
c© 2010 Isaac J Dooley

INTELLIGENT RUNTIME TUNING OF PARALLEL APPLICATIONS
WITH CONTROL POINTS

BY

ISAAC J DOOLEY

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Doctoral Committee:

Professor Laxmikant V. Kale, Chair
Professor Michael Heath
Associate Professor Craig Zilles
Dr. David Jefferson, Lawrence Livermore National Laboratories

Abstract

The tuning of parallel programs on large distributed-memory machines today

is usually a costly, and often extensive, manual process. Automatic tuning

techniques can help reduce this manual burden. This dissertation investigates

the utility of a new class of automatic tuning methods for large-scale parallel

programs whereby each program exposes information about its behavior to

the runtime system. This behavioral information enables a tuning framework

to quickly find appropriate ways to reconfigure or steer the application

towards better performance.

This dissertation describes both new automatic tuning mechanisms within

a parallel runtime system, and a new framework that automatically

reconfigures the behavior or structure of the program through one or more

control points. Control points are a novel type of tunable parameter provided

by an application wherein it exposes tunable knobs and information about

the behavioral effects expected to occur as each knob is varied in each

direction. This behavioral information associated with each control point

allows tuning algorithms to identify the direction in which a control point

should be adjusted to fix observed performance problems.

Multiple application case studies show that control points are useful

mechanisms for dynamically reconfiguring applications to improve their

performance. In these case studies, individual control points are examined

to investigate how they can adjust diverse application behaviors including

computational grain sizes, the amount of work offloaded to accelerators,

the mapping of tasks to processors, the frequency of load balancing, and

a communication throttling parameter.

ii

To my parents Dr. Tom Dooley and Laura Dooley,

and to my wife Amanda Dooley,

for their love and support.

iii

Acknowledgments

I would like to thank all the people that have helped me in this work.

This work is not simply the product of one mind. Rather the work builds

upon the ideas, existing applications, and infrastructure provide by many

other talented individuals. Many of the ideas proposed in this thesis

evolved through numerous discussions with my advisor Laxmikant Kalé,

and with feedback from members of The Parallel Programming Lab and

my dissertation committee.

My sincere thanks go out to my colleagues who have directly contributed to

the ideas, text, and figures included within and to the numerous experiments

performed for this thesis. Specifically I would like to thank Jonathan

Lifflander, Chao Mei, Anshu Arya, David Kunzman, Aaron Becker, Yanhua

Sun, Phil Miller, Eric Bohm, Ramprasad Venkataraman, Abhinav Bhatele,

Filippo Gioachin, Forrest Iandola, Dr. Celso Mendes, and Dr. Gengbin

Zheng.

This work has been made possible through the support of the wonderful

DOE HPCS Fellowship program, and through funding by the NSF and DOE.

iv

TABLE OF CONTENTS

CHAPTER 1 Introduction . 1

CHAPTER 2 Methodology . 5
2.1 Phase 1: New Types of Adaptivity Within the Runtime System 6
2.2 Phase 2: Cataloging Control Points 7
2.3 Phase 3: Build Control Point Tuning Software Infrastructure . 7
2.4 Phase 4: Application Case Studies 8

CHAPTER 3 Memory-Aware Schedulers 9
3.1 Introduction . 9
3.2 Memory-Aware Scheduling Implementation 11
3.3 LU Case Study . 13
3.4 Automatically Finding an Optimal Memory Threshold 23
3.5 Summary . 25

CHAPTER 4 Adapting Message Priorities 26
4.1 Introduction . 26
4.2 Message-Driven Parallel Programs 28
4.3 Program Activity Graph Terminology 29
4.4 Algorithm for Determining a Critical Path 31
4.5 Implementations . 33
4.6 Overhead . 39
4.7 Using Critical-Path Profiles 41
4.8 Other Types of Paths . 46
4.9 Summary . 47

CHAPTER 5 Catalog of Control Points 48

CHAPTER 6 Tuning Applications with Control Points 56
6.1 Exposing Control Points Within an Application 58
6.2 Gathering Performance Measurements 60
6.3 Direct-Search Algorithms for Choosing Control Point Values . 68

v

6.4 Guided Steering of Control Point Values 75
6.5 Combining Multiple Tuning Schemes 76
6.6 Summary . 77

CHAPTER 7 Control Point for Divide & Conquer Grain Size 78
7.1 Application Overview . 78
7.2 Adding a Grain Size Control Point 80
7.3 Tuning Between Successive Fibonacci Computations 80
7.4 Tuning Within One Fibonacci Computation 83
7.5 Programmer Burden . 85
7.6 Future Work . 88
7.7 Summary . 90

CHAPTER 8 Control Point for GPU Offload Ratio 91
8.1 Application Overview . 91
8.2 Adding an Accelerator Offload Control Point 92
8.3 Tuning Scheme . 93
8.4 Programmer Burden . 95
8.5 Summary . 96

CHAPTER 9 Control Point for Load Balancing Period 97
9.1 Application Overview . 98
9.2 Dynamic Load Balancing . 98
9.3 Adding a Load Balancing Period Control Point 100
9.4 Adjusting the Period Based on Utility 101
9.5 Analytical Model for Optimal Load Balancing Period 107
9.6 Results . 109
9.7 Programmer Burden . 111
9.8 Summary . 114

CHAPTER 10 Control Points in LU Factorization 115
10.1 Application Overview . 115
10.2 Adding Control Points . 115
10.3 Adapting Block Sizes . 116
10.4 Selecting Block to Processor Mappings 116
10.5 Adapting Algorithmic Parameters that Affect Memory

Consumption . 123
10.6 Programmer Burden . 123
10.7 Summary . 126

CHAPTER 11 Control Point for Communication Throttling 127
11.1 Application Overview . 127
11.2 Adding Control Points . 128
11.3 Tuning Between Successive Sorting Operations 129
11.4 Programmer Burden . 133
11.5 Summary . 133

vi

CHAPTER 12 Costs of Performance Tuning 134
12.1 Cost of Tracing . 134
12.2 Cost of Gathering Measurements From All Processors 136
12.3 Costs of Determining Next Control Point Values 138
12.4 Summary . 139

CHAPTER 13 Related Work . 140
13.1 Single Node SMP Autotuning 140
13.2 Tuning Large-Scale Distributed-Memory Applications 142
13.3 Novelty of Control Points for Automatic Tuning 147

CHAPTER 14 Future Work . 148

APPENDIX A Derivation of Optimal Load Balancing Period 150

REFERENCES . 153

vii

CHAPTER 1
Introduction

Existing parallel programming models and languages focus on the decom-

position of data structures and control flow. The parallel portion of the

application is often a library (e.g. MPI) used by the application. The

library simply performs actions on behalf of the application such as parallel

task creation and communication of data through messages or a shared

namespace. In these existing parallel systems, the parallel runtime libraries

do not influence or change the behavior of the application itself. Runtime

systems, however, are uniquely poised to observe characteristics of a parallel

program’s execution as it runs in order to dynamically change the behavior of

the application to increase its performance. Some existing parallel systems

such as Charm++ already observe characteristics of a parallel program’s

execution in order to dynamically balance computation or communication

load, but no mechanisms exist for the runtime system to control other

behaviors of the application. This thesis evaluates a new mechanism through

which applications expose information and the runtime system reconfigures

the application. This approach extends the existing unidirectional flow of

information and control to two directions (from the application to the runtime

system and vice-versa). Specifically, this thesis investigates a new type of

mechanism through which the runtime system can modify specific behaviors

of an application in response to observed performance characteristics.

In this new approach, the runtime system will modify an application’s

behavior or structure through dynamically tunable parameters exposed

by the application. These exposed parameters are called control points.

An application will supply one or more control points while describing

1

their effects. This thesis examines various applications to find, evaluate,

and classify useful control points that can be intelligently adjusted by an

observant runtime system. The runtime system will be considered to perform

intelligent tuning because it will use observed performance characteristics and

knowledge about the effects of each control point when dynamically deciding

how to modify, or steer, an application’s behavior.

This work attempts to extend the philosophy of the Charm++ program-

ming model. The traditional Charm++ philosophy includes the idea that

an adaptive runtime system can instrument and adapt to the behavior

of a parallel program. Prior to this thesis research, the adaptation only

involved the application by requiring that the application provide a set of

migratable objects that the runtime system can distribute dynamically. One

benefit of this prior migratable object programming model is that most

of the programming burden related to load balancing is eliminated. This

approach has worked well when scaling some scientific applications to over

40,000 processors, and soon it will scale to over one petaflop/s of sustained

application performance on hundreds of thousands of processors. Although

this prior model has proven to be successful, much effort has still been spent

manually tuning applications for each new parallel machine.

A key intuitive concept behind this work is that additional benefits ought

to arise when an application provides a richer set of information to the

runtime system about its behavior. New types of runtime system adaptations

can be enabled when an application provides further information about its

behavior. For example, if an application specifies how its various activities

affect memory consumption, then an adaptive scheduler in the runtime

system could schedule appropriate tasks when available memory is low. Or,

if an application specifies that there are multiple paths of execution through

its parallel activity graph, then an adaptive message prioritization scheme

could use observed critical-path information to automatically prioritize the

execution of the critical activities. These types of adaptation require the

application programmer to expose small amounts of information about the

program to the runtime system, enabling new mechanisms in the runtime

system to affect scheduling or message delivery. No modification to the

application is required beyond the minimal annotations that provide the

information.

Unfortunately, certain application-specific behaviors cannot be modified

2

without more significant changes to an application. It is not possible

for example for the runtime system to adjust an application’s domain

decomposition grain size without help from the application itself. Parallel

applications do, however, frequently contain multiple alternative methods for

decomposing a problem. The method by which the problem is decomposed

is specific to the application, and hence an adaptive runtime system cannot

modify this portion of an application’s behavior without some mechanism

exposed by the application. But, many different applications could expose

their decomposition granularity parameters in a consistent uniform manner

such that the runtime system could increase the application grain size if

needed. A key observation is that many applications or modules in an

application contain different internal methods for decomposing a problem,

but the effects of changing the granularity are similar. Hence a single

unified interface for adjusting the granularity or other such application-

specific behaviors ought to be useful.

The tuning of an application at runtime by an intelligent runtime system

will likely produce better performing applications than would be produced by

a statically tuned program because more information is available about the

system at runtime and programs may have dynamically evolving performance

characteristics. The most flexible runtime optimizations are those that can

be varied and adjusted within a single program run.

In this research, an API has been developed for exposing control points

within applications and for exposing information about the effects of each

control point. This API can be used by multiple program modules or

libraries, potentially allowing the multiple modules to be co-optimized.

Although co-optimization of many control points is likely to be useful,

this thesis studies the adjusting of individual control points one at a

time, developing various tuning strategies for each type of control point

separately. This work differs from classical auto-tuning approaches because

it dynamically tunes running parallel applications based upon observed

characteristics of the program, feeding back information to the application

through control points.

The approach taken in this dissertation follows a bottom-up approach,

demonstrating the utility of multiple simple tuning schemes for individual

control points. Such an approach results in an immediately useful

infrastructure that can be used by other application developers. The goal is

3

not to build an all-powerful, or theoretically advanced tuning methodology,

but rather to investigate solutions to practical problems. In the future the

ideas presented in this dissertation will be incorporated with other ideas

and solutions into complex, completely general, and fully automatic tuning

frameworks for parallel programs.

4

CHAPTER 2
Methodology

The primary goal of this research is to identify and categorize useful places

where instrumented performance characteristics can be analyzed at runtime

to adapt the behavior of a parallel application using known information about

the behavior of the application. To ensure that the resulting adaptation

mechanisms are actually useful, the research will focus on identifying

mechanisms that can improve the performance of real parallel applications.

The secondary goal of this work is to develop a general-purpose automatic

tuning framework that can make intelligent tuning choices by utilizing both a

knowledge base containing the effects of adjusting each available control point

and the knowledge of past performance-related measurements. Mechanisms

will be created to instrument and gather performance metrics that are related

to the possible control point effects.

To achieve both of these goals, this research is composed of four phases.

The first phase is to investigate cases whereby an application can provide

a small amount of extra information about its behavior, and the runtime

system can automatically adapt its own behavior to increase the application’s

performance. The second phase is to investigate a wide set of potential

control points, creating a catalog of many conceivable types. The expected

effects of each control point will be listed, along with potential application

uses for each control point. The third phase consists of implementing

the instrumentation mechanisms and creating a system that can modify

application control point values after analyzing recent or past performance

measurements. The fourth phase consists of adding control points to various

applications, investigating the utility of different types of control points

5

individually.

The four phases in this project have overlapped in time with each other,

as the overall progress has been driven by application case studies. Each

application case study has advanced the understanding of the utility of one

or more types of control points and has driven the creation of a new tuning

technique or improvements to the API. The four phases are discussed in more

detail in sections 2.1, 2.2, 2.3, and 2.4.

2.1 Phase 1: New Types of Adaptivity Within the

Runtime System

This first phase of thesis research improves the Charm++ adaptive runtime

system’s ability to adapt its own behavior when behavioral information about

an application is available. Here, performance can be improved through

modifications to the activities performed by the runtime system, such as

scheduling activities. For this phase, mechanisms have been developed that

enable parallel programs to annotate behavioral information that enhances

the types of adaptation that can be performed within the runtime system.

Chapter 3 describes a technique that allows an application to annotate

which of its tasks are responsible for reducing the memory footprint of the

application. The runtime system’s scheduler can then intelligently choose

to schedule tasks that reduce memory consumption when the amount of

available memory is small.

Chapter 4 describes a technique that allows the parallel runtime system

to automatically adapt an application’s message priorities in response to

observed critical-path profiles for the running application.

These two examples show that adaptive runtime systems are capable of

previously unexamined types of adaptation. The existence of these new

adaptive behaviors of the runtime system suggest that other new adaptive

behaviors might also be found in the future. As further types of useful

automatic adaptations are found, the importance of complex parallel runtime

system such as Charm++ will increase. Perhaps these complex runtime

systems will even displace the current widespread use of low level parallel

libraries that do not provide many high-level features to an application.

6

2.2 Phase 2: Cataloging Control Points

This phase of thesis research involves identifying categories of control points,

each with a well defined “knob” and a “language” for specifying its impacts on

performance parameters, along with application examples for each category.

The set of all known possible control points will then be separated into

categories, forming a catalog. This catalog will list possible effects caused by

adjusting each control point. The resulting catalog is provided in Chapter 5.

This information in the catalog about the effects of adjusting control points

has driven the design of a programmable API for exposing that information

by an application to the tuning framework.

2.3 Phase 3: Build Control Point Tuning Software

Infrastructure

The third phase of thesis research involves building the software infrastruc-

ture necessary to tune control points. Building a real system ensures that the

techniques and control points proposed in the previous phase are realistically

implementable.

Chapter 6 describes the software infrastructure that has been developed

within the Charm++ Runtime System. The additions include mechanisms

for measuring performance characteristics of a running parallel application

(6.2), an API that allows applications to expose control points (6.1), and

implementations of multiple algorithms for tuning control point values.

These tuning algorithms include standard direct space-searching techniques

such as simulated annealing, the Nelder-Mead simplex algorithm, and

exhaustive searches (6.3), along with the novel intelligent steering techniques

developed specifically for this thesis (6.4). The steering techniques

incorporate performance measurements with the information about the

expected effects of varying each control point knob to intelligently choose

the future control point values.

7

2.4 Phase 4: Application Case Studies

The final phase of this research consists of a set of application case studies.

The application case studies will be used to refine the API used to express

control points, while also improving the techniques used for gathering

performance measurements and the algorithms for steering the control point

values. Using case studies of real applications to improve the tuning

framework maximizes the utility of the resulting system. As each case study

is performed, tuning mechanisms will be created or modified to effectively

tune each application. As the application studies are performed, when

possible, the costs associated with adapting each application will be measured

to quantify the overhead required to tune each application.

Although the framework built in phase 3 is designed to be able to co-

optimize many control points at once, the application case studies presented

in this thesis only investigate how a single control point can be adjusted in

isolation from any others.

Descriptions of the multiple application case studies comprise multiple

chapters of this dissertation. Chapter 7 describes how the grain size

of a dynamic-parallelism tree-based computation can be adjusted as the

program runs. Chapter 8 describes for a finite element structural dynamics

application how the amount of work offloaded to a computational accelerator

device can be managed automatically based on the observed load on the

standard CPU processors. Chapter 9 proposes and evaluates multiple

methods for automatically and dynamically adjusting the load balancing

period (or frequency) of a different structural dynamics application as it

runs. Chapter 10 describes how three different aspects of a dense LU

factorization program can be automatically adjusted, albeit independently:

the matrix block decomposition, the block-to-processor mapping function,

and a parameter that reduces the available parallelism when memory

consumption is low.

These chapters contain descriptions of the applications, performance

results over control point parameter spaces, analyses of costs of adaptation,

analyses of the programmer burden, and descriptions of multiple tuning

scheme variants where possible.

8

CHAPTER 3
Memory-Aware Schedulers

3.1 Introduction

This chapter presents a novel type of adaptation within the parallel runtime

system that can improve the performance of an application when the

application exposes information about its memory consumption patterns.

