run on K processors is typically executed by AMPI with K
virtual processors on P physical processors, where K ≥ P .

3.2 Model for Ideal Balancing

The problem of balancing N communicating threads
among M processors can be modeled by Mixed Integer
Quadratic Programming (MIQP). There are two objectives:
(1) minimize the imbalance among processors and (2) mini-
mize communication between any two processors. The sec-
ond objective is necessary in order to guarantee that threads
that communicate frequently are mapped close to each other
and therefore the communication cost is reduced. We have
previously shown that, in a cluster of multi-core machines,
mapping sub-domains of a meteorological model appropri-
ately can reduce by up to 9% the total execution time [16].

The MIQP model is the following:

minimize f :

M−1∑
i=0

N−1∑
j=0

wjxij

−Wmean

2

(1)
in which wj is the weight of thread j and Wmean is the av-
erage load. The variables xij are binary and represent the
placement of thread j on processor i. This objective pe-
nalizes processors that have load above and bellow average.
The second objective function is:

minimize g :

M−1∑
k=0

M−1∑
l=k+1

Dxkaxlb +

M−1∑
k=0

Sxkaxkb,

∀ a, b / a communicates with b (2)

where D represents the communication cost when two
threads that communicate with each other are placed in dif-
ferent processors, while S represents the cost when these
threads are placed in the same processor. Again, x is a

binary variable. This function penalizes communicating
threads that are placed in separate processors. The con-
straint of this model is:

M−1∑
i=0

xij = 1,∀ j (3)

The problem expressed by the first objective function is a
generalization of the multiprocessor scheduling problem [7]
and is known to be NP-complete.

Solving this model to optimality can take a very long
time on current machines, even for small cases. Indeed,
solving the case {M = 4, N = 16} takes several minutes
with the state of art solver (CPLEX). Consequently, heuris-
tics must be used to deal with realistic cases and obtain a re-
sult in a feasible amount of time. Describing some of those
heuristics is the subject of the next subsection.

3.3 Balancing Algorithms Employed

By leveraging its thread-migration capability, Charm++
provides a powerful infrastructure for measurement-based
load balancing [19]. Automatic instrumentation in the run-
time system allows the capture of computational loads and
communication patterns from each thread. This information
is stored in a database that can be dynamically updated and
used to decide where to map each thread. AMPI programs
can benefit from this infrastructure via the AMPI function
MPI Migrate(). This is a collective call that invokes the
load balancer, marking a point in the execution where mi-
grations can occur if such migrations would lead to better
balance of load across processors. The particular balancing
policy to be used is chosen as a command-line argument.

In general, minimal changes to an original MPI code
are required to use this load balancing infrastructure with
AMPI. For an iterative code, all that is needed is the in-
sertion of calls to MPI Migrate() at certain iterations, ac-
cording to some pre-determined criteria. In the experiments
that we report in Section 4, we explored calling the load
balancer both after a fixed number of iterations or just at it-
erations where the imbalance across processors was higher
than a certain threshold. The bottom-line is that the imple-
mentation of a particular balancing policy is totally isolated
from the application’s source code, thus no changes to the
application are required for using a given load balancer.

We investigated the use of various load balancers avail-
able in Charm++: GreedyLB, RefineCommLB, RecBi-
sectBfLB and MetisLB. GreedyLB is a load balancer that has
simplicity as its major feature; the thread with the heaviest
computational load is assigned to the least loaded proces-
sor, and this continues until a balance is reached. Hence, no
communication information is considered, which can lead
to a situation where two threads that communicate intensely



are placed in distinct processors. However, given the sim-
plicity of this policy, the balancing process is often very
fast.

RefineCommLB is a balancer that takes both computa-
tional load and communication traffic into account. It at-
tempts to move objects away from the most overloaded pro-
cessors to reach average, but also considers how that move-
ment would affect locality of communication. In addition, it
limits the number of migrations, regardless of the observed
loads. In general, this balancer is used for cases when mov-
ing just a few threads is sufficient to achieve balance.

The RecBisectBfLB balancer recursively partitions the
communication graph of threads with a breadth-first enu-
meration; the partitioning is done based on the computa-
tional loads of the threads, until the number of partitions
is equal to the number of processors. Although commu-
nication is considered by this scheme, there is no explicit
guarantees that the resulting communication volume across
partitions is minimized.

Meanwhile, MetisLB is a balancer that uses Metis [14]
to partition the thread communication graph. Both the com-
putational load and communication pattern are considered.
All of these Charm++ balancers employ a centralized ap-
proach, which works well for a moderate number of pro-
cessors. However, none of them directly takes into account
the spatial relationship between threads.