The proposed adaptation is a simple, but powerful memory-aware scheduling

mechanism that adaptively schedules tasks in a message-driven parallel

program. The scheduler adapts its behavior whenever memory usage exceeds

a threshold by scheduling tasks known to reduce memory usage. The

usefulness of the scheduler and its low overhead are demonstrated in the

context of an LU matrix factorization program. In the LU program, only a

single additional line of code is required to make use of the new general-

purpose memory-aware scheduling mechanism. Without memory-aware

scheduling, the LU program can only factor small matrices, but with the

new memory-aware scheduling, the program scales to larger problem sizes.

It is well known that some parallel algorithms require large quantities of

memory. Unfortunately, parallel systems have limited amounts of memory,

and hence parallel programs must use algorithms that do not exceed the

available memory bounds.

This chapter describes a general-purpose memory-aware scheduling tech-

nique that can automatically restrict the memory usage for a class of parallel

algorithms that would otherwise run out of memory. Because the scheduling

Portions of this chapter c©2010 IEEE. Reprinted, with permission, from [1]. Some
figures and text were created by Jonathan Lifflander and Chao Mei.

9

technique is included in a general-purpose parallel runtime system, the

parallel program needs only minor changes to use the scheduler.

Often it is easier to implement a simple näıve algorithm instead of a more

complicated explicitly memory-aware algorithm. Hence the productivity of

a programmer will likely be higher if a simpler memory-oblivious algorithm

can be written while allowing the runtime system’s scheduler to automatically

restrict memory consumption.

All scalable, parallel LU dense matrix factorization implementations

frequently used today are written using algorithms that explicitly restrict the

progress of subtasks comprising the algorithm to ensure that there always

is enough memory available to make forward progress. Some algorithms,

such as the one used in the High Performance Linpack implementation use

a fixed parameter that statically controls the lookahead depth, or number of

algorithm stages that can be executed ahead of the oldest currently-active

algorithm stage [2]. When the amount of lookahead permitted is small, the

degree of concurrency is small and the required memory buffer overhead

is small. Conversely, if the amount of lookahead is high, the degree of

concurrency is higher but the required memory footprint becomes larger.

The memory footprint expands because more blocks of incoming data are

stored on each processor before pairs of these blocks are consumed in trailing

update operations.

Other LU implementations use dynamic lookahead so they can fully exploit

as much concurrency as will fit in the available memory [3]. Memory

buffers are reserved for specific tasks in a certain order while sending and

receiving processors coordinate the accesses to the reserved buffers to ensure

that deadlock will not occur if memory is exhausted for some processor.

Such implementations use an application-specific scheduler with a user-level

threading package to allow the program to proceed in a safe manner.

One key goal that all implementations share is to achieve high performance.

This can be achieved by performing computation aggressively along the

critical path so that the parallel machine achieves high utilization. A

message-driven style of programming such as Charm++ [4] allows this

pattern of computation to be expressed naturally. The case study presented

in section 3.3, an LU implementation, was written in Charm++.

10

3.2 Memory-Aware Scheduling Implementation

This chapter describes a memory-aware scheduling technique which con-

strains the memory consumption of a class of näıve parallel algorithms that

are oblivious to memory consumption. The memory usage is reduced by

the scheduler as it chooses to schedule tasks known to reduce the memory

footprint whenever available memory resources are low. An implementation

of this new scheduling technique was created by modifying the existing

scheduler in the Charm++ Runtime System. The new scheduler can

therefore be used by any Charm++ program, and hence it is general-purpose.

In order for the scheduler to know which tasks should be scheduled when

memory resources are limited, the system requires only minor changes to the

Charm++ program. The programmer simply needs to add an annotation for

each of the tasks that reduce memory consumption. This section describes

the existing Charm++ scheduling system and the modifications that result

in a simple memory-aware scheduler.

3.2.1 Existing Charm++ Scheduler

The existing Charm++ Runtime System uses a flexible scheduling mecha-

nism to execute tasks spawned locally and tasks associated with incoming

messages from other processors. In a Charm++ program, the tasks are

Entry Method Invocations on Chare Objects, Chare Groups, or Chare Node

Groups [5]. The flow of control for a Charm++ parallel program proceeds

as entry methods are invoked. These entry methods perform computations

and asynchronously invoke other entry methods.

The existing scheduler in the Charm++ Runtime System, which runs on

each processor, supports prioritized execution in both LIFO and FIFO modes.

Priorities or LIFO/FIFO designations can be associated with each entry

method invocation. If no priority is specified, a default medium priority

is implicitly assumed. When an entry method is invoked, its designated

queuing scheme is stored along with any parameters to the method inside

a message. Each message is then delivered to the destination processor or

processors. Each destination processor will enqueue the message using the

queuing scheme specified in the message’s header.

Although the primary Charm++ scheduler queue acts just like a priority

11

queue, it is actually composed of three separate data structures: a high

priority heap, a default (or zero) priority queue, and a low priority

heap. Charm++ entry method invocations awaiting execution are stored

in messages recorded in one of these three data structures. The reason that

three separate structures are used instead of a single priority queue is that

the double ended queue used for the frequent default priority case, with O(1)

insertion and removal time, can be slightly faster than a more complicated

heap data structure, with O(log(n)) insertion and removal time.

3.2.2 New Adaptive Charm++ Scheduler

The new adaptive scheduler is a simple variant of the existing scheduler. The

new scheduler adapts its behavior whenever the current memory usage for

the processor exceeds a threshold. The threshold can be specified at runtime

as a command line argument.

As long as the current memory usage is below a threshold, the scheduler

acts as it normally would, processing messages one at a time in prioritized

order from the scheduler queue. When the current memory usage exceeds

the specified threshold, certain types of tasks are scheduled immediately

even though they might have priorities lower than other tasks in the queue.

Specifically, tasks that potentially reduce memory usage will be scheduled

ahead of all other tasks whenever a processor’s memory usage exceeds the

threshold.

To modify the behavior of the scheduler when the memory usage is high,

a call is made to a function that modifies the scheduler queue just prior

to determining which task ought to be executed next. The modification

function simply performs a linear scan through the three priority queue data

structures, searching for the first task known to reduce memory usage. Once

such a task is found, the task is removed from the priority queue and is re-

enqueued with maximum priority. Then the scheduler resumes its normal

operations, resulting in that task being executed next.

Of course, the scheduler needs to know which types of tasks are candidates

for rescheduling. The adaptive scheduler therefore contains a list of such

task types. The list is populated at startup with tasks specified by the

application programmer in the application’s interface file. All Charm++

12

programs contain one or more simple interface files that specify the entry

methods and other parallel constructs in the program. A simple translator

parses the interface file and generates C++ code that is compiled into the

program to support the specified entry methods and other constructs. A new

tag called [memcritical] has been added to the interface file’s grammar and

parser. When this new tag is used as an annotation to any entry method, the

entry method will be included in the scheduler’s list. Hence any invocations

of the entry method will become candidates for rescheduling.

In a Charm++ parallel program run on p total processor cores across n

nodes, there are p separate schedulers, each of which adapts its behavior

independently of any processors on other nodes. The decision of when to

adapt is made purely on local information without use of any centralized or

distributed information. In an SMP build of Charm++, up to p
n

schedulers

within one node may execute in the same operating system level process and

hence in the same memory address space. In such an SMP configuration, the

memory consumption for the program will be visible to all of the schedulers

within the process. Thus decisions in the SMP version will be made based

on the memory consumption of multiple Charm++ PEs, but still without

any knowledge of memory consumption on other nodes.

3.3 LU Case Study

To evaluate the usefulness of the memory-adaptive scheduler described in

section 3.2.2, an LU program was modified to use the adaptive scheduler.

This section describes the LU implementation as well as its performance

characteristics both with and without the adaptive scheduler. The resulting

memory consumption patterns for the program are analyzed to show that

the memory-aware scheduling technique does indeed reduce memory usage

in a useful manner. The section concludes with a set of insights gained from

this case study.

3.3.1 Experimental Setup

All runs of the Charm++ LU implementation are performed on 64 nodes of

an IBM Bluegene/P system at the Argonne Leadership Computing Facility.

13

Only one processor core per node is used, to maximize the range of memory

footprints per core that could be studied. This allows each core to use

from 0GB to 2GB, providing the maximal insight into the behavior of the

program. If more cores per node were used, then the results presented in

this chapter would be truncated. Each node contains four processor cores

running at 850MHz and 2GB of memory. All visualizations of processor

timelines are generated from actual application traces analyzed using the

Projections performance analysis toolkit [6].

For the performance critical numerical kernels, when using an IBM

Bluegene/P system, the Charm++ LU program uses the dgemm and dtrsm

routines from the Engineering and Scientific Subroutine Library (ESSL).

For performance comparisons, the well-known High Performance Linpack

Benchmark (HPL) version 2.0 was run on the same system with identical

block sizes and matrix sizes.

3.3.2 Charm++ LU Implementation

To write a dense LU algorithm, there are many implementation choices

to be made. This section describes some of the design decisions made

when developing a Charm++ implementation of dense square LU matrix

factorization. The LU program was written as simply as possible, without

any explicit memory-awareness in the parallel program’s code. This

implementation does not perform pivoting. Hence some numerical stability

is lost, but the same number of floating point operations are still performed

when compared to an LU program that implements pivoting [7].

The program uses a 2-D chare array to decompose a 2-D matrix into

b × b square blocks. Each matrix block is stored in one of the chare array

elements, while the mapping of chare array elements to processors is flexible.

The default Charm++ mapping for 2-D chare arrays is a block mapping,

but the program can easily specify other mappings, and for this LU program

a custom one, called balanced snake mapping, was developed. Section 10.4

describes this new mapping scheme and its tradeoffs over the traditional

block-cyclic mapping.

The main communication pattern that occurs throughout a blocked LU

14

LU
3

05

1

25

10 4

Row
Update

Column
Update

Trailing
Update

Row
Update

Trailing
Update

Trailing
Update

Trailing
Update

Column
Update

LU Row
Update

Trailing
Update

Column
Update

LU

Row Broadcast

Column Broadcast

Local Dependency

Computation
Starts
Here

Computation
Completes

Here

Figure 3.1: Structure of an LU factorization of a matrix decomposed into
3 × 3 blocks. Conceptually there are 3 phases, although overlapping work
from multiple phases is acceptable as long as dependencies are preserved.

15

matrix factorization is a multicast1 of a data block from a source block to

all subsequent blocks in the same row, and a downward multicast of a data

block from its source to all blocks below it in the same column. Figure 3.1

shows the structure of the program, including dependencies and the flow of

data in the blocked algorithm for a coarsely decomposed matrix. As the

program proceeds, the upper and leftmost blocks complete while the final

result is produced only after the bottom rightmost block performs its own

LU factorization.

The Charm++ language natively supports chare array section sends,

which are mechanisms for sending a single message to a set of destination

chare array elements. The programmer can choose one of many predefined

algorithms for each of these communication operations [5]. The Charm++

LU program can therefore concisely express the pattern of communication

that needs to occur. The multicast algorithm that appears to perform well

for the cases described below uses a simple processor spanning tree of degree

four.

The main computations performed in a dense LU algorithm are matrix-

matrix multiplications that update the values in a block. This update

operation is referred to as a trailing update. For block (i, j), the block LU

algorithm performs min (i, j) trailing updates. The closer a block is to the

bottom right corner of the overall matrix, the more computation is performed

for it. Other computationally intensive portions of the algorithm involve local

single-block LU factorizations to be performed for blocks along the diagonal,

and updates along the topmost active row and leftmost active column.

To factorize an n× n matrix, approximately 2n3

3
floating point operations

are required. Assuming the matrix is decomposed into b × b square blocks,

the fraction of the floating point operations spent inside the matrix-matrix

multiply operation approaches 1 − 1
b2

as b increases [7]. Thus for large

LU factorizations, almost all floating point operations occur within the

context of matrix multiplication. Therefore, a performance of a good LU

implementation should approach the performance achieved by the double

precision matrix-matrix multiply operation.

1Also called a broadcast

16

3.3.3 Priority Based Dynamic Lookahead

One general goal when writing parallel programs is to expose as much

concurrency as possible to provide for the greatest opportunities to fully

exploit the available processors and obtain high application performance. In

a parallel LU factorization, there are important tasks along the critical path

of the computation, namely the block LU factorizations and the following

topmost active row and leftmost active column block updates. Scheduling

such tasks as early as possible results in greater exposed concurrency earlier in

the program. The other tasks, namely block trailing updates, can sometimes

be delayed relative to the other tasks. If the trailing updates are executed

with high priority, the program will not expose enough concurrency to keep

all processors busy because the other critical path tasks are delayed in time.

Alternatively, if the trailing updates are executed with low priority, then

the critical path tasks will execute sooner, causing an avalanche of enqueued

block trailing updates across all processors. The enqueued block trailing

updates necessitate the buffering of two incoming data blocks. These blocks

will occupy space in memory, and an increase in delayed trailing updates will

directly relate to an increase in memory usage.

When writing an LU program, there are a few options regarding how much

lookahead to support. High degrees of lookahead cause more trailing updates

to be delayed, increasing memory usage. Low degrees of lookahead ensure

that trailing updates cannot be buffered for too long, and hence the memory

usage will not be as high.

The simplest LU implementations ignore the issue of lookahead and allow

the program to proceed without regard to how far ahead one processor

can compute relative to tasks buffered on itself or other processors [8].

Such an unlimited lookahead scheme is not scalable because memory usage

can grow as the problem size is scaled up. At some point the program

cannot run because memory is exhausted and the program will deadlock.

Other algorithms, such as the one used in the High Performance Linpack

implementation include a static parameter specifying the allowed degree

of lookahead [2]. Yet other implementations support dynamic lookahead,

but restrict some tasks so that deadlock will not occur when memory is

exhausted [3].

Dynamic lookahead is important because better performance can be

17

achieved when there is a greater amount of available concurrency than in

a static lookahead algorithm. Hence a dynamic lookahead implementation

exhibited better performance than the traditional static lookahead imple-

mentations [3]. This dynamic lookahead implementation, however, contains

application-specific code that explicitly coordinates between sending and

receiving processors to ensure memory is not exhausted [3].

The Charm++ LU implementation described in this chapter is written to

provide unlimited lookahead, with no code attempting to reduce concurrency.

Priorities are assigned to tasks with higher priorities for block LU operations

occurring in the upper-leftmost active blocks and lower priorities for the

trailing updates, with priorities decreasing for each type of event from top

left to bottom right. The priority scheme should provide as much concurrency

as is available at any point in time.

This section shows that although the LU program itself is written with

unlimited lookahead and hence a high level of available concurrency, a

general-purpose memory-aware scheduling technique provides a sufficient

mechanism to reduce the memory consumption of the simple LU program.

This scheduling technique will dynamically vary the lookahead in the case of

LU, but could also be used to control the memory usage patterns of other

Charm++ programs.

3.3.4 Enabling Memory-Aware Scheduling

To enable the new memory-aware Charm++ scheduler, an application

developer is only required to modify the Charm++ interface file (.ci file)

for the program by adding one annotation to each entry method that could

be used for reducing memory usage. The reason this current implementation

uses annotations is that the user has knowledge of the program behavior,

particularly which entry methods will decrease memory usage. In the LU

implementation, the trailing update entry method is the sole method that is

annotated for possible rescheduling when the memory threshold is reached.

18

18
0

0
20

40
60

80
10

0
12

0
14

0
16

0

2

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

1.
8

Ti
m

e
(s

)

Range of memory usage (GB)
M

em
or

y
Us

ag
e

w
ith

N

o
Th

re
sh

ol
d

18
0

0
20

40
60

80
10

0
12

0
14

0
16

0

2

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

1.
8

Ti
m

e
(s

)

Range of memory usage (GB)

M
ax

im
um

 m
em

or
y

us
ag

e
ov

er
 th

re
sh

ol
d:

 1
62

M
B

M
em

or
y

Us
ag

e
w

ith

12
00

M
B

Th
re

sh
ol

d

18
0

0
20

40
60

80
10

0
12

0
14

0
16

0

2

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

1.
8

Ti
m

e
(s

)

Range of memory usage (GB)

M
ax

im
um

 m
em

or
y

us
ag

e
ov

er
 th

re
sh

ol
d:

 1
22

M
B

M
em

or
y

Us
ag

e
w

ith

60
0M

B
Th

re
sh

ol
d

18
0

0
20

40
60

80
10

0
12

0
14

0
16

0

2

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

1.
8

Ti
m

e
(s

)

Range of memory usage (GB)

M
ax

im
um

 m
em

or
y

us
ag

e
ov

er
 th

re
sh

ol
d:

 1
22

M
B

M
em

or
y

Us
ag

e
w

ith

30
0M

B
Th

re
sh

ol
d

F
ig

u
re

3.
2:

R
an

ge
s

of
m

ax
im

al
m

em
or

y
u
ti

li
za

ti
on

ac
ro

ss
al

l
p
ro

ce
ss

or
s

ov
er

ti
m

e
fo

r
d
iff

er
en

t
th

re
sh

ol
d
s.

T
h
e

ad
ap

ti
n
g

sc
h
ed

u
le

r
ca

u
se

s
th

e
m

em
or

y
u
sa

ge
to

re
m

ai
n

cl
os

e
to

th
e

th
re

sh
ol

d
fo

r
th

is
L

U
fa

ct
or

iz
at

io
n
.

F
ig

u
re

3.
2

w
as

cr
ea

te
d

b
y

J
on

at
h

an
L

iffl
an

d
er

.

19

3.3.5 Analysis of Resulting LU Memory Patterns

To analyze the effects of the memory-aware scheduler, the LU program was

run with various thresholds. Figure 3.2 displays the measured memory

utilization over time for the program for various scheduler thresholds, for

an N = 32768 sized matrix with 512× 512 sized blocks. The horizontal red

line displays the corresponding memory threshold for each run. This figure

shows that adapting the scheduler queue does constrain the memory that is

used on each processor. It appears that 300MB was the minimum effective

threshold for this problem size, which is evidenced in figure 3.2 where the

actual memory usage for all the processors is mostly above memory threshold.

In the runs where the threshold is higher (600MB and 1200MB), the range

of memory footprints for all processors mostly straddles the threshold. In all

three cases where a threshold is applied, the memory usage is reduced from

the original version where no adaptation was performed in the scheduler.

3.3.6 Analysis of Performance

As expected when testing the performance of the LU program, the higher

memory usage configurations achieve higher performance than the more

restrictive low memory threshold configurations. Figure 3.3 shows the

performance of the program for various chosen memory thresholds2. In the

figure two performance regimes are visible. The two regimes meet at the

knee in the plotted curve. The first regime exhibits decreasing performance

when lower thresholds are used, while the second regime is a large constant-

performance plateau of sufficiently large thresholds.

When running with the N=32768 matrix problem size and 512×512 block

size, the Charm++ LU implementation using the balanced snake mapping

performs at 138 GFlop/s. The same implementation using a block-cyclic

mapping performs at 131 GFlop/s. Both of these configurations perform

better than HPL, a standard reference implementation of the Linpack

Benchmark [2]. Figure 3.4 shows the resulting performance of 93 different

configurations for HPL3. All of these configurations use the same N=32768

matrix problem size and 512 × 512 block size, but the other configurable

2Figure 3.3 was created by Jonathan Lifflander.
3Figure 3.4 was created by Jonathan Lifflander.

20

 200 No Threshold400 600 800 1000 1200

142

124

126

128

130

132

134

136

138

140

Memory Threshold (Mb)

GF
lo

ps

Best performance (for this size):
139.02 GFlops

Memory Threshold vs. GFlops
for 32k by 32k Matrix on 64 PEs

Figure 3.3: Performance of LU program for various memory thresholds. The
problem is a factorization of an N = 32768 sized matrix with 512×512 sized
blocks run on 64 processor cores of BG/P.

100 1 2 3 4 5 6 7 8 9

120

0

20

40

60

80

100

Depth of Lookahead

GF
lo

ps

Figure 3.4: HPL performance on 64 processors for 93 different configurations
for a N = 32768 sized matrix with a 512×512 block size. The configurations
were tested in two phases. The first phase varied some parameters to find
a good lookahead value. Then the best lookahead depth of 2 was fixed and
more configurations were evaluated. The best observed HPL performance is
111 GFlop/s

21

parameters are varied. The broadcast method, processor grid arrangement,

depth of lookahead, panels in recursion, and recursive stopping criterion were

all varied. The maximal observed performance for HPL among these 93

different configurations is only 111 GFlop/s.

3.3.7 Costs of Modifying the Scheduler Queue

The overhead of adapting the scheduler queue for the LU factorization

program is small. To measure the overhead, timer calls were added around

the code that adapts the scheduler queue. Included in this code is the

function that determines the current memory usage and compares it to a

threshold. When the LU program is run with an N = 32768 sized matrix and

a 512× 512 block size, the average time spent in the scheduler modification

code on each of the 64 processors was 0.0239 seconds while the whole LU

factorization takes 168.4 seconds. This corresponds to a negligible overhead

of 0.014%.

3.3.8 Insights Gained from the LU Implementation

The naively written LU program exhibits a simple memory usage pattern:

memory usage changes slowly, and is relatively uniform across processors at

each point in time. The memory usage generally grows to a single maximum

value on each processor and then shrinks back down to the minimum required

to store the matrix. The memory patterns are different however when a

memory-aware adaptive scheduler is used, or when lookahead is restricted by

other means. Hence, using memory-adaptive scheduling on each processor

can constrain the memory usage in a useful manner.

The performance of the LU program over a range of memory thresholds

shows two performance regimes. The first exhibits decreasing performance

when lower thresholds are used, while the second regime is a large plateau

of sufficiently large thresholds. Figure 3.3 shows that these two performance

regimes meet at some point, namely the knee in the plotted curve knee in

the curve.

A simple straightforward implementation of LU in the Charm++ language

can achieve reasonable performance, while remaining flexible and not

22

requiring complicated application-specific schedulers or static limitations on

lookahead. Charm++ makes it easy to specify the mapping of blocks to

processors and to specify the priorities of each task. When developing

the LU program, we found that a non-standard mapping outperformed the

traditional block cyclic mapping, at least for some input matrix sizes.

Finally, the new adaptive scheduling technique enables larger LU

factorizations to be performed, even ones that previously would have failed

by depleting all available memory. Figure 3.5 shows a timeline visualization

of one such larger factorization of an N = 51200 matrix size.

3.4 Automatically Finding an Optimal Memory

Threshold

Although the scheduling scheme can reduce memory consumption for a

certain class of programs, the memory aware scheduling scheme does not

provide hard upper limits on the amount of memory used by a program.

Thus a reasonable threshold needs to be chosen for a run of the program.

The simplest scheme would be to set the threshold to a fixed fraction of

the system’s memory. A safer, and better solution is to automatically

find the threshold that yields the best performance. This section describes

an automatic scheme that slowly increases the threshold while observing

memory consumption measurements across all processors.

The proposed scheme, which was implemented, is simple. The memory

threshold is initially set to a safe low value, but it is automatically increased

when previously observed memory usage measurements are low enough.

After the threshold has been increased to a level where further increases

are likely to exceed the desirable limits, the tuning framework [5] scans

through its recorded history to find the best known configuration. The

best known configuration can then be used for all future factorizations.

This automatic tuning system can find a configuration providing good

performance while restraining the actual memory consumption even when

it exceeds the specified threshold. Figure 3.6 displays the actual memory

usage over successive LU factorizations for a program using the automatic

threshold determination scheme described in this section.

23

Figure 3.5: A timeline view of an execution of LU on 64 processors for a
larger matrix N=51,200 using the adaptive scheduler. This same program
dies when it runs out of memory when not using the adaptive scheduler. Each
row in the figure corresponds to one of the processors, with colors indicating
memory usage. Black tick marks on the top of each row indicate a point
where a trailing update is immediately executed because the memory usage
is over the specified threshold.

24

Figure 3.6: Actual memory usage for each of 44 processors while the
LU program performs 30 successive factorizations. The memory threshold
is increased by an automatic tuning mechanism whenever memory usage
measurements from previous factorizations are still low.

3.5 Summary

A new method has been introduced for constraining memory usage

dynamically over the lifetime of an application. This chapter showed

that this method can be utilized by a programmer who simply annotates

methods that reduce memory usage. Furthermore, the utility of this new

scheduling mechanism was demonstrated by showing that an LU factorization

algorithm can be scaled beyond the N = 32768 problem size, without

any other modifications to the program. Typically, there is a tradeoff

between implementing dynamic lookahead, which introduces many problems

and increases the complexity of the program significantly, and using static

lookahead, which constrains the concurrency. It was also shown that the

best of these extremes can be realized in Charm++ using a simple LU

factorization program, which implicitly allows for infinite lookahead but is

constrained by the memory-aware scheduler so it can scale to large problem

sizes.

A future direction for further research would be to automatically select

tasks to be rescheduled to eliminate the use of annotations by the

programmer.

25

CHAPTER 4
Adapting Message Priorities

Just as chapter 3 proposed a new type of adaptivity within a parallel runtime

system that was enabled when an application expressed further behavioral

information, this chapter too proposes a novel type of adaptation within a

parallel runtime system. Specifically, the new type of adaptivity is the ability

to automatically adjust message priorities based upon observed critical paths

for a running program. This work, first presented in [9], is the first to use

critical paths online, and to observe critical paths at runtime for message-

driven parallel programs.

This chapter describes both how critical paths can be recorded for message-

driven parallel programs, and then how the resulting critical-path profiles can

be used to adjust message priorities.

4.1 Introduction

Detecting critical paths in parallel programs is useful for online automatic

performance tuning. In the literature today, critical paths have not yet been

used for online performance tuning. This chapter provides a discussion of how

critical paths can be recorded efficiently for message-driven parallel programs.

Three initial implementations cover three parallel languages: Charm++,

Charisma, and Structured Dagger.

The work described in this chapter has been published in a paper showing

that for the first time, in any parallel program, the critical-path profiles

Portions of this chapter c©2010 IEEE. Reprinted, with permission, from [9].

26

recorded at runtime are used at runtime to automatically tune a parallel

program [9]. By automatically adjusting message priorities based on the

knowledge of which tasks occur along a critical path, a quantum chemistry

application called OpenAtom realizes a performance gain of 10.2%. The use

of critical paths for data reduction in performance analysis, application phase

detection, and enhancing manual post-mortem performance analysis is also

discussed. The costs of the proposed mechanisms are measured.

Critical paths are important paths through the execution of a parallel

program. In the past, critical-path detection schemes were developed for

some typical message passing models such as PVM [10] and MPI [11].

These approaches record a distributed Program Activity Graph (PAG) as

a program executes by storing local portions of the PAG on each processor

while augmenting each message sent between processors with information

about the critical path leading up to the message send. The critical path can

be extracted through a backwards traversal of the distributed PAG.

Although researchers have developed methods for detecting critical paths

within the message-passing models of parallel computation, they have

not previously detected critical paths at runtime within a message-driven

execution model of parallel computing. In this work, we implement an

efficient critical-path detection mechanism inside the Charm++ message-

driven distributed object system. The Charm++ programming model has

fundamental differences from the more widely used approach of programming

at the level of communicating processors. These differences require revisiting

and adapting the known algorithms for critical-path profiling, but the

differences also provide fertile new ground for novel uses of the resulting

critical-path profiles. This chapter describes both the implementation of

critical-path detection for the message-driven programs and how the resulting

critical paths can be successfully used for online automatic performance

tuning and for other tasks.

We show that the critical-path profiles obtained online by our implementa-

tion can be used to automatically tune the performance of a complicated real-

world quantum chemistry application, improving its performance by 10.2%.

27

4.2 Message-Driven Parallel Programs

The most widely used parallel programming model for distributed memory

systems is the message passing model which has become standardized in

MPI [12]. An alternative model is the message-driven execution model. In

this model, the programmer does not write programs explicitly for a set

of processors as is done in MPI, but rather the programmer describes the

computation as a set of tasks whose computation is driven by messages sent

by other tasks. The tasks may be mapped onto the computational resources

dynamically by the runtime system.

The message-driven execution model is a paradigm that has proven to

be successful for parallel programming. Scientific simulation codes such

as NAMD [13] and OpenAtom [14] are written using this model. The

message-driven approach could also be called data driven because tasks

are dynamically scheduled when the prerequisite data (usually in the

form of messages) is available. Directed acyclic graphs (DAGs) can be

used to describe a message-driven program’s pattern of computation and

communication, with the edges in the graph representing the dependencies

between all the computation tasks in the parallel program. Tasks can be

scheduled in any order as long as all the dependencies for each task have

been satisfied before the task is executed. The parallel runtime system can

record the DAG when the tasks in the program are executed.

A dynamic message-driven program must include a scheduler responsible

for executing tasks once dependencies have been fulfilled. This work focuses

on the Charm++ language [4] and two languages that each extend it:

Charisma and Structured Dagger. The scheduler in these three languages

is a general-purpose scheduler that is part of the Charm++ runtime system.

Writing parallel programs containing algorithms with complex dependen-

cies in languages such as UPC or MPI will inevitably result in a program

containing some sort of scheduling mechanism that can execute tasks in a

smart manner once its dependencies are met. One such recent example of a

program containing a specialized task scheduler is a UPC implementation of

LU matrix factorization. It performs better than a traditional LU algorithm

implemented in MPI [15]. The ideas in this chapter could also be adapted

to these new complex parallel programs as well.

28

Legend

Task (Prefix)
Message

C

Processor 1

Processor 2

Processor 3

Processor 4

A

B

Time

Program Order
Dependency

Figure 4.1: Example timeline view of a parallel program activity graph. Task
A represents an initial task that multicasts a message to two other processors.
Task prefix B can execute once its message from A arrives. Then task prefix
B sends a message. Task C can only execute after three preceding tasks have
completed.

4.3 Program Activity Graph Terminology

As a parallel message-driven program executes, its execution can be

represented by a directed acyclic program activity graph (PAG), composed

of tasks and their dependencies. Figure 4.1 shows a small example PAG

composed of eight tasks that ran on four processors.

Because a message-driven parallel programming paradigm is different from

the more commonly used message passing model, the existing definitions of

critical paths used in the literature are not directly applicable. Thus in this

section, definitions are provided to precisely define the critical path and the

program activity graph for a message-driven program’s execution.

Task: After its prerequisite dependencies have been fulfilled, a task is

executed by a scheduler on a single processor. Each task may send messages

that fulfill dependencies for other tasks. 1

Task Prefix: A task prefix is the portion of a task from its beginning

to the point where a message is sent or the task ends. There exist m + 1

task prefixes for each task which sends m messages. The weight of each task

prefix is the the execution time for the task prefix.

Initial Task: Each program starts with the execution of a single initial

task.

Terminal Task: A terminal task causes the parallel program to terminate.

Message Edge: A message edge represents a dependency from a sending

task prefix to the execution of a task spawned by the message.

1In Charm++, each task corresponds to an entry method invocation.

29

Program Order Edge: Other dependencies due to sequencing require-

ments in the program are represented by program order edges. In a message-

driven system, these sequencing requirements could be implemented as

messages if spanning different processors.

Program Activity Graph (PAG): A PAG represents an execution of

a parallel program, with one vertex for each task prefix and a set of edges

comprising the dependencies between the task prefixes. The PAG is therefore

a directed acyclic vertex-weighted graph.

Task In-Degree: Each task is executed once a set of messages have

arrived and all other order dependencies have been satisfied. The in-degree

of a task is the number of incoming message edges and program order edges

to the task. The in-degree for all non-initial tasks is ≥ 1.

Task Out-Degree: Each task prefix either results in the sending of a

message, or the completion of the task. Each message send or task completion

can be the start of a message edge or program order edge in the program

activity graph. The out-degree of each task is the number of messages sent

by the task, plus the number of program order edges produced by the end of

the task. All non-terminal tasks have out-degree ≥ 1.

Path: A path is an alternating sequence of task prefixes and edges in the

PAG beginning with some task prefix and ending with another task prefix,

where each task prefix is incident to both the edge that precedes it and the

edge that follows it in the sequence.

Path Duration: The path duration is the sum of the node weights (task

prefix execution durations) along the path. The path duration represents the

minimum possible execution time of the path, with unlimited processors and

an infinitely fast network. 2

Critical Path (t): For each task t in the PAG, its critical path is the

path of maximal path duration which ends at t and starts at the initial task.

The path duration of the critical path for a phase of an application

represents a lower bound on the execution time for the application phase. It

does not include any communication times along the path or the computation

times for other unrelated concurrent tasks.

Critical-Path Profile (t): The critical-path profile for any task t is the

critical path for t augmented with useful information about the task prefixes

2An idealized message duration could be included, but in Charm++ the costs of a
message can often be overlapped with other work, and are hence of minimal importance.

30

comprising the path.

4.4 Algorithm for Determining a Critical Path

To determine the critical path for a program execution, we use an approach

similar to the approach described in [16]. In both approaches, a distributed

PAG is constructed at runtime, but the exact details of what is stored in

the table is different. In our approach, each processor maintains a table of

all task prefixes that have executed locally. Figure 4.2 shows an example

of a PAG and the local information stored on each processor. To store the

necessary information, an entry is added to the local processor’s table each

time a message is sent or when a task completes. Information that uniquely

identifies the sending task prefix is appended to each message. Specifically,

each message is augmented with two values, the first contains the duration

of the path that led to the message send and the second uniquely identifies

the sender-task-prefix in the sending processor’s table. Messages must also

contain a field specifying the index of the sending processor, but this field

already exists in all Charm++ messages.

The critical path is determined for each task prior to its execution once all

incoming dependencies have been satisfied. The path descriptors contained

in all incoming messages or dependency edges are merged by selecting

the one with maximal duration. All non-maximal incoming paths are

ignored. Keeping the maximum incoming path maintains the invariant that

each critical path extended along a dependency edge is maximal (critical).

Figure 4.3 shows an example of three incoming message dependencies for a

task. The incoming path with maximum cumulative path duration is stored

in the processor table to be able to trace back any critical path that includes

the task.

When a path is propagated forward via a message or other dependency, the

duration of the extended path is found by adding the time spent executing

the task prefix to the duration of its maximal incoming path. The new value

representing the whole path duration is then stored in the newly prepared

message.