In BRAMS, like in many other weather forecasting mod-
els, the atmosphere is represented with a three-dimensional
grid of points. Those points are distributed across the
MPI ranks according to a domain decomposition in the
latitude/longitude plane. Each rank receives the full at-
mospheric columns corresponding to the points in its do-
main. Because the ranks are implemented by threads in
AMPI, there is a high volume of communication between
threads associated to ranks from domains that are neigh-
bors. Hence, mapping two threads from neighbor domains
to the same physical processor will ensure that their com-
munication is local to that processor, which minimizes the
communication overhead.

To preserve this spatial relationship between threads
more explicitly, we developed a new load balancer,
HilbertLB [17], based on a Hilbert space-filling curve [9].
We traverse the threads with a Hilbert curve that covers
the entire domain of the forecast (see Figure 1), and re-
cursively bisect that curve according to the observed loads
of the threads. This process is repeated until the number
of segments is equal to the number of physical processors.
The resulting segments will have approximately the same
load, and each segment should contain threads that repre-
sent neighbor regions.

Figure 1. Hilbert curve for the case of 16
threads

4. Experimental Results

Our study case is a forecast of a moving thunderstorm
in the Southeast region of Brazil. We configured BRAMS
to use a grid of 512×512 horizontal points and 40 vertical
levels. The resolution was 1.6 Km and the timestep was
6 seconds. We conducted forecasts of 4 hours, correspond-
ing to executions with 2,400 timesteps. These experiments
were run on a Cray XT5 system at Oak Ridge National Lab.,
whose nodes have two six-core AMD Opteron processors at
2.6 GHz. The network connection is a SeaStart2+. We used
64 physical processors and 1024 virtual processors. To an-
alyze in detail the executions, we used Projections [13], a
performance analysis tool from the Charm++ infrastructure.

We divided the experiments in three groups. The first
group is a basic comparison of all load balancers; subsec-
tion 4.1 presents the execution times for each algorithm
and an analysis of the reasons for these results. In subsec-
tion 4.2, we investigate how the frequency of balancing im-
pacts performance of a selected algorithm. We also estab-
lish a threshold beyond which migration will occur. Sub-
section 4.3 analyzes a generalization of the HilbertLB algo-
rithm to deal with domains of arbitrary sizes; we compare
those results with the ones from another experiment using
the same domain and the MetisLB load balancer.

4.1 Basic Comparison of Balancers

In our first group of experiments, we executed BRAMS
with a load-balancing invocation at the end of every forecast
hour, corresponding to timesteps 600, 1200 and 1800, re-
spectively. Table 1 presents the BRAMS execution time on
these experiments and the corresponding execution time re-
duction in comparison to the case without virtualization. By
just over-decomposing the domain, the application already
experiences improved performance (no load balancer case).
This is due to overlap of computation and communication
coupled to better cache usage. In a previous study [17], we
conducted an in-depth analysis of the factors that lead to
these improvements.



Configuration Execution Execution Time
Time (s) Reduction

No virtualization 4987.51 -
No load balancer - 1024 VP 3713.37 25.55%
GreedyLB - 1024 VP 3768.31 24.45%
RefineCommLB - 1024 VP 3714.92 25.52%
RecBisectBfLB - 1024 VP 4527.60 9.23%
MetisLB - 1024 VP 3393.12 31.97%
HilbertLB - 1024 VP 3366.99 32.50%

Table 1. Load balancing effects on BRAMS
(all experiments were run on 64 real proces-
sors)

Load Balancer Balancing Time (s)

GreedyLB 80.81
RefineCommLB 10.81
RecBisectBfLB 78.33
MetisLB 81.00
HilbertLB 51.45

Table 2. Observed cost of load balancing

The only load balancers that produced performance
gains were HilbertLB and MetisLB. Although the other load
balancers produced better performance in comparison to the
non-virtualized case, they actually lost part of the gains ob-
tained from over-decomposition, i.e. there was a reduction
in performance when compared to the “No load balancer”
case. There are three potential reasons for these results: (a)
the cost of executing the balancing algorithm and the migra-
tion cost were excessive; (b) the load balancer was unable
to rebalance load completely; and (c) the cross-processor
communication increased after rebalancing.

To investigate the first reason, Table 2 presents the time
each algorithm took to rebalance load. These values cor-
respond to the sum of the timestep durations for the three
timesteps where load balance occurred (i.e. timesteps 600,
1200 and 1800); they include both the execution of the bal-
ancing algorithm itself and the thread migrations. As it can
be seen, there is not much difference among these values,
except that RefineCommLB was much faster, as expected,
since it limits the amount of migration. One of the most
expensive algorithms, MetisLB, had one of the best applica-
tion execution times. Therefore, another reason must exist
to explain the poor application performance caused by the
the first three load balancers in Table 2.