When the critical-path profile is required for a task t, a backward traversal

through the distributed PAG is performed. At each step in the traversal, the

31

C

Processor 1

Processor 2

Processor 3

Processor 4

A

B

In-Edge
(processor,

Index)

2

Task Prefix
Index

(2,2)
initial1

Processor 1

A

(1,1)3

In-Edge
(processor,

Index)
Task Prefix

Index

(1,1)
(1,1)

1
2

Processor 2

B

In-Edge
(processor,

Index)

(3,1) or
(4,1)

1

2

Task Prefix
Index

(1,1)

Processor 4

(1,2) or
(3,2) or

(4,2)
3

In-Edge
(processor,

Index)
Task Prefix

Index

(2,1)
(2,3)

1
2

Processor 3

C

Figure 4.2: The tables created on each of four processors represent an
example PAG. The specific entries for task prefixes with in-degree greater
than zero depend upon the actual program execution, but here all multiple
possibilities are shown.

Processor 1

Processor 2

Processor 4 G

A (1, 17, 7.3)
(2, 12, 10.5)

(4, 19, 9.1)

(Source Processor, Source Index, Cummulative Path Duration)

maximum duration
incoming dependency

= (2, 12, 10.5)

Processor 3

C

(3
, 2

, 1
5.

5)

D

FE

B

(3
, 1

, 1
2.

5)

Figure 4.3: Illustration of how three incoming message dependencies are
merged by recording only the one with maximal path duration. Each message
contains information pointing back to a table entry for its sending task, as
well as the critical path’s duration.

32

information about the task prefix is retrieved and then its maximal incoming

dependency edge is followed backward.

4.5 Implementations

We have implemented the critical-path detection algorithm inside the

Charm++ runtime system. This implementation supports standard

Charm++ programs as well as those written using the Structured Dagger

or Charisma languages.

To implement the critical-path profiling algorithm, the following portions

of the Charm++ runtime system were modified3:

• A new module was created with startup routines on each processor that

create a table to hold the local portion of the PAG.

• The envelope used for all Charm++ messages was expanded to hold

the critical-path duration and a reference to the sender’s table entry.

• The message send functions were modified to fill in the envelope fields

with the information about the currently executing task, after creating

a new table entry.

• Methods for performing the backwards traversal over the PAG were

created within the new module.

• Macros were created to simplify the storing of the maximal known

incoming edge and the comparing of it with each new incoming

dependency.

• Instances of the macros were added to the Charm++ reduction

methods.

To use the new critical-path detection capabilities, a Charm++ program

must be modified to add macros at each point where the program in-degree

is greater than one. Charisma or Structured Dagger programs, however, do

not require any modification because their compilers have been adapted to

3This implementation can be found in the publicly available development version of
Charm++. The new module is located in the src/ck-cp directory.

33

automatically insert the macro instances wherever required. Sections 4.5.2,

4.5.3, and 4.5.4 provide examples of places in each of the three languages

where the in-degree for a task could be greater than one.

4.5.1 Merging Multiple Dependencies For One Task

For any task with an in-degree greater than one, the longest path from

the multiple incoming dependencies must be selected in order to correctly

propagate forward the critical path. A set of three simple C++ macros

have been provided to make it easy to select the maximal incoming path.

The definitions of these three macros are provided in figure 4.4. The

first, MERGE PATH DECLARE declares a variable that can be used to store

information about the maximal path seen so far for a task. One macro

definition should be added for each task with in-degree greater than one.

The second macro, MERGE PATH RESET can be used to reset the values in the

variable once all dependencies have been satisfied. The values ought to be

reset at the end of one phase of a program prior to their use in a subsequent

phase. Finally, the third macro, MERGE PATH MAX , is used to merge the

previously longest path with a newly arriving message (i.e. dependency), by

selecting the maximum of these two.

Each macro takes a parameter that distinguishes between multiple sets of

dependencies that could be declared within the same scope in the source code.

For example, if a single class has two tasks, each with multiple incoming

dependencies, then MERGE PATH DECLARE(A) and MERGE PATH DECLARE(B)

could be used to create data structures that store the two different incoming

maximal paths, A and B.

The MergeablePathHistory class, which is used in these macros to store

the information from an incoming message dependency, contains variables

that store the originating processor, an index in that processor’s table, and

the path duration.

A second set macros are also provided for use in loosely synchronized

iterative programs. In such a program, multiple iterations might occur

concurrently. These three macros perform similar functions to those

described earlier, except that they provide separate instances of the

underlying variables for each iteration. The implementation of these variables

34

/// Wrappers for Charm++ programs to use to annotate their

program dependencies

/// Declare a MergeablePathHistory variable , whose name is

mangled with the supplied parameter

#define MERGE_PATH_DECLARE(x) MergeablePathHistory

merge_path_ ##x

/// Reset the merge_path variable

#define MERGE_PATH_RESET(x) merge_path_ ##x.reset ()

/// Take the maximal path from the stored merge_path variable

and the currently executing path. Put the result in

currently executing path.

#define MERGE_PATH_MAX(x) merge_path_ ##x.updateMax(CkpvAccess

(currentlyExecutingPath)); CkpvAccess(

currentlyExecutingPath) = merge_path_ ##x;

Figure 4.4: Definition of macros that can be used to merge multiple
incoming dependencies for a task using an MergeablePathHistory object
which contains information about the incoming path’s duration, originating
processor, and index to the originating processor’s table.

uses an STL map data structure to store multiple MergeablePathHistory

instances for different iterations. Figure 4.5 lists these alternative set of

macros.

4.5.2 Charm++ Programming Model

The first language supported by the new critical-path detection scheme is

Charm++. All Charm++ programs are written mostly in C++, with a small

interface portion that is parsed by a very simple translator that generates

C++ code.

In the Charm++ language, there are two places where in-degree is greater

than one. In one of these two places, the user must augment their code

with simple annotations specifying that multiple incoming messages are

dependencies for a certain task.

1. Reductions from multiple objects to a single destination entry method

result in an in-degree greater than one. The reduction framework

in Charm++ has been modified to correctly compute the maximal

incoming paths along any reduction tree, so the user does not need

35

/// Declare a dynamic MergeablePathHistory variable. Each

object can have many merge points stored in this single

DECLARE.

#define MERGE_PATH_DECLARE_D(x) std::map <int ,

MergeablePathHistory > merge_path_D_ ##x

/// Reset the merge_path variable

#define MERGE_PATH_RESET_D(x,n) merge_path_D_ ##x[n].reset ()

/// Delete the merge_path variable

#define MERGE_PATH_DELETE_D(x,n) merge_path_D_ ##x.erase(n)

/// Delete all entries in the merge_path variable

#define MERGE_PATH_DELETE_ALL_D(x) merge_path_D_ ##x.clear ()

/// Take the maximal path from the stored merge_path variable

and the currently executing path. Put the result in

currently executing path.

#define MERGE_PATH_MAX_D(x,n) merge_path_D_ ##x[n]. updateMax(

CkpvAccess(currentlyExecutingPath)); CkpvAccess(

currentlyExecutingPath) = merge_path_D_ ##x[n];

Figure 4.5: Definition of macros that can be used to merge multiple incoming
dependencies for multiple iterations of a loosely synchronized application.

to modify an application to handle the dependencies that arise due to

reductions.

2. The user can buffer incoming messages explicitly until all necessary

messages have arrived, at which point the execution of some task

is performed. Each time the user buffers a message, a new implicit

dependency is created and the in-degree of the task increases. Figure

4.6 shows an example of such explicit buffering. To correctly handle

the critical paths, the user must augment the Charm++ program

with macros specifying the existence of multiple incoming message

dependencies. To do this, the user must add macros as described in

section 4.5.1.

4.5.3 Structured Dagger Programming Language

The Structured Dagger language is an extension to Charm++. It allows

a programmer to express a complex control flow with various dependency

patterns easily. In Structured Dagger programs, messages are buffered

36

class myClass: public

CBase_myClass {

...

MERGE_PATH_DECLARE(A);

...

void recvGhost(msg *m) {

buffer_msg(m);

MERGE_PATH_MAX(A);

if(received_all_msg ()){

MERGE_PATH_RESET(A);

subsequent_task ();

}

}

};

Figure 4.6: Multiple dependencies occur when buffering messages prior to
executing a task.

automatically until all input dependencies for an object have arrived, at

which point the object’s entry method is invoked. The dataflow patterns

and all associated dependencies in the program are clearly expressed in the

language, so the programmer does not need to add extra annotations to the

program.

For clarity and to help implementers of similar languages, described below

are the types of dependencies that must be handled for languages similar

to Structured Dagger. Structured Dagger provides language constructs

that impose ordering restrictions between the ends of some tasks and

the beginnings of other tasks. Structured Dagger also provides language

constructs for message sending and receiving.

1. All concurrent tasks specified inside an overlap block must complete

before any subsequent task begins. Thus there are program order

dependencies from the ends of the overlapped tasks to the beginning

of the subsequent task. Figure 4.7 shows an example of this pattern.

2. Each when clause requires that one or more messages have been

delivered prior to executing the following statement. Additionally,

it requires that the preceding statement has also finished executing.

Figure 4.8 shows an example of this pattern with two message

dependencies and one program order dependency.

37

overlap {

when recvLeft(msg *l)

atomic { processLeft(l); }

when recvRight(msg *r)

atomic { processRight(r); }

}

atomic { subsequentTask (); }

recvLeft processLeft

Time

subsequentTaskrecvRight processRight

Figure 4.7: In a Structured Dagger program, the task following an overlap
block will depend upon program order edges produced by each of the
overlapped tasks.

atomic { previousTask (); }

when recvLeft(msg *l),

recvRight(msg *r)

atomic { process(l,r); }

recvLeft

Time

previousTask recvRight process

Figure 4.8: In this Structured Dagger example, the process task depends
upon two messages as well as the program order dependency from the task
preceding the when statement.

4.5.4 Charisma Programming Model

The Charisma language [17] is built upon Charm++. It allows a programmer

to express various static dataflow and producer-consumer patterns easily.

The dataflow patterns and all associated dependencies in the program are

clearly expressed in the language, so programmers do not need to modify

their programs for use with the critical-path detection scheme.

For clarity and to help implementers of similar languages, we will describe

the types of dependencies that must be handled for languages such as

Charisma. Charisma provides language constructs that impose ordering

restrictions between the ends of some tasks and the beginnings of other tasks.

Charisma also provides language constructs for producing and consuming

38

messages.

There are two places in Charisma programs where tasks can have in-degrees

exceeding one. The Charisma compiler has been modified to record the

proper critical-path information for these types of dependencies.

1. A statement can consume multiple input parameters:

workers[i].compute(lb[i+1], rb[i-1]);

2. A reduction results in multiple dependencies flowing into a single task:

(+error) <- workers[i].getData();

4.6 Overhead

The overhead of using the critical-path detection mechanism is small.

Figure 4.9 plots the overhead for two simple benchmark programs. The

benchmark programs were created to measure the costs associated with

recording the table entries on each processor and the increased size of each

message. Two versions of each benchmark program are run, and their results

are compared to determine the overhead. In the first version, the critical-

path functionality is entirely disabled. The envelopes are not augmented

with critical-path table references, nor are the critical-path tables allocated.

The second version is compiled against a version of Charm++ containing the

critical-path mechanisms described in section 4.5. These experiments were

performed on the Cray XT5 system named Kraken at NICS.

The first benchmark program sends a small message around a ring of

Charm++ objects. Each object, upon receipt of the message, performs

some amount of CPU work, and then sends a copy of the message to the

next object in the ring. The amount of work performed by each object

is varied to simulate various computational grain sizes. If the amount

of work is small, the ring proceeds faster, while if the amount of work

is greater, the ring proceeds more slowly. Each of the ring executions is

timed, and the granularity of the program is calculated: tasks per second =
number of hops in ring
ring execution time

. The benchmark results shown in Figure 4.9 correspond

to an execution of the benchmark with 40,000 hops around the ring for each

granularity sample to amortize away perturbations. The second benchmark

program exhibits more complicated communication patterns than the first

39

1000 10000
Tasks Per Second

0

1

2

3

4

5

6

O
ve

rh
ea

d
of

 R
ec

or
di

ng
 P

AG
 (P

er
ce

nt
ag

e)

4-Neighbor (4pe)
Ring

Figure 4.9: Overhead of recording critical-path information for varying
computational grain sizes in both a ring benchmark program and a 2-D grid
program where each processor communicates with four neighbors during each
step.

ring benchmark. Specifically, a 2-D grid of chares is created, with each

chare communicating with four nearby neighbors each step. Again, varying

amounts of computation are performed each step to simulate various grain

sizes.

Ultimately, the overhead for the ring benchmark executing 10,000 task

prefixes per second on each processor will incur an overhead of about 1%.

The overhead is caused by the recording of the information necessary to

reconstruct a critical-path profile. That is, each task executes for about

100µs with an overhead of 1µs. The overhead for the four-neighbor program

is higher, as expected, because each task sends four times as many messages

per step than the ring benchmark.

An experiment was performed to measure how much of the overhead was

attributable to the two main mechanisms used to record a critical path or

PAG. In this experiment, a portion of the critical-path measurement system,

namely the code that allocates and updates a table on each processor, is

removed. Then the four-neighbor benchmark program was run to measure

the overhead when the critical-path duration is propagated in the message

envelopes, but the tables are not created.

40

In this experiment, the baseline four-neighbor benchmark executes 3769

tasks per second. The first version of the program propagates critical-path

information through all messages, but does not record table entries and hence

would not be able to perform a backwards traversal of the path. The second

version does include the full critical-path profiling system described in this

paper, including the recording of entries in tables on all processors. The first

version incurs an overhead of 0.19%. The second version incurs an overhead of

0.31%. Thus about 61% of the costs incurred by the critical-path monitoring

are caused by the adding 12 bytes to each message envelope, the timer calls

measuring the lengths of each task, and the propagating of information found

in the messages any time a new message is sent. The remaining 39% of the

costs are caused by the recording of information in the distributed PAG tables

across the processors.

4.7 Using Critical-Path Profiles

In all the related work we have examined [18, 10, 16, 19, 20, 11], critical-path

profiles for distributed memory parallel programs were gathered in online or

semi-online manners, but the resulting critical-path profiles were only used for

offline performance analysis. One novel contribution of this work is to show

that critical-path profiles can be used both for automatic online performance

tuning and for offline manual performance analysis.

There are already multiple uses of the new critical-path detection

mechanisms in the Charm++ runtime system. Section 4.7.1 describes

a simple online automatic task prioritization scheme that improves a

complicated real-world application’s performance by 10.2%. Section 4.7.2

describes some initial work in using critical paths at runtime to reduce the

volume of performance trace data that is gathered for use in offline post-

mortem performance analysis tools. Finally, sections 4.7.3 and 4.7.4 describe

the uses of the critical paths offline in a more traditional manner to guide

manual performance analysis.

41

4.7.1 Automatically Tuning Task Priorities

In typical Charm++ programs, there are frequently many messages available

for processing (and hence enqueued in the scheduler) at a given time. One of

the most obvious uses of critical-path profiles at runtime is to automatically

adjust the scheduling priorities for tasks, so that the best task is chosen to run

mong the available tasks. In many Charm++ programs, message priorities

are hand tuned using both the programmer’s intuition and experimental runs

testing different configurations. Such manual tuning is time consuming and

not portable for all applications.

An automatic message prioritization scheme was created in the Charm++

runtime system. The scheme extracts a list of types of tasks from a critical-

path profile. The autoprioritization mechanism then modifies message

priorities when outgoing messages are prepared by the runtime system just

prior to being sent. In the current implementation, only messages allocated

with priority bits are modified. The priorities on the messages are set based

on whether or not the destination task type is found within a critical-path

profile. Messages destined for critical-path task types are given a high

priority while messages destined for non-critical-path task types are given

a low priority. All other messages will retain a default medium priority.

Using this simple autoprioritization scheme, speedups can be observed in

real applications.

The developers of the OpenAtom quantum chemistry application [21]

have found that by manually tuning message priorities, the application

performance varies by about 10%. Unfortunately, the manually chosen

priority configurations that work well on one parallel machine and input

problem do not work well on other machines or with other input problems.

Thus if the priorities could be automatically tuned, the performance of the

application would improve for many of its users and the effort required to

manually tune the program would be eliminated. Our test shows that indeed

an automatic message prioritization scheme is useful.

To test the effectiveness of the automatic message prioritization scheme, we

made two minor sets of modifications to the OpenAtom source code. The first

modification was to add macros to mark the multiple incoming dependencies

for certain tasks. These changes required adding the MERGE PATH DECLARE

and corresponding MERGE PATH MAX and MERGE PATH RESET macros in

42

6 locations within 3 different classes in the source code. The second

modification was to add a call to useThisCriticalPathForPriorities()

after a specific iteration to start traversing the critical path and request that

it be used for message prioritization. All of these changes were easy to make.

To run the program, we used the water 32 70 system and ran the

program on 64 processors of the Cray XT5 machine, Kraken, at NICS. The

configuration files were modified to enable the prioritization of three types

of messages, of which only two are enabled by default. We did not modify

any of the specific message priority coefficients. Then the application was

run for 40 application iterations. The first half of the iterations used the

default message priorities while the second half used the automatic message

prioritization scheme based upon the critical path gathered at iteration 20.