Let us consider the GreedyLB load balancer. This bal-
ancer was able to rebalance load quite well, as shown in
Figure 2(a). This figure plots CPU usage of each physical
processor and the first bar is the average CPU usage. The
load is well balanced across all processors but the CPU us-

age is low, with an average near 70%. The reason for this
fact is communication, as a CPU becomes idle when it waits
for data from its neighbors. Since GreedyLB does not con-
sider communication in its balancing decisions, the external
(i.e. cross-processor) communication can increase as a con-
sequence of rebalancing. We confirmed this by comparing
the cross-processor communication in this experiment with
the one from the “No load balancer” case. We found that
the cross-processor communication volume increases by a
factor of nearly five with GreedyLB (see Figure 3).

In turn, RefineCommLB kept much of the communica-
tion similar to the pattern in the original mapping. How-
ever, it did not migrate enough threads to fully rebalance
load. Consequently, the load was still imbalanced after its
use, as confirmed by the utilization plot of Figure 2(b). The
problem with this load balancer is that it assumes the load is
almost balanced and it will just perform a refinement (as its
name implies). The imbalance of our experiment, in con-
trast, was much larger than what RefineCommLB could ef-
fectively handle.

With RecBisectBfLB, a good balance was achieved, as
shown in Figure 2(c). However, the utilization was quite
low, with an average near 55%. We noted that the use of
this balancer resulted in some processors having a much
larger communication frequency than others. Because the
execution in BRAMS proceeds with an implicit synchro-
nization caused by the exchange of boundary data between
sub-domains at each timestep, delays in one processor may
slow down the entire execution. We are conducting ad-
ditional checks to confirm that this was indeed the cause
for the poor performance of RecBisectBfLB observed in Ta-
ble 1.

Finally, for MetisLB and HilbertLB, which achieved the
best performance in Table 1, the balance was good and the
average utilization was quite high; Figure 2(d) shows those
details for MetisLB, while similar behavior was observed
with HilbertLB.

4.2 Adaptive Balance Period

In the previous set of experiments, a fixed load-balancing
invocation scheme was used and migrations would occur
whenever there was imbalance, regardless of the amount of
imbalance. Since the cost of executing the load balancing
algorithm is usually low but the thread migration cost may
be high, an adaptive balancing scheme can be more effec-
tive. In this new scheme, the load balancer is invoked more
frequently and migrations occur only if the observed imbal-
ance is beyond a given threshold.

In this subsection, we evaluate if the performance of
BRAMS can be improved by using this adaptive scheme.
We conducted executions invoking the load balancer every
100, 10 or 1 timestep(s), respectively. Also, we selected



(a) GreedyLB (b) RefineCommLB

(c) RecBisectBfLB (d) MetisLB

Figure 2. CPU usage under different load balancers

(a) No load balancer (b) GreedyLB balancer

Figure 3. Cross-processor communication volume

the following imbalance thresholds to trigger migrations:
50%, 20%, 10% and 5%. We quantify the imbalance by
how much the load in the most loaded processor was above
the average processor load. Here, only the HilberLB load
balancer was used. Table 3 presents the BRAMS execution
times from these experiments.

It is possible to see that a high threshold hurts execu-
tion time. The threshold of 50% produced worse results
than the fixed invocation scheme used previously. That
is because this threshold was too high and did not trigger
enough migrations to neutralize the imbalance. Decreasing
the load balancer invocation interval in this case reduces
execution time because the few occasions where the imbal-

ance reaches 50% are detected sooner. However, a very low
invocation interval should not produce any benefit, because
the load is highly unlikely to reach an imbalance of 50% or
more in such a few timesteps after rebalancing.

A threshold of 20% improves performance even with a
frequency of one invocation per timestep. The reason for
this is that the cost of simply executing the HilbertLB al-
gorithm without any migration is very low. Furthermore,
a threshold of 20% is a good trade-off between imbalance
and migration cost, i.e. migration (with its high cost) will
not occur so frequently even if the balancing algorithm is
being called at every timestep.