The iteration timings output by the program were analyzed to determine

the benefits of the automatic prioritization scheme relative to the default

message priorities. Specifically, two startup iterations and the two fastest

and slowest iterations for each case were ignored, resulting in 15 remaining

iteration times for each case.

The resulting performance of the automatically prioritized portion of the

application’s execution was 10.2% faster than the other portion that used

the default priorities. In both portions of the execution, the critical-path

algorithm is enabled, so any overheads associated with the critical-path

detection are present in both portions.

4.7.2 Performance Analysis Data Reduction

A second use of critical-path profiles is to reduce the volume of data produced

for post-mortem performance analysis at runtime. The critical-path profile

itself can be used online for filtering trace data produced by parallel programs

run on many processors. At the end of the program, the critical-path profile

is produced and broadcast to all processors. The processors use this resulting

critical-path profile to determine how to filter their local performance trace

logs before writing them to disk. The volume of performance data that needs

to be analyzed offline is much smaller. Such savings are significant for large

program runs on hundreds of thousands of processors.

To use this feature in the current implementation, the parallel program

43

Figure 4.10: The critical paths can enhance visualizations of performance
analysis in post-mortem analysis tools. This shows a timeline view of 6
processors of a Charm++ program simulating the 2-D wave equation. The
task prefixes along the critical path are displayed as dark blue bars above on
top of each processors’ tasks.

can simply make a call to traceCriticalPathBack() near the end of its

computation. This call will trace the critical path back to its origin at which

point the entire path will be broadcast to all processors. The recipients of

the broadcast will instruct the performance log tracing framework to not

output the log files to disk if the processor is not found along the critical-

path tasks. Thus any uninteresting processors, in the sense of not being on

the critical path, will not write to disk their potentially large trace logs. The

exact savings in data volume are program dependent.

4.7.3 Post-Mortem Performance Analysis

Critical paths can be displayed in a post-mortem performance analysis tool to

help visually identify features of the program’s execution in a timeline view.

Our system provides the ability to generate the necessary trace log data

from a critical-path profile. Figure 4.10 shows such a performance analysis

visualization of a Charm++ program that solves the wave equation over a

2-d grid. Each processor contains 2 partitions of the 2-D problem domain.

Thus about half of the program’s execution time is spent along the critical

path. There is a neighbor communication of ghost values each step, and

each worker task is augmented with code that merges the incoming paths as

described in section 4.5.2.

44

0 200 400 600 800 1000 1200 1400 1600
Number of Tasks along Path

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Ti
m

e
To

 F
in

d
Re

pe
at

ed
 S

ub
pa

th
s

(s
ec

on
ds

) Minimum Support = 3
Minimum Support = 6

Figure 4.11: Time to compute frequently repeated sub-paths for varying
lengths of input critical paths. The minimum support level is the number of
times a sub-path must appear for it to be considered frequent.

4.7.4 Phase Detection

A final use of critical paths is to automatically detect repeating phases in a

parallel application’s execution. If the application’s behavior is relatively

static and the program executes a large number of iterations, which is

common in most scientific computations, then the critical path should reflect

the repeated phases of the program. Searching for phases in complete trace

data would likely take longer than searching for phases in the much simpler

critical path through the program’s execution.

To make the problem of finding phases in the critical path easier, a critical

path can be translated into a string over an alphabet of different types of

tasks. The problem of finding repeating phases of execution along the critical

path is the same as the problem of finding frequently repeated substrings. A

preliminary implementation has been created using a dynamic programming

technique to quickly build up the sets of frequently occurring substrings. This

implementation arbitrarily requires that the frequently used substrings must

have a minimum support level of 6, meaning that any candidate substrings

must appear at least six times in the whole string. The higher the minimum

support level, the faster the algorithm runs, but very long infrequent strings

might not be observed.

The final output from the technique is the substring with maximal

weighted coverage in the whole string. The weighted coverage is calculated

to be number of substring instances × (substring length)2. This weighted

coverage measurement favors frequently occurring repeated substrings while

45

a b b b b b b c d e f g g g g g h i j b b b b b k l m n o p o p q r b b b b s t i u v w b b b b x x y v w b b b b
b A A x y v w b b b b x x x y v w b b b b b x x x y v w b b b b b x x x a b b b b b b c d e f g g g g g h i j b
b b b b b k l m n o p o p q r b b b b s t i u v w b b b b b A A x y v w b b b b b A A x y v w b b b b b A A x
y v w b b b b b x x x y v w b b b b b x x x a b b b b b b c d e f g g g g g h i j b b b b b k l m n o p o p q r
b b b b s t i u v w b b b b x x y v w b b b A A x y v w b b b b x x x y v w b b b b A x x y w b b b A A x a b
b b b b b c d e f g g g h i j b b b k l m n o p o p q r b b b b s t i u v w b b b b b A x x y v w b b b b b A x x
y v w b b b b b x x x y v w b b b b x x x y w b b b b x x A a b b b b b b c d e f g g g g g h i j b b b b b k l
m n o p o p q r b b b b s t i u v w b b b b x x y v w b b b b x x x y v w b b b b x x x y v w b b b b x x x y v
w b b b b b x x x a b b b b b b c d e f g g g g g h i j b b b b b k l m n o p o p q r b b b b s t i u v w b b b b

Figure 4.12: A frequently repeated sub-path is shown in bold

especially favoring substrings with long lengths. Figure 4.12 shows a set of

resulting repeated substrings, highlighted in the whole critical path. In the

figure, each type of task is represented by a unique ASCII character. Multiple

iterations, and their corresponding repeated portions are visible in the figure.

The execution time for the frequent sub-path technique is shown in

Figure 4.11. The method empirically exhibits an execution time proportional

to n for the trace produced for OpenAtom, with some beneficial cache effects

for small strings. The actual worst-case performance is data dependent.

With a minimum support level of 6, it takes about 0.1 seconds to extract the

frequent sub-path from an OpenAtom critical-path profile of length 1721.

4.8 Other Types of Paths

In addition to critical paths, there is other useful information contained in a

PAG. Two specific types of paths found in a PAG could be useful, namely

Near Critical Paths and Parallelism Exposing Paths.

Near-Critical Paths: Paths with duration close to duration of the

critical path are useful because they will become critical paths if the actual

critical path is shortened. Hence, they can provide a bound on the execution

time improvement in the program when a critical path is optimized.

Parallelism Exposing Paths: Nodes in the PAG that lead to large

amounts of execution time across many tasks are important because they

expose concurrency in the program. If these nodes, and their preceding

critical paths are scheduled at higher priorities than other work, the potential

concurrency in the program will be increased earlier in the program’s

execution. This would result in a potentially faster program. Although

ideally all available concurrency ought to be exposed as early as possible,

there may be costs associated with the degree of concurrency, and in programs

46

where this factor dominates, the paths exposing concurrency ought to be

delayed. It is not yet clear how useful such paths are, or how they would be

computed from a distributed PAG.

4.9 Summary

Just as chapter 3 proposed a new type of adaptivity within a parallel runtime

system, this chapter presented a new type of adaptive behavior that can be

performed within a parallel runtime system. Specifically, the new type of

adaptivity is the ability to automatically adjust message priorities based upon

observed critical paths for a running program. An application needs only to

specify that this technique be used. One example application, OpenAtom,

saw speedups of 10.2% when priorities were reconfigured based upon a critical

path profile.

47

CHAPTER 5
Catalog of Control Points

Chapters 3 and 4 described some new types of adaptivity within the runtime

system that require little or no changes to applications. Further types

of adaptations are possible when programs expose tunable parameters.

This dissertation examines a special type of tunable parameter called a

control point, for which an program provides a behavioral description of

the parameter. This chapter provides a catalog of possible control points for

HPC style applications. These potential control points are the basis for many

decisions made designing the tuning framework described in this thesis.

A list of potential control points was constructed over a period of more than

one year. All known Charm++ applications were considered, with attention

being paid to the types of parameters already used in these applications.

Any places where automatic tuning could conceivably be used were included

in the catalog. These control points have been considered and grouped into

categories. For each category, possible observable effects are enumerated.

Finally, possible use cases in applications are listed. Tables 5.1 through 5.7

present this catalog. Of the control points listed in the catalog, some are

analyzed in the application case studies of chapters 7, 8, 9, 10, and 11.

48

Control Point
Category

Control Points Parallel Performance
Impact

Application Use Cases

Data
Decomposition
Grain Size

Block size in each
dimension

Number of tree nodes
per task

Number of loop
iterations per thread

Work unit
durations

Number of
workers

Number of
messages

Message sizes

Degree of
concurrency

Potential for
overlap

Sequential
performance

• 2D Gauss-Seidel
• 2D Wave Equation
• Matrix Multiplication
• LU Matrix Factorization
• NAMD (switch between 1-away

and 2-away)
• ChaNGa
• FEM
• Jacobi

Task Granularity Divide & Conquer :
Do serial / Spawn
parallel threshold

Work unit
durations

Number of
workers

Number of
messages

Degree of
concurrency

• Fibonacci
• N-Queens
• State Space Search

Multicore Node
Usage

 Number of cores to
leave for OS

 Variance in priorities
across cores

 Number of
communication threads

OS Interference

Sequential
performance

Degree of
concurrency

Messaging
Overhead

• Anything on newer multicore
clusters

Catalog of Control Points

Table 5.1: Control Point Catalog (1 of 7)

49

Control Point
Category

Control Points Parallel Performance
Impact

Application Use Cases

Low Priority
Work Yield
Frequency

Amount of work to
perform before
yielding

Work unit
durations

Number of
messages

Message sizes

Degree of
concurrency

• NAMD: Long non-preempt-able
low priority entry methods can
choose to yield to high priority
tasks. The frequency at which
they yeild can vary. In highly
repetitive programs, like NAMD
on BG/L, the exact optimal
point for yielding an be
determined through observing
timings of message arrivals.

• Structural Dynamics - ParFUM
CUDA

• OpenAtom
• ChaNGa

Message
Combining

Number of small
messages packed into a
single message

Bytes worth of smaller
messages packed into a
single message

Time to wait for
additional small
messages to be packed
into a single message

Number of
messages

Message Size

Degree of
concurrency

Programs with many small
messages:

• PDES
• ChaNGa

Message
Compression

Type of compression

Compression degree

Message overhead

Message size

• Atmospheric Modeling
• BT, SP, LU, sPPM, Sweep3D,

AZTEC (cMPI shows
improvements)

• 2D Wave Equation
• 2D Gauss-Seidel
• Sorting

Catalog of Control Points

Table 5.2: Control Point Catalog (2 of 7)

50

Control Point
Category

Control Points Parallel Performance
Impact

Application Use Cases

Phased Algorithm
Decomposition

Number of phases Work unit
durations

Number of
workers

Number of
messages

Message size

Degree of
concurrency

Memory
utilization

• Sorting
• ChaNGa

Phases in
Communication
Operation

Number of phases in
collective
communication

Number of phases in a
multicast

Extra barrier
synchronization

Loose non-phased
throttling of collective
communication

Compute
overhead

Message overhead

Message size

Number of
messages

Memory
utilization

Unnecessary
Synchronization

• Collective communication
algorithms

• Sorting contains a large all-to-all
data permutation.

• Matrix multiply might contain a
multicast.

• Multiphase All-To-All uses less
memory than all at once

• 2D Wave Equation

Communication
Granularity

How much data to put
into a single message

Message size

Number of
messages

Unnecessary
Synchronization

Memory
utilization

• ChaNGa: Subtree fetch size =
number of particles hashed and
sent to a PE

• Pipeline Filtering
• Sweep3d
• 2D Gauss-Seidel

Catalog of Control Points

Table 5.3: Control Point Catalog (3 of 7)

51

Control Point
Category

Control Points Parallel Performance
Impact

Application Use Cases

Pipelining
Decomposition of
Chained
Dependencies

Number of stages in
pipeline

Work unit
durations

Number of
workers

Number of
messages

Message size

Degree of
concurrency

• Pipeline Filtering
• Sweep3d
• 2D Gauss-Seidel

Tree Algorithms Subtree expand depth Compute
overhead

Message overhead

Message size

Number of
messages

Memory
utilization

• Cosmology N-body Simulation
• Game Tree Search

Critical-path
Priorities

Priority for objects on
path

Priority for entry
methods on path

Degree of
concurrency

Memory
utilization

• LU Matrix Factorization (critical
path exposes concurrency, but
increases memory usage)

• OpenAtom
• NAMD
• Pipelines with other work
• 2D Gauss-Seidel

Mapping
Schemes

Which scheme: Load
balanced, Round
Robin, Block

Dimensionality of
mapping

Degree of
concurrency

Message overhead

Memory
utilization
(transient due to
messages)

• LU Matrix Factorization
• 2D Wave Equation
• 2D Gauss-Seidel

Catalog of Control Points

Table 5.4: Control Point Catalog (4 of 7)

52

Control Point
Category

Control Points Parallel Performance
Impact

Application Use Cases

Load Balancing Which load balancer(s)
to use

Load balancing
frequency

Message overhead

Compute
overhead

Any application with dynamic load
imbalances:

• NAMD
• ChaNGa
• Structural Dynamics - ParFUM

CUDA

Global Variables Update frequency

Update mechanism

Update priority

Message overhead

Compute
overhead

Number of
messages

• Branch & Bound bounding
variables

Software Caching Cache size

Amount of automatic
prefetching

Amount of pushing

How many remote
caches should be
queried

Message overhead

Compute
overhead

Number of
messages

Memory
utilization

• Metric space nearest neighbor
database search

• ChaNGa
• Multi-phase Shared Arrays

Array Section
Multicasts

Whether to optimize
the spanning tree

To what degree is
topology information
used in mapping of
objects

Compute
overhead

Number of
messages

Memory
utilization

• LU Matrix Factorization
• NAMD
• OpenAtom

Accelerator
Offload

Fraction of work to
offload to accelerators

Compute
overhead

• Structural Dynamics
• ChaNGa
• NAMD
• Any program capable of using

both GPU and CPU

Catalog of Control Points

Table 5.5: Control Point Catalog (5 of 7)

53

Control Point
Category

Control Points Parallel Performance
Impact

Application Use Cases

FFT Algorithms Transpose vs. non-
transpose FFT

Dimensionality of
FFT decomposition

Compute
overhead

Message overhead

Work unit
durations

Number of
workers

Number of
messages

Message size

Degree of
concurrency

Memory
utilization

• OpenAtom
• PME phase of NAMD

Parallel Hash
Maps

Hash map parameters Compute
overhead

Message overhead

Work unit
durations

Number of
workers

Number of
messages

• Collision detection voxel grid
size

Scalability of
Algorithms

Which algorithm Compute
overhead

Message overhead

Work unit
durations

Number of
messages

• Scalable Monte-Carlo or less
scalable Deterministic (cf.)

Scheduler
Configurations

Memory threshold for
adaptive scheduler

Memory
Consumption

Degree of
concurrency

• LU Matrix Factorization
• ChaNGa

Catalog of Control Points

Table 5.6: Control Point Catalog (6 of 7)

54

Control Point
Category

Control Points Parallel Performance
Impact

Application Use Cases

Online
Performance
Analysis

Frequency at which
performance data is
gathered

Frequency at which
performance data is
recorded

Compute
overhead

Message overhead

Message size

Number of
messages

Memory
utilization

• For continuous performance
monitoring, it is useful to gather
performance data while the
program runs, however the
frequency at which the data is
gathered will potentially affect
the performance of the
application. Some programs will
be able to absorb the reductions
of performance data, in which
case the reductions ought to be
performed more frequently.

Serial Algorithm
Choices

Loop unrolling

Code reordering

Alternatives compiled
with different
optimizations

Buffer sizes

Serial
Performance

• Structured Grid Computations
• Jacobi
• LBMHD
• Sparse Matrix Vector Multiply
• Zip Compression
• 2D Wave Equation

Catalog of Control Points

Table 5.7: Control Point Catalog (7 of 7)

55

CHAPTER 6
Tuning Applications with Control

Points

This chapter describes how control points are exposed in applications, and

how they can be dynamically tuned in response to measured characteristics

of the running application. A new control point tuning framework has

been created within the Charm++ runtime system to provide a concrete

implementation of a system that automatically tunes control points. Within

this chapter are descriptions of how this control point tuning framework

is implemented and how it interfaces with applications to enable dynamic

reconfigurations.

The tuning framework adjusts application control point values through

a specified API (section 6.1) in response to performance measurements

that indicate potential performance problems (section 6.2). The tuning

framework supports two types of adaptations of the control point values.

The first type of adaptation ignores any gathered performance measurements.

Such adaptation algorithms perform traditional direct searches, attempting

to find an optimal configuration without any behavioral knowledge of the

available parameters (section 6.3). The second, and more complicated, class

of adaptation algorithms uses performance measurements and behavioral

knowledge to adjust control point values (section 6.4). The novel ideas

found in this dissertation relate predominantly to this second class of

measurement-based informed control point tuning, not the traditional direct-

search algorithms. The high-level features of the tuning framework are

visually depicted in figure 6.1.

56

Pa
ra

lle
l R

un
tim

e
Sy

st
em

Performance

Adaptive
Control
System Experiment

History

Knowledge of
Control Point

Effects

Measured
Performance

Characteristics

A
pp

lic
at

io
n

Control Points

Figure 6.1: Overview of the Control Point Tuning Framework

57

6.1 Exposing Control Points Within an Application

This section describes how an application exposes control points to the tuning

framework.

When optimizing the performance of the program, the actual application

performance is generally the most important metric to maximize. For this

work, scientific simulation applications are the focus, and these applications

are generally composed of a sequence of steps. Such an application can

specify that it has proceeded to its next iteration or step by calling:

controlPointTimingStamp ();

Some programs may not have regular discrete steps, in which case they will

not make the previous call. Of course, if no timing calls are provided, a direct-

tuning scheme cannot be used. This dissertation proposes multiple scenarios

where tuning can still be performed using other types of measurements to

steer the control point values as a program runs.

A phase is a time range during which each control point value is held

constant. A phase will likely contain many program steps, but in some

programs it might not contain any. The tuning framework decides when to

advance to a new phase and instructs the application to reconfigure itself

through a callback. The callback is a standard Charm++ callback provided

at startup by the application through a registration call such as:

registerCPChangeCallback(myCallback);

The application will then get the control point values for the phase by

calling a simple function named controlPoint. This function takes as

parameters the name of the control point and the range of acceptable integer

values for the control point. An example call to controlPoint could be:

int controlPointValue = controlPoint("name", min , max);

In order for the control points to be tuned intelligently, the framework

needs to be provided information about the effects of varying each control

point. The effects specify high-level information about the structural changes

in the program that occur as the control point knob is varied. The effects

do not specify any low-level details about how the resulting program will

perform.

58

The API includes functions that associate the high-level meaning to each

control point. The information from all the calls made by the application

are accumulated into a bank of knowledge stored by the tuning framework.

For example, the program could make a call such as

EffectIncrease :: AvailableParallelism("A");

to specify that the amount of available parallelism increases whenever the

value for control point named “A” increases. Or, a call to

EffectDecrease :: MemoryConsumption("B");

will specify that the memory consumption generally decreases as the control

point name “B” increases.

Although some control point effects may directly and specifically relate to

measurable characteristics, others, such as AvailableParallelism do not

directly relate to performance or measurable characteristics such as processor

idle time. Further information about the API can be found in [5].

To keep the design of the tuning framework as simple as possible, all the

API functions listed in this section must be called on a single processor,

which is currently processor zero. This restriction is made because the

control point values provided within a phase are required to be consistent,

and the control point lookup calls cannot perform communication (entry

method invocations are non-preemptable). Additionally, because messages

are delivered asynchronously, and not necessarily in order, it is impossible to

ensure that control point values are consistent within a phase.

6.1.1 Necessary Runtime System Support for the Control
Point API

It is relatively straightforward to create the necessary functions that record

information about each control point, such as the range of acceptable values,

or the behavioral effects, because this is merely standard sequential code

called on a single processor. The more difficult portion of the interface is the

part that notifies the application of a change to the control points. Callbacks

are natural mechanisms within the Charm++ system, but they do not exist

in other parallel programming paradigms such as MPI. In an MPI program,

it would be necessary to poll or periodically check for changes requested by

59

the tuning framework, or to explicitly advance phases when desired.

6.2 Gathering Performance Measurements

The first step in automatic tuning of control points based on observed

characteristics of a running program is to gather measurements upon which

decisions will be made. This section describes the necessary runtime system

mechanisms for gathering certain types of measurements, and how the control

point tuning framework in Charm++ implements them. These performance

measurements are broader in scope than just the execution time for a step

in the program. Furthermore the measurements are orthogonal to the

behavioral information provided by the application about each control point.

Hence the specific types of measurements could vary, without requiring any

changes to an application, because the measurements are only visible to the

tuning algorithms.

6.2.1 Runtime System Support for Gathering Measurements

To gather measurements of a parallel program, there are three main facilities

that must be provided:

1. The programming language, runtime system, or compiler must expose

measurable characteristics of the program.

2. The runtime system must be able to record these measurements on

each processor.

3. The runtime system must be capable of periodically gathering and

combining measurements from all processors as the program runs.

The Charm++ runtime system satisfies these three prerequisites. Its

programming model, based upon method invocations on migratable objects,

inherently provides demarcated points throughout an execution where the

runtime system’s scheduler can record information about the running pro-

gram. Communication is typically performed through method invocations1,

1Other less frequently used communication mechanisms include a one-sided mechanism
called CkDirect [22] and the discouraged practice of communicating through shared
memory within a node.

60

so the runtime system can record information about all such communication

events if desired. The Charm++ runtime provides an easy way for new

modules, such as the tuning framework, to be composed with other modules

and a user’s program. The module interface allows the tuning framework to

execute code on, store data on, and send messages to any processor. The

Charm++ communication mechanisms readily support the broadcasts and

reductions necessary for gathering the performance measurements from all

processors.

Other commonly used programming models such as MPI or PGAS

languages such as CoArray Fortran or UPC do not traditionally provide these

three facilities. The programming models themselves do not require programs

to be written in a manner that exposes the different types of computational

sub-tasks that occur within each processor. Each program specifies its

behavior at the level of one thread per processor. A compiler or additional

programmer annotations could provide mechanisms for measuring where time

is spent in the program, but this support is not part of these standard models.

These programming models do provide support for creating instances of

a library on all the processors, as is typically done in large scientific

programs, although the flow of control in the user program must include

explicit calls into the libraries for the libraries to perform any necessary

actions2. If the runtime system, for example the MPI implementation itself,

were modified, it would likely be possible to provide support for recording

performance measurements at the points where any MPI routine is called.

The most unnatural prerequisite for implementing a control point tuning

framework in MPI or other similar programming models is the periodic

gathering and combining of measurements from all processors. Some MPI

implementations such as MPICH2 internally use an active message approach

for communication, and adding another message handler to facilitate the

gathering and combining of measurements would be trivial. Alternatively,

an external communication subsystem like SUPERMON [23, 24] could be

used.

Other parallel programming models such as X10 [25] necessarily use a more

complicated runtime system than would be found in MPI or UPC [26, 27].

X10 programs can spawn parallel activities at runtime and hence each

2It may be possible to use multithreading to allow some progress in a library without
help from the user program, but messaging typically is limited to a single thread.

61

processor, or more precisely each place, must have a scheduling mechanism

responsible for scheduling the available activities. In such a system, the

program exposes discrete units of work as activities to the runtime system.

Thus because a scalable X10 runtime system would be quite similar to the

Charm++ runtime system, it should be easier to create a control point tuning

framework in X10 than in MPI or UPC. The performance measurements

could be made by the X10 runtime schedulers, while the gathering of

performance data could be performed through the execution of some X10

code that spawns activities on all places to extract the necessary data.

6.2.2 Some Useful Types of Measurements

One part of the Charm++ software ecosystem is a performance analysis tool

called Projections. Any types of information that can be obtained through

this visualization and analysis tool could potentially be used at runtime

for automatically reconfiguring an application. Because Charm++ already

supports dynamic load balancing, it contains mechanisms that are capable

of measuring certain performance characteristics of a running program at

runtime. To gather measurements that are useful for the tuning of control

points, a new custom tracing module was created. The custom tracing

module records the amount of time spent in each type of entry method, time

spent idle, or time spent in overhead (the remaining unaccounted for time)

on each processor. The overhead time represents time spent in the runtime

system for handling communication and scheduling. Additionally, the tracing

module can record memory usage statistics, and the average number of bytes

for each entry method invocation.

The measurements produced by the tracing module are used by the tuning

framework when it tries to make intelligent decisions. Thus it is important to

gather measurements that are likely to inform the decision making processes.

The current implementation is capable of gathering four main types of

measurements:

• Processor utilization profiles

• Processor overhead profiles

• Memory footprint profiles

62

• Critical path profiles [9]

6.2.3 Measurements are Orthogonal to Control Point Effects

This work attempts to build general-purpose tuning mechanisms that are

useful across multiple applications and runtime systems with a single

interface. Due to the general-purpose nature of this goal, it is useful

to separate the application interface from the underlying runtime system

measurements that might change. Thus the following assumptions are made

in these regards:

• A program should not contain its own application-specific tuning

algorithms unless a general-purpose one cannot suffice.

• A program should not directly use runtime measurements, as these

might change from one runtime system to another, between runtime

system versions, or even dynamically as a program runs.

• The tuning algorithms should bridge the gap between the measure-

ments taken by the runtime system and the behavioral changes that

ought to be enacted.

The formulation of control points in this dissertation is significantly

different than any other parallel autotuning system because an application

provides information about the behavioral changes that occur when a control

point is adjusted, but not the specific mechanisms by which the control

point ought to be adjusted. Furthermore, this information is specified

clearly at a high level, so that the runtime system can record relevant types

of measurements, and potentially even change the types of measurements

performed without requiring any modifications to an application. This

division of labor between the runtime system and the application can be

seen in figure 6.2. These resulting measurements are therefore useful to the

tuning algorithms within the runtime system, but are not visible to the user

program.

63

Processor utilization profiles

Processor overhead profiles

Memory footprint profiles

Critical path profiles

Measurements Control Point Effects

Increase Available Parallelism

Increase GPU Offload

Available Control Points

GPU Offload

Grain Size

Block Mapping

Parallel Tree Divide Depth

Automatic Tuning Algorithm Steps

1) Gather Measurements 2) Determine desired
behavioral change

(control point effect)

3) Chose one control point that
could effect desired change

Figure 6.2: Measurements taken by the tuning framework are related
to application provided control points by various tuning schemes through
information about control point behavioral effects.

6.2.4 Implementation Details

Measured Charm++ Entities

To understand exactly what types of measurements can be made for a

Charm++ program, it is first necessary to describe the entities within

a Charm++ program. Charm++ implements a message-driven parallel

programming paradigm. Each Charm++ program consists of collections of

worker objects called chares, possibly grouped into chare arrays. Typically

many chares are mapped onto each processor by the runtime system.

The chares communicate with each other predominantly by invoking entry

methods asynchronously and remotely on each other. Each standard method

invocation results in the enqueuing of a message for the scheduler on

the processor on which the chare currently lives. The scheduler on each

processor executes the available entry method invocations one at a time non-

preemptively from the prioritized scheduler queue.

Tracing Module

The charm++ runtime system supports the enabling of user defined tracing

modules. Each tracing module contains a class which inherits from the Trace

class, providing methods for any desired hooks. These methods for the

64

Tracing Interface Hooks Intercepted by
Control-Point

Tracing Module

void traceBegin() Yes
void traceEnd() Yes
void traceClose () Yes
void beginExecute (envelope *) Yes
void beginExecute (CmiObjId *tid) Yes
void beginExecute (int event, ...) Yes
void endExecute (void) Yes
void beginIdle (double curWallTime) Yes
void endIdle (double curWallTime) Yes
void malloc(...) Yes
void traceBeginOnCommThread() No
void traceEndOnCommThread() No
int traceRegisterUserEvent (...) No
void userEvent (int eventID) No
void userBracketEvent (...) No
void userSuppliedData (int e) No
void userSuppliedNote (char *note) No
void userSuppliedBracketedNote (...) No
void memoryUsage (...) No
void creation (...) No
void creationMulticast (...) No
void creationDone (int num=1) No
void messageRecv (char *env, int pe) No
void beginSDAGBlock (...) No
void endSDAGBlock (void) No
void beginPack (void) No
void endPack (void) No
void beginUnpack (void) No
void endUnpack (void) No
void enqueue (envelope *) No
void dequeue (envelope *) No
void beginComputation (void) No
void endComputation (void) No
void endPhase () No
void traceClearEps () No
void traceEnableCCS () No
void traceWriteSts () No
void traceFlushLog () No

Table 6.1: Some of the traceable events that can be captured by a Charm++
tracing module, and which of these are used by the control point tuning
framework’s tracing module.

65

tracing module will be invoked by the scheduler whenever certain events

occur. Table 6.1 lists many of the possible hooks, of which a few are used in

the control point tuning framework3. The most important hooks are those

that mark the beginning or ending of an entry method execution for a chare,

namely beginExecute and endExecute. When there is no available work in

the scheduler queue, then the scheduler will enter an idle state, indicating

this transition with a call to beginIdle. Once a task is found, likely arriving

on the network, or possible appearing locally as a periodic scheduled event,

the scheduler will transition out of the idle state with a call to endIdle.

The tracing module uses wall timer calls to lookup the time at which each

of these events occurs. By taking simple differences of the times, the amount

of time spent in real work, between beginExecute and endExecute, can be

tallied, as can the amount of time spent idle, or the remaining time which is

considered to be overhead. Also a count of the total number of the number

of entry method invocations is maintained. 4

When desired, the tracing module can reset all its counters. This is useful

when gathering performance data for different phases of an application.

The tracing module provides a set of methods that produce useful

information from the counters and accumulated times that are stored

within. One method provides a ratio for the fraction of time spent idle

since the last reset: double idleRatio(). A similar method provides

a ratio for the fraction of time spent in overhead since the last reset:

double overheadRatio(). One method, memoryUsageMB() returns the

high-water memory usage in MB since the last reset. Finally, a grain

size approximation can be provided by grainSize() while the average

number of bytes communicated per entry method invocation can be given

by bytesPerEntry().

The tracing module instance on each processor just accumulates values as

its various hooks are called while the program runs. The gathering of the

performance data from all processors is handled outside of the trace module.

3The full implementation can be found in the src/ck-perf/trace-controlPoints.C file in
the Charm++ distribution.

4One important semantic issue with the tracing module is that in some cases it is
possible for the executions of multiple entry methods to become nested. Hence the
tracing module also keeps track of the current nesting depth, ignoring any entry method
invocations that are internal to others. The cases where this scenario can arise are when
using certain special types of entry methods: [inline], [immediate], and [local].

66

Processor 0

Trace
Module

Processor
1

Trace
Module

Processor
2

Trace
Module

(1) Broadcast Request For
Measurements

(2) Scalable Reduction Merges
Compressed Utilization Profiles

(3) Store Result Along
With Control Point
Values for Phase

Advance To
Next Phase

Processor
3

Trace
Module

Processor
n

Trace
Module

...

...

Figure 6.3: Measurement Gathering Mechanism Overview

Gathering Performance Data

The control point tuning framework is capable of aggregating the measure-

ments produced by the tracing module on each processor. There are two

methods for gathering this data. In programs composed of many phases,

the program will specify that it desires to transition to the next phase.

Alternatively in programs not composed of regular steps or phases, the

phases are advanced periodically based upon a timer. In either scenario,

upon the transition to the next phase, the data is gathered from all

processors to be stored on processor zero as shown in figure 6.3. The phases

are always advanced on processor zero, so at that point the broadcast is

made to all processors, and the results are combined through a reduction

back to processor zero. These broadcasts and reductions are scalable, but

asynchronous. Thus they are interleaved with the execution of the program.

More specifically, the broadcasts requesting data are performed by invoking

an entry method named requestAll(cb) on the controlPointManager

group which contains an instance on all processors. This method on

each processor contributes 12 double precision floating point values into

a reduction whose destination is the specified callback cb. The values

include the following: minimum idle time, maximum idle time, total idle

time, minimum overhead time, maximum overhead time, total overhead

time, memory usage, four values representing message sizes (in bytes), and

the average computation grain size (i.e. average entry method invocation

67

duration). A custom reduction handler function was created that merges

these fields correctly. The result of the reduction gets sent to the specified

callback which in this case is a method named gatherAll(CkReductionMsg

*msg) on the controlPointManager instance on processor zero.

There are numerous tradeoffs to performing the measurement gathering

process asynchronously. One benefit is that the process is interleaved with

the program’s execution, which eliminates the need for a possibly costly

global barrier. Secondly it reduces the need for application modifications.

For example, if measurements are to be gathered within a single program

iteration, the application might otherwise need to add multiple function calls

throughout its code to yield the flow of control. There are a few drawbacks

to asynchronously gathering data. The first is that if the frequency of data

collecting is too high with respect to the time spent or number of messages

sent between reconfigurations of the control point values, the data might not

accurately represent the expected phase. The second difficulty encountered

with asynchronous data collection is that an application’s behavior might

be perturbed in an unexpected or detrimental manner. Additionally, the

entire measurement gathering mechanism runs asynchronously overlapped

with the execution of the program. The results will eventually be combined

and stored in a data structure on processor zero, but these measurements

are not immediately available. This means that a tuning scheme can likely

only access performance measurements that lag one or two phases behind,

but the tuning algorithm implementations developed so far, and presented

elsewhere in this dissertation, take this restriction into account.

6.3 Direct-Search Algorithms for Choosing Control

Point Values

The common approach for auto-tuning is to directly search through the

parameter space to find a configuration yielding an optimal value for

an objective function, which is usually just the execution time for a

program. Direct searches are only useful for programs whose behavior doesn’t

dynamically vary because multiple configurations are tested as the program

runs and their resulting measured execution times are directly compared.

Simple direct search schemes usually assume that the difference in execution

68

times between multiple configurations must be caused solely by the changing

of parameter values, not by some dynamic characteristic of the program itself.

In a direct-search approach to optimization, the only information about

the partial derivatives of the objective function with respect to the

parameters is what can be inferred from multiple sampled configurations.

In the measurement guided approach proposed in this dissertation, some

information about the partial derivatives of the objective function may

be known because the program provides behavioral information about the

control points. This information can then be used to know which direction to

adjust certain parameters when certain performance problems are observed.