With a threshold of 10%, the performance reaches



LB Interval Imbalance Threshold
(Timesteps) 50% 20% 10% 5%

100 3639.54 3290.72 3211.10 -
10 3554.07 3179.31 3128.54 3245.03
1 - 3248.85 3872.11 -

Table 3. BRAMS execution time (in seconds)
with adaptive load-balancing invocation and
HilbertLB balancer

its best result, but only with an invocation interval of
10 timesteps. Lowering the invocation interval actually
causes performance to be worse than in the case of fixed
invocations (Table 1). This is because there are too many
migrations and their cost surpasses the benefits from load
balance. A similar but milder effect occurs with the thresh-
old of 5% and a balancing interval of 10 timesteps.

In summary, there is an optimal point with this adaptive
scheme that is reached when the load balancer invocation
frequency is high enough to detect the load variation. In
addition, the threshold must be tuned according to that fre-
quency, considering the typical imbalance that may arise
within the invocation period. In our experiments, invoking
the HilbertLB balancer every 10 timesteps and enabling mi-
grations when the imbalance was higher than 10% resulted
in a performance gain of 37.3% over the non-virtualized
BRAMS execution reported in Table 1.

4.3 Arbitrary Size Domains

Despite being simple, the load balancer based on the
Hilbert curve was very effective, as demonstrated by the
performance observed in Table 1. However, this original
algorithm has a quite strong restriction concerning domain
geometry: the domain must be a square and its side must
be a power of two. Chung, Huang and Liu [3] proposed
an algorithm to overcome this limitation, allowing the use
of rectangular domains of any size. Those authors used
that algorithm in image processing. Here, we implemented
the same algorithm to perform load balancing. In addition,
we compared this approach with the MetisLB load balancer,
which had also resulted in good application performance.

The algorithm starts by finding the biggest square inside
the original domain. This square is placed at the upper left
corner of the domain. This step is applied recursively to
the remaining area of the original rectangle, as illustrated
in Figure 4(a). Each square of the previous step is further
decomposed into smaller squares whose side is a power of
two. In order to do that, a “snake-scan” approach is used, as
shown in Figure 4(b). Finally, each smaller square is filled
with the regular Hilbert curve following the direction used

in the previous step (Figure 4(c)).
We ran another experiment with an atmospheric grid

consisting of 448×348 horizontal points and 40 vertical lev-
els. In this experiment, each thread had also 16×16 atmo-
spheric columns, like before. The domain was decomposed
into 28×24 sub-domains, for a total of 672 threads, and we
used 32 physical processors. The BRAMS forecast was for
a region with the same thunderstorm of the previous sec-
tions. The same forecast duration and timestep were used.

The execution time with the generalized HilberLB load
balancer was 2.7% larger than with MetisLB. The reason
for this fact was communication: an analysis with Projec-
tions (not shown here) indicated a small increase of cross-
processor communication in the execution with the new
HilbertLB in comparison to MetisLB. This result was ex-
pected, since, with this generalization of the Hilbert curve,
the threads in each processor will not form such tight clus-
ters as they did before. Consequently, the contact surface
between processors will be larger and that explains the in-
crease in communication and decrease in performance.

Despite that slightly lower observed performance,
HilbertLB has an advantage: it can be implemented in a
distributed fashion. Each processor can compute the Hilbert
sequence locally and the bisectioning algorithm can be effi-
ciently implemented with parallel prefix [1]. Consequently,
as the number of processors increases to many thousands,
this approach is expected to produce better performance, be-
cause in a machine of that size a centralized load balancer
may become a bottleneck.

5. Conclusions

Load imbalance is a key obstacle to the scalability of
weather and climate models. While some causes of im-
balance can be handled by static methods, other causes
are highly unpredictable and may vary with the input data.
Hence, dynamic load balancing techniques are needed to
obtain good scalability. Adding dynamic load balancing to
an existing model, however, is a very challenging task.

In this paper, we presented a comparative analysis
of different load balancing algorithms applied to the
BRAMS weather forecast model. By leveraging the over-
decomposition and processor virtualization techniques pro-
vided by Charm++ and AMPI, we were able to employ
those balancers without any changes to the BRAMS code.
In our reported experiments, we first compared the perfor-
mance achieved by invoking the various balancers at fixed
points in the simulation. The obtained results show that the
MetisLB and HilbertLB balancers produced the best per-
formance. Next, we investigated an adaptive scheme that
invokes the load balancing algorithm more frequently, but
only migrates work across processors when the imbalance is
beyond a certain threshold. With this adaptive scheme, we



(a) Divide the original domain
into squares

(b) For each square, apply the
“snake-scan” approach

(c) Use the conventional Hilbert
algorithm

Figure 4. Hilbert curve for domains of arbitrary size

observed an improvement in performance of 37.3% com-
pared to a non-virtualized BRAMS execution. Finally, we
extended the HilbertLB algorithm to enable its use with ar-
bitrarily sized domains, and showed that its obtained per-
formance remains comparable to that of MetisLB.