Although the control point tuning framework contains steering mechanisms

that use the information about the parameters, the framework is also capable

of performing simpler direct searches that do not use any information about

the effects of varying the parameters. To date, four direct-search methods

have been implemented in the Control Point Tuning Framework, and are

available to any Charm++ program that exposes its control points:

1. Random Search (described in section 6.3.1)

2. Exhaustive Search (described in section 6.3.2)

3. Simulated Annealing (described in section 6.3.3)

4. Nelder-Mead Simplex Method (described in section 6.3.4)

The tuning framework can save the data from any run to be used in future

runs. This allows a costly direct search, such as an exhaustive search, to

be performed once in a training run, with the results being reused in all

future runs. If a program has no dynamic performance characteristics, a

single costly direct search might be useful. Additionally, direct searches

are especially useful in programs where no knowledge is available about the

behavioral effects of the tunable parameters, or in programs with complex

non-linear, but static behaviors. The remainder of this section describes

these four direct-search algorithms, as they are implemented in the control

point tuning framework.

69

6.3.1 Random Search

One incredibly simple scheme for finding good configurations is to just

randomly choose values for each control point. After some number of

configurations have been tested, the best configuration can be selected for

use in all future phases. The Charm++ control point tuning framework

provides such functionality. Random searches are useful for programs with

static but non-differentiable and non-continuous objective functions over the

parameter space. In some programs the best configuration might occur at a

random configuration. Simply trying many configurations is all that can be

done to optimize the performance of such programs.

The +CPSchemeRandom command line argument enables this randomized

scheme.

6.3.2 Exhaustive Search

To find the parameter configuration that performs best for a program with

static performance characteristics, all configurations must be examined.

To do this, a brute-force search exhaustively scans through all possible

configurations. The control point tuning framework provides this capability

to any Charm++ program that exposes control points. The implementation

tries all configurations and then after all have been examined, chooses the

best one. Exhaustive searches are useful when the parameter space is small,

and the absolute best performing configuration is required.

The +CPExhaustiveSearch command line argument enables the exhaus-

tive search scheme.

6.3.3 Simulated Annealing

Simulated Annealing refers to a class of optimization algorithms whereby

configurations are iteratively examined in a certain manner. Each subsequent

configuration is constrained to be chosen randomly within a distance d of

the previous configuration. As more and more configurations are tested, the

value for d decreases, until converging at a single configuration. Using a

large value for d early in the tuning allows configurations to be examined

that are far away from a previous configuration. This helps the algorithm

70

escape from any local minima early on. The implementation of Simulated

Annealing added to the control point tuning framework, is a slight variation

on the traditional simulated annealing scheme in that each new configuration

must be within a distance d of the best known configuration instead of a

distance d of the previous configuration. Simulated Annealing is useful when

the static objective function over the parameter space contains multiple local

minima, but finding a global minima is desired, but an exhaustive search is

too expensive.

The +CPSimulAnneal command line argument enables this simulated

annealing scheme.

6.3.4 Nelder-Mead Simplex Method

The Nelder-Mead Simplex Method for function minimization was described

in 1965 [28]. The method iteratively moves a simplex comprised of n+1 points

through the n dimensional parameter space, eventually contracting all the

points toward a minima. Three basic operations are applied to the simplex

to move it through the parameter space. The most important operation,

reflection, examines a point found by reflecting the worst performing point

in the simplex across the centroid of the other points in the simplex.

Once the new point is evaluated, it might replace the old worst point. A

second operation, called expansion, further expands a reflected point if the

reflected point was a good choice. The final operation, contraction, may

move all points in the simplex towards a previously computed centroid. To

construct the initial simplex, n+ 1 configurations must be evaluated. Then,

the reflection and expansion operations each require evaluating one new

configuration, while the contraction operation requires n + 2 configuration

evaluations. For large numbers of control points, many initial configurations

will need to be tested before the simplex is moved towards the local minima.

This simplex algorithm is useful in a many-dimensional parameter space but

only when the objective function is differentiable.

The implementation of the Nelder-Mead Simplex Method within the

control point framework largely follows the algorithm proposed in [28],

with two important differences. First, the implementation constrains the

parameter space to the discrete integer values supported by the available

71

Figure 6.4: The Himmelblau function used for testing the Nelder-Mead
Simplex Method in two dimensions.

control points, whereas the original algorithm works over unbounded real

valued n-dimensional spaces (Rn). Second, the implementation does not

contain any quitting criteria. The algorithm in [28] does not proscribe the

initial simplex, so in this implementation, the points in the initial simplex

are randomly chosen from the whole parameter space.

To illustrate how the Nelder-Mead simplex method works, and to test our

implementation, a simple program was created. The program performs fake

computations that take an amount of time proportional to the Himmelblau

function over a range of 2 control point values. The control points each vary

within the range [0, 100], comprising a configuration space of size 10000. The

Himmelblau function, frequently used for analyzing optimization schemes is

f(x, y) = (x2 + y − 11)2 + (x + y2 − 7)2. The control point values X and Y

are each linearly mapped from their range [0, 100] to the x and y values in a

range of [−6, 6]. Within the range [−6, 6]× [−6, 6], the Himmelblau function

contains four local minima, as can be seen in figure 6.4.

Figure 6.5 shows that after about 30 phases, the algorithm has converged

72

0 10 20 30 40 50
Phase

0.01

0.1

Ex
ec

ut
io

n
Ti

m
e

0

20

40

60

80

100

C
ontrol Point Value

X Control Point
Y Control Point
Execution Time

Figure 6.5: The performance of an example application tuned using the
Nelder-Mead Simplex algorithm. The program performs synthetic amounts
of work proportional to the 2-dimensional Himmelblau function.

upon a neighborhood of configurations with low execution time.

To illustrate how the Nelder-Mead Simplex algorithm works in higher

dimensions, we consider synthetic test programs with more than 2 control

points. The first has three control points, and it performs work proportional

to f(x, y, Z) = (x2 + y − 11)2 + (x + y2 − 7)2 + (Z − 50)2. This program is

identical to the earlier program, except it has an additional control point Z

that affects the runtime quadratically. The optimal performing case should

occur at a configuration where (x, y) is one of the minima of the Himmelblau

function, and where z = 50. The results from a run of the program tuned

using the Nelder-Mead Simplex algorithm with a random initial simplex

configuration is shown in figure 6.6. As would be expected, the additional Z

control point is roughly 50.

To illustrate how the Nelder-Mead Simplex algorithm works for dimensions

higher than 3, a test program was created that can have an arbitrary number

of control points. It performs a synthetic amount of work proportional to

the function f (x1, x2, x3, ...) = (x1 − 25)2 + (x2 − 75)2 + (x3 − 25)2 + . . .,

where the control point values are x1, x2, x3 Hence the amount of work

is minimized and performance is maximized when half of the control point

73

0 10 20 30 40 50 60 70
Phase

0.01

0.1

1

Ex
ec

ut
io

n
Ti

m
e

0

20

40

60

80

100

C
ontrol Point Value

X Control Point
Y Control Point
Z Control Point
Execution Time

Figure 6.6: The performance of an example application with 3 control points
tuned with the Nelder-Mead Simplex algorithm.

values are 25 while the other half are 75. The range of acceptable values

for each control point is [0, 100]. Figure 6.7 shows the values for all 10

control points as a program is run with the Nelder-Mead Simplex algorithm.

The control points generally separate and group together near their optimal

values, although there is some variation in the values. It took about 300

configuration evaluations before the performance stopped improving much.

The +CPSimplex command line argument enables this Nelder-Mead

Simplex tuning algorithm.

6.4 Guided Steering of Control Point Values

Although the values for control points can be adjusted in the traditional,

direct-search autotuning approach by the new tuning framework, the novel

possibilities investigated by this thesis involve the use of observations of a

running program to determine the direction each tunable knob ought to be

turned.

The tuning framework uses a mechanism for describing specific behavioral

effects that are expected to occur as a control point knob is adjusted. The

74

0 100 200 300 400 500
Phase

0.1

1

Ex
ec

ut
io

n
Ti

m
e

0

20

40

60

80

100

C
ontrol Point Values

Control Point 1
Control Point 2
Control Point 3
Control Point 4
Control Point 5
Control Point 6
Control Point 7
Control Point 8
Control Point 9
Control Point 10
Execution Time

Figure 6.7: The performance of an example application with 10 control points
tuned with the Nelder-Mead Simplex algorithm.

application can therefore express the behavioral effects without knowing

anything about the specific types of measurements or tuning schemes used in

the tuning framework. These behavioral effects include the following among

others that are described elsewhere in this thesis:

• Amount of available parallelism5

• Memory consumption

• Amount of work to offload to accelerator devices

When the application specifies that a control point affects one of these

characteristics, it also specifies the direction of the effect. That is, the

application specifies that a control point either increases or decreases

the effect. Some of these behavioral effects could be deduced from

runtime observations, but there would be additional costs and difficulties in

automatically deducing the effects. The intelligence in the tuning framework

can therefore use the measured characteristics of the program and select

control points that can possibly improve performance. Then one or more of

these selected control points are adjusted in the appropriate direction. By

5The amount of available parallelism encompasses more than just the grain size for the
program. It might depend upon the mapping of activities to processors or the dependencies
between activities.

75

having a knowledge base of the effects of the available control points, the

dimension of the tuning space can possibly be reduced while the number of

possible configurations in each selected dimension is also reduced. Although

the greatest benefits are expected to arise when many control points are used

within a single program, this dissertation examines the relationships between

measurements and effects for different control points one at a time.

Chapters 7, 8, 9, 10, and 11 describe various tuning algorithms that use

measurements to guide the steering of the tunable parameters.

6.5 Combining Multiple Tuning Schemes

In applications with multiple control points, it is likely that multiple

tuning algorithms will discover or produce different planned control point

configurations. Thus it is necessary to choose between these multiple

candidate configurations. The control point framework currently allows all

enabled tuning schemes to produce candidate planned configurations. Then

one of the resulting schemes is chosen at random from the set of all produced

candidates for use in the next phase.

This dissertation focuses mostly on the individual characteristics of

multiple independent tuning algorithms for different types of control points.

In the future, continuing research will expand this currently simple random

choice between the candidates.

6.5.1 Alternative Methods for Combining Multiple Tuning
Schemes

A few straightforward techniques could be used to combine the generated

plans from multiple tuning schemes:

1. If each tuning algorithm predicts the benefit of its prediction, then a

weighted decision could be made, or the predicted best plan could be

used.

2. For long-running programs, certain types of control points could be

adjusted in a prescribed order.

76

3. The difference vectors between the previous configuration and each new

new generated plan could be combined using various vector operations,

such as a sum or a normalized product.

6.6 Summary

This chapter described an API for how control points could be exposed in

applications and how this interface supports dynamic tuning in response

to measured characteristics of the running application. The chapter also

described a concrete implementation of a control point tuning framework

that has been been created within the Charm++ runtime system. Various

implementation details were discussed to elucidate the necessary runtime

system capabilities were a control point infrastructure to be implemented in

a different parallel language or system.

77

CHAPTER 7
Control Point for Divide & Conquer

Grain Size

7.1 Application Overview

This chapter describes the automatic adaptation of a divide & conquer

parallel program through a control point that determines the grain size

of the sequential tasks. In divide & conquer parallel programs, a

task is decomposed, often recursively, into subtasks that can be solved

independently.

A classic example of divide & conquer parallelism in the literature is the

recursive computation of the Fibonacci numbers [29, 30, 31]. This section

describes the use of a control point in determining the grain size of the

sequential tasks in a parallel recursive Fibonacci program. In divide &

conquer parallel programs, a task is decomposed, often recursively, into

subtasks that can be solved independently. The task of computing Fn

in parallel can be performed by computing in parallel two independent

sub-tasks, namely computing Fn−1 and Fn−2 and summing their results.

Computing Fn−1 and Fn−2 can each in turn be computed by dividing into two

sub-tasks, or could be computed using the sequential algorithm as shown in

figure 7.1. This algorithm explicitly produces parallelism as it proceeds,

rather than relying upon an alternative work-stealing approach whereby

parallelism is extracted by idle processors.

Some text and data in this chapter were produced by Jonathan Lifflander

78

if n ≤ T then
compute Fn sequentially
Return Fn

else
spawn 2 chares that separately compute Fn−1 and Fn−2
Return Fn−1 + Fn−2

end if

Figure 7.1: Parallel algorithm for computing the Fibonacci number Fn

Although this algorithm is a poor way to compute the nth Fibonacci

number, the program is a useful representative in the class of divide &

conquer applications. The choice of a threshold value T , at which point

the sequential algorithm is used instead of the parallel algorithm, must be

chosen carefully in order to maximize performance of the algorithm. A

control point is used to adjust this value T between successive Fibonacci

computations. The program exposes knowledge about its behavior as its

control point is varied. Specifically, the program specifies that increasing the

control point value decreases the available parallelism. It is expected that if

T were too small, too many chares would be spawned. Too many chares will

potentially hinder performance because there are extra messaging and task

creation costs. If T were too large, then too few chares would be spawned

to adequately balance the load across all processors for the duration of the

computation.

In the past, researchers have developed numerous methods to automati-

cally find the appropriate amounts of parallelism in divide & conquer dynamic

task-based parallel programs that run on shared memory systems. For

example, one paper describes an “adaptive cut-off” method that profiles

the first 100 OpenMP tasks spawned at different levels in the recursive

tree to determine the actual grain size that is expected for each level of

the tree [32]. Once the profiling is done, the depth threshold is then

chosen for the remainder of the program to produce tasks with grain

size around one millisecond. The one millisecond value “was obtained

through microbenchmarking of task creation” [32]. An alternative heuristic

is proposed in this chapter that doesn’t require direct measurements of grain

size and it is intended to improve the performance in a distributed memory

multi-node system.

79

20 25 30 35 40 45
Control Point Value

0

2

4

6

8

10

Ex
ec

ut
io

n
Ti

m
e

(s
)

20

40

60

80

100

Idle & O
verhead Percentage

Idle
Overhead
Execution Time

Fine Grain Coarse Grain

Figure 7.2: Computing F45 on 110 processor cores of a Cray XT5 system
Kraken.

7.2 Adding a Grain Size Control Point

The Charm++ Fibonacci program contains a threshold T that determines

how many worker chares are spawned. Specifically, 2n−T chares are spawned

as leaves in a binary tree. By default, in our implementation, each chare

is created on a random processor. Alternatively, Charm++ provides various

seed load balancers that could have been used instead to dynamically balance

the chares across the processors [5].

When specifying the effects of the control point, we expose the knowledge

that we have about the control point. We specify that increasing the control

point decreases concurrency.

7.3 Tuning Between Successive Fibonacci

Computations

Let T be a threshold such that Fi is computed using a sequential algorithm

when i ≤ T or is computed by further dividing it into two parallel sub-tasks

80

20 25 30 35 40 45
Control Point Value

0

2

4

6

8

10

Ex
ec

ut
io

n
Ti

m
e

(s
)

0

20

40

60

80

100

Idle & O
verhead Percentage

Idle
Overhead
Execution Time

Fine Grain Coarse Grain

Figure 7.3: Computing F45 on 14 processors (2 nodes) of the NCSA
Xeon/Infiniband cluster Abe.

when i > T . T must be chosen carefully in order to maximize performance

of the algorithm, and hence is exposed as a control point by the program.

The control point can be varied between multiple subsequent Fibonacci

computations. The program exposes knowledge about the behavior of its

control point.

Figure 7.2 shows the performance of the program as all possible control

point values within a certain range are evaluated when computing F45 on 110

processor cores (10 nodes) of the Cray XT5 system Kraken at NICS. It can be

seen that the optimal performance is achieved as expected in a valley while

reduced performance occurs for configurations with the threshold T too high

or too low. Figure 7.3 shows the similar behavior occurring when computing

F45 on 14 processor cores (2 nodes) of the NCSA Abe cluster. Although the

overall plots are similar, the optimal configurations for the same problem

are different for these two different parallel machines. In the first case, the

optimal control point value is 28 while it is 30 for the other case.

Additionally, it can be seen in these figures that the measured average idle

time across all processors increases as the control point value T increases.

This is expected because the idle time occurs when there is not enough

81

available parallelism to provide an adequate balance of work both across

processors and in time. The second important measured observation is that

as the threshold T decreases, the measured overhead generally increases. The

increased overhead is expected because there are increased costs of messaging

and scheduling as exponentially more worker chares are created to solve the

same problem.

To tune the program, it is important to steer the control point value toward

the optimal program performance. Regions of poor performance within the

parameter space occur concurrently with high measurements of idle time or

overhead time.

One such simple yet powerful tuning scheme for this program has been

implemented. It turns the knob in the direction that reduces the available

parallelism whenever Timeidle < Timeoverhead . The available parallelism

in this case ought to be reduced because the largest observed problem

is the large value of Timeoverhead. Conversely, the knob increases the

available parallelism whenever Timeidle > Timeoverhead, which indicates

that the largest observed problem is the large value of Timeidle. The best

performing configurations experimentally are observed to be near the point

where Timeidle = Timeoverhead. Thus, any performance steering scheme that

works well with this program would need to converge to a configuration close

to this heuristic.