While the present results clearly show that dynamic load
balancing via processor virtualization is a feasible approach
for weather models, we continue to work to further improve
its efficiency and usability. One of our current efforts is to
investigate the use of information from meteorological vari-
ables to guide the balancing decisions. Another direction of
interest is the creation of a technique to automatically select
the best invocation frequency and imbalance threshold for
the adaptive load balancing scheme.

References

[1] A. Bhatele, G. Gupta, L. V. Kalé, and I.-H. Chung. Auto-
mated mapping of regular communication graphs on mesh
and torus interconnects, 2010. Submitted for publication.

[2] Y.-C. Chow and W. H. Kohler. Models for dynamic load
balancing in homogeneous multiple processor systems. In
IEEE Transactions on Computers, volume c-36, pages 667–
679, May 1982.

[3] K. Chung, Y. Huang, and Y. Liu. Efficient algorithms for
coding Hilbert curve of arbitrary-sized image and applica-
tion to window query. Information Sciences, 177(10):2130–
2151, 2007.

[4] A. Corradi, L. Leonardi, and F. Zambonelli. Diffusive Load
Balancing Policies for Dynamic Applications. In IEEE Con-
currency, pages 7(1):22–31, 1999.

[5] J. Drake, I. Foster, J. J. Hack, J. Michalakes, B. D. Semer-
aro, B. Toonen, D. L. Williamson, and P. Worley. PCCM2:
A GCM adapted for scalable parallel computers. In Proc.
AMS Annual Meeting, AMS, pages 91–98. American Mete-
orological Society, 1994.

[6] I. Foster and B. Toonen. Load-balancing algorithms for cli-
mate models. Scalable High-Performance Computing Con-
ference, pages 674–681, 1994.

[7] G. Fox, R. Williams, and P. Messina. Parallel computing
works! Morgan Kaufmann Pub, 1994.

[8] A. G. Grell and D. A. Dévényi. A new approach to param-
eterizing convection using ensemble and data assimilation
techniques. Geophysical Research Letters, 29:1693, 2002.

[9] D. Hilbert. Über die stetige abbildung einer linie auf ein
flächenstück. Mathematische Annalen, 38:459–460, 1891.

[10] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé. Perfor-
mance evaluation of adaptive MPI. In Proceedings of ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming 2006, March 2006.

[11] L. Kalé. The Chare Kernel parallel programming language
and system. In Proceedings of the International Conference
on Parallel Processing, volume II, pages 17–25, Aug. 1990.

[12] L. V. Kalé. Comparing the performance of two dynamic
load distribution methods. In Proceedings of the 1988 Inter-
national Conference on Parallel Processing, pages 8–11, St.
Charles, IL, August 1988.

[13] L. V. Kalé, S. Kumar, G. Zheng, and C. W. Lee. Scaling
molecular dynamics to 3000 processors with projections: A
performance analysis case study. In Terascale Performance
Analysis Workshop, International Conference on Computa-
tional Science(ICCS), Melbourne, Australia, June 2003.

[14] G. Karypis and V. Kumar. METIS: Unstructured graph par-
titioning and sparse matrix ordering system. University of
Minnesota, 1995.

[15] L. M. Ni and K. Hwang. Optimal Load Balancing in a Mul-
tiple Processor System with Many Job Classes. In IEEE
Trans. on Software Eng., volume SE-11, 1985.

[16] E. R. Rodrigues, F. L. Madruga, P. O. A. Navaux, and
J. Panetta. Multi-core aware process mapping and its im-
pact on communication overhead of parallel applications. In
ISCC, pages 811–817, 2009.

[17] E. R. Rodrigues, P. O. A. Navaux, J. Panetta, C. L. Mendes,
and L. V. Kalé. Optimizing an MPI weather forecasting
model via processor virtualization, 2010. Submitted for pub-
lication.

[18] M. Xue, K. Droegemeier, and D. Weber. Numerical Predic-
tion of High-Impact Local Weather: A Driver for Petascale
Computing. Petascale Computing: Algorithms and Applica-
tions, pages 103–124, 2007.

[19] G. Zheng. Achieving High Performance on Extremely Large
Parallel Machines: Performance Prediction and Load Bal-
ancing. PhD thesis, Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign, 2005.

[20] G. Zheng, E. Meneses, A. Bhatele, and L. V. Kalé. Hier-
archical Load Balancing for Large Scale Supercomputers.
Accepted for the Third International Workshop on Parallel
Programming Models and Systems Software for High-End
Computing (P2S2), September 2010.