The necessary direction to turn the knob is encapsulated in the control

point (i.e. it is specified by the program). The tuning framework in

the runtime system can measure Timeidle and Timeoverhead without any

modifications or help from the program.

Using this heuristic, the threshold T can be adjusted in the direction that

steers the program towards better performance. The exact trajectory taken

by the program depends upon its initial configuration, and how fast the

threshold is adjusted. In the case shown in figure 7.2, the program could

start with any initial threshold from 20 to 45, and the heuristic would lead

to a tuning that converges at 26 or 27.

82

7.4 Tuning Within One Fibonacci Computation

Section 7.3 found that repeated Fibonacci computations could be tuned using

a heuristic based upon the relationship of two measured quantities, Timeidle

and Timeoverhead. Because the heuristic is a function only of two measured

quantities, neither of which is the application’s reported performance, the

heuristic could possibly be used to tune the program within a single Fibonacci

computation. This section describes how such tuning is achievable and how

the dynamically tuned program performs better than corresponding static

configurations most of the time.

To effectively vary the threshold as the program runs, it is important to

ensure that varying the threshold actually will affect the program. In this

case, the program must expand its computational tree, formed as each task

is subdivided, in the correct order. When a tree is expanded in a depth

first order, a dynamically varying threshold can result in the left and right

sides of the tree being expanded to different depths. If the nodes in the tree

are expanded in a breadth first manner, then all nodes in the tree will be

expanded at startup to the initial depth threshold. Then the depth can only

be increased because the nodes in the tree cannot be un-expanded. For these

reasons, the Fibonacci program spawns its tasks using a LIFO scheduling

mechanism, hence ensuring that a depth first traversal is used. LIFO is also

natural for divide and conquer applications because it reduces memory usage.

As the control point is periodically adjusted, e.g. once every one second,

its new value is broadcast to all processors using a new entry method within

a group. In the current implementation, this new group has been added

to the application, although in the future we hope to add native support

for globally shared variables with loose synchronization to the Charm++

language 1. If the necessary type of shared variable were supported by the

Charm++ language, the need to add a group and a corresponding entry

method would be eliminated.

The program is run in two configurations. The first configuration is a

baseline static case where the threshold starts at some initial value, and

the value does not change as the computation proceeds. In this baseline

program, no instrumentation, gathering of measurements, or tuning analysis

1In the past non-scalable types of globally shared variables were supported in
Charm++, but these are no longer found in the modern Charm++ language.

83

is performed. The second configuration of the program dynamically adjusts

the tree expansion depth threshold through a control point. The control

point is set to some initial value, and the heuristic discovered in section 7.3

is used to adjust the control point value once every 2 seconds. The amount

of change in control point value each time is −1, 0, or 1.

Figure 7.4 shows the measured idle time and overhead time for a single

computation of F56 on 55 processors (5 nodes) of the Cray XT5 Jaguar

system. In this case the program is instrumented to gather idle time and

overhead measurements to be displayed in the figure. The threshold is held

constant at 25 throughout the whole computation that takes 309 seconds.

Figure 7.5 shows the same computation being performed while the control

point value starts at 25 again, but is adjusted based upon the heuristic.

The control point value increases from 25 to 32 before shrinking back to

29. The execution time is reduced to 59 seconds, an improvement of 81%.

If compared to the static case without the unnecessary and in this case

expensive instrumentation, the dynamic case is still 16% better. It can

be seen that the idle times and overhead times are both greatly reduced

by adjusting the control point. For some other initial configurations, the

difference is even higher.

The benefits due to dynamically varying the control point value are not

restricted just to this one example. Figures 7.6 and 7.7 shows that the

dynamic control point tuning almost always achieves better performance than

the corresponding static configuration for a wide range of initial thresholds,

both on 55 processors (5 nodes) or 220 processors (20 nodes) of the Cray

XT5 Jaguar system. On the left side of the figure, where computation starts

with a very fine grain configuration, the control points are able to move to

coarser grain sizes to improve efficiency. Toward the right sides of these

figures the control points start at configurations that result in coarse grain

computations, not exposing enough parallelism to the available processors.

The control points are able to move to somewhat finer grain configurations,

improving performance by about 25% in some cases.

84

0 50 100 150 200 250 300
Phase (1 second each)

0

10

20

30

40

50

60

70

80

90

100

Id
le

 &
 O

ve
rh

ea
d

Pe
rc

en
ta

ge

23

24

25

26

27

C
ontrol Point Value

Idle
Overhead
Threshold

Figure 7.4: Computing F56 using a fixed threshold. Initially 10% of the time
is overhead which increases as more fine grained work is produced. The whole
execution takes 309 seconds.

7.5 Programmer Burden

Figure 7.8 and figure 7.9 list the new code added to the Fibonacci program

to add a control point that modifies the threshold that determines whether a

sequential algorithm is used or whether parallel subtasks are created. Eight

lines of code were added to the Charm++ Interface file for the program, while

26 lines of C++ were added to the program. These 34 total lines of code

create the mechanisms responsible for receiving the callback from the tuning

framework and broadcasting the new value to all processors. Most of this

code would be eliminated if the Charm++ language were to support globally

updated variables. Although the code has substantial length compared with

the whole program, the programmer effort to produce such code is still small

because much of it is straightforward boiler-plate code that would be easily

written by a Charm++ programmer.

85

0 10 20 30 40 50 60
Phase (1 second each)

0

10

20

30

40

50

60

70

80

90

100

Id
le

 &
 O

ve
rh

ea
d

Pe
rc

en
ta

ge

25

26

27

28

29

30

31

32

C
ontrol Point Value

Idle
Overhead
Threshold

Figure 7.5: Computing F56 using a dynamically varying threshold. The
threshold starts at the same value as in figure 7.4, but the heuristic causes
it to be increased because the overhead time is initially larger than the idle
time.

19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
Initial Control Point Value

0

50

100

150

200

Ex
ec

ut
io

n
Ti

m
e

Static 55 processors
Dynamic 55 processors
Static 220 processors
Dynamic 220 processors

Coarse GrainFine Grain

Figure 7.6: Performance of a Fibonacci program (computing F56) that
dynamically varying the control point values and a static baseline program
with no instrumentation on 55 or 220 processors.

86

19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
Initial Control Point Value

0

10

20

30

40

50

60

70

80

90

100
%

 R
ed

uc
tio

n
in

 E
xe

cu
tio

n
TI

m
e 55 Processors

Fine Grain Coarse Grain

19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
Initial Control Point Value

0

10

20

30

40

50

60

70

80

90

100

%
 R

ed
uc

tio
n

in
 E

xe
cu

tio
n

TI
m

e 220 Processors

Fine Grain Coarse Grain

Figure 7.7: The benefit due to dynamically varying the control point values
over a baseline program with a static threshold T . Runs were performed over
a range of initial control point (or threshold T) values while computing F56

on 55 and 220 processors. These represent the same data seen in figure 7.6.

87

Read-only variables:

readonly int threshold;

readonly CProxy_BThreshold threshGroup;

New message type:

message ThreshMsg;

New entry method for notification of control point changes:

entry void controlChange(controlPointMsg* msg);

New group for broadcasting threshold updates:

group BThreshold {

entry BThreshold ();

entry [expedited] void changeThreshold(ThreshMsg *msg);

};

Figure 7.8: New Charm++ Interface code added to Fibonacci program to
add a control point.

7.6 Future Work

The use of a naive Fibonacci algorithm to illustrate the use of control

points for divide & conquer algorithms is not practical, but rather is

pedagogical. Thus in the future, grain size control points ought to

be added to varying types of programs that exhibit divide & conquer

computations. Thes programs could include state space searches, sorting,

nested dissection, Delaunay mesh refinement, numerical integration, and even

LU factorizations.

Additionally, in the future it would be beneficial to compare the approach

presented in this chapter to the work-stealing approach which has proven to

be useful for some applications on distributed memory parallel machines [33].

The approach in this chapter produces parallelism as the computation

proceeds while the work stealing approach allows processors to search for

work to perform when they are idle.

In our steering approach to tuning control point values, control points are

instantaneously adjusted by the minimum amount possible each phase. For

long running programs, the cost for the overly slow and conservative speed

at which adjustements are made will be amortized away once a local optimal

value is found. Other techniques such as proportional controller feedback

could be used to allow control points to be quickly adjusted when very large

88

C++ Declaration:

#include <controlPoints.h>

int threshold;

CProxy_BThreshold threshGroup; /* readonly */

At startup:

ControlPoint :: EffectDecrease :: Concurrency("threshold");

threshold = controlPoint("threshold", THRESH_MIN , THRESH_MAX)

;

threshGroup = CProxy_BThreshold ::ckNew ();

CkCallback cb(CkIndex_Main :: controlChange(NULL), mainProxy);

registerCPChangeCallback(cb , true);

New entry method used as a callback that receives notification of new control
point values:

void controlChange(controlPointMsg* msg) {

controlPointTimingStamp ();

threshold2 = controlPoint("threshold", THRESH_MIN ,

THRESH_MAX);

ThreshMsg *msg = new ThreshMsg(threshold);

threshGroup.changeThreshold(msg);

}

Definition of broadcast threshold entry method and group:

class BThreshold : public CBase_BThreshold {

public:

BThreshold () {}

void changeThreshold(ThreshMsg *msg) {

threshold = msg ->threshold;

}

};

Definition of threshold message:

class ThreshMsg : public CMessage_ThreshMsg {

public:

int threshold;

ThreshMsg(int t) : threshold(t) {}

};

Figure 7.9: New C++ code added to Fibonacci program to add a control
point.

89

idle time or overhead time measurements are observed.

7.7 Summary

This chapter described how a control point could be used to adjust the

computational grain size of a divide-and-conquer style parallel program,

using a naive Fibonacci program as a case study. A heuristic was discovered

that allowed the automatic tuning of the control point value without any

application provide performance metrics, even within a single Fibonacci

calculation. The resulting performance of the program improves in almost all

cases, sometimes by as much as 90% when poor initial values for the control

point are used. This case study showed that automatic tuning of a grain-

size parameter in divide-and-conquer parallel programs is both possible and

useful.

90

CHAPTER 8
Control Point for GPU Offload Ratio

In recent times, heterogeneous systems with two or more different types of

processors have become increasingly popular. Different types of processors

have different performance characteristics. A GPU for example might be ten

or one hundred times faster at executing a computational kernel than would

a standard CPU core. A control point could be used to adjust the balance

of work between the two types of processors.

8.1 Application Overview

The application described in this chapter simulates the physical behaviors of

functionally graded materials using an explicit finite element method. In the

program, a physical object is represented by a 3-D tetrahedral mesh. Because

the material properties vary throughout the material, each tetrahedron will

contain numerical data describing its behavior, namely how the tetrahedron

responds to forces exerted upon the tetrahedron. The simulation of non-

homogeneous materials, is an area of active research [34, 35, 36].

The application itself uses the ParFUM framework [37, 38], which is built

upon Charm++. The ParFUM framework provides support for partitioning

a mesh and distributing the partitions across the parallel machine. Each

mesh partition is associated with a migratable user-level thread. The

ParFUM framework also provides the communication mechanisms that allow

values to be easily synchronized across the partition boundaries during each

application timestep. The ParFUM framework also provides MPI style

91

communication between the user-level threads, so the program can easily

incorporate any additional synchronization or communication required.

To make use of GPU accelerators such as the NVIDIA Tesla, the

computational kernels were ported to the CUDA language [39, 40]. CUDA

allows kernels (written in C with some restrictions) to be executed on a GPU.

GPUs are useful because they provide high floating-point performance, and

they provide very fast bandwidth to the device’s memory.

The program can run on clusters of compute nodes, each with one or more

attached GPU devices. The numerical scheme used in the program involves

repeated explicit update steps that update values over the tetrahedra in

the mesh. The application simulates non-homogeneous materials, so each

tetrahedral element contains an unusually large amount of data describing its

material properties and responses to stress, so memory bandwidth becomes

the main bottleneck in the application.

The application is further described in [41]. The remainder of this chapter

describes the issues associated with adding a control point to the application

that automatically adjusts the fraction of the work offloaded to a GPU.

8.2 Adding an Accelerator Offload Control Point

In the existing code for the program, the mapping of virtual processors, i.e.

mesh partitions, onto physical processors was specified on the command line

when running the program. Whether each VP executes on a CPU or on a

GPU was specified in addition to the mapping onto processors. When the

program starts up, any VP that is to run on the GPU executes a function

that creates its data structures on the GPU and copies all necessary mesh

data into these data structures. Thus the code to move a partition from the

CPU to the GPU already existed prior to adding a control point. However,

to add a control point that adjusts the number of partitions on each GPU,

and correspondingly the processor on which each VP executes, two main

mechanisms were added to the program. The first mechanism implements the

necessary serialization of a VP in order to support its migration to a different

processor. The second mechanism allows a VP whose execution occurs on the

GPU to be switched to execute on a CPU. This second mechanism is simply

the inverse of the existing code that copies data structures onto the GPU’s

92

device memory. This second mechanism was mostly implemented within a

library which was not part of the program itself.

The final modification to the program was to add a control point and

construct a new mapping of VPs to processors based on the control point

value. The total lines of code added to the program, excluding comments, is

shown in table 8.1.

8.3 Tuning Scheme

A control point could be used to adjust the balance of work between the

two types of processors. If too much work is offloaded to the GPU, the CPU

cores will become idle, while if too much work is kept on the CPU cores, then

the GPU will be underutilized and the CPU cores will remain fully utilized.

Hence, it should be possible to measure the time the CPU cores are idle,

and use this information to steer the control point value to the optimal work

balance between CPU and GPU.

This steering approach requires no model of performance relating the speed

of the GPU to the CPU, nor does it require any instrumentation of the GPU

itself. It simply uses CPU utilization measurements to steer the performance

to the optimal balance between work on the GPU and CPU.

Figures 8.1 and 8.2 show how the program performs over a range of values

for the control point. The control point specifies how many mesh partitions

are assigned to and executed by each GPU. The experimental platform for

both examples uses two compute nodes of the NCSA Lincoln Cluster, each

containing two Intel quad core CPUs and two NVIDIA Tesla GPUs. In the

example shown in figure 8.1 only one of the GPU devices is used, whereas

both GPU devices are used for the example shown in figure 8.2. In both

cases one of the eight CPU cores on each node is left unoccupied to reduce

operating system interference.

The trends seen in the figures are generally as expected: as more work is

offloaded to the GPU accelerators, the program speeds up for a while until

at some point the performance suffers when too much work is offloaded to

the GPU accelerators. There are two expected contributions to the degraded

performance when too much work is offloaded to the accelerators. The first

contribution to the performance degradation is the fact that the CPU cores

93

10 20 30 40
Number Of Partitions Offloaded to Each GPU

0

0.1

0.2
Ex

ec
ut

io
n

Ti
m

e
(s

)

0

20

40

60

80

100

Idle & O
verhead Percentage

Idle
Overhead
Execution Time

Figure 8.1: Varying the amount of work offloaded to each of the one GPU
accelerators per node.

10 20 30 40
Number Of Partitions Offloaded to Each GPU

0

0.1

0.2

Ex
ec

ut
io

n
Ti

m
e

(s
)

0

20

40

60

80

100

Idle & O
verhead Percentage

Idle
Overhead
Execution Time

Figure 8.2: Varying the amount of work offloaded to each of the two GPU
accelerators per node.

94

Modification Lines of code
(excluding comments)

Add control point 6
Compute and broadcast new 25
mapping of VPs to PEs
Migrate each VP to new processor 5
Switch a VP from executing 7
on a GPU to executing on CPU

Total 43

Table 8.1: Lines of code required to add control point to the structural
dynamics finite element program.

run out of work and become idle. The second is that communication costs for

the CPU cores handling the GPU increase as more and more mesh partitions

are shifted there.

An automatic tuning scheme is implemented in the Charm++ control point

tuning framework for this type of control point. It starts with a low amount of

work offloaded to the GPU, and increases the amount until the idle time has

significantly increased. If the idle time starts to increase significantly from its

previous measurement, then the optimal performing configuration is nearby.

Due to the seemingly noisy behavior in figure 8.2, it may be advantageous

to also search a small number of nearby configurations after steering the

performance toward the near optimal point where there are multiple local

minima. This would ensure that the global minima is reached.

8.4 Programmer Burden

Table 8.1 shows that 43 lines of application code were added to expose

a control point in the program described earlier in this chapter. These

modifications to the program performed the reconfiguration of the program

when a new control point value was obtained. After a new control point value

is obtained the virtual processors, i.e. MPI ranks, are redistributed to the

available physical processors. This mapping of VPs to processors is based on

the control point value. Once the virtual processors have been redistributed,

some of them must be reconfigured to use the GPU instead of the CPU for

their computations. Prior to adding the control point, the virtual processors

95

were not capable of switching their computations from the GPU to the CPU:

they were only capable of switching their computations from the CPU onto

the GPU. The switching in this second direction required new code, but

mostly the code was a mirror of the existing code already present in the

program.

8.5 Summary

This chapter has shown that a control point that adjusts the amount of

work offloaded to an accelerator device such as a GPU can be tuned using

measurements of the CPU utilization. There is no need to actually measure

the occupancy or utilization of the GPU device. Adding this type of control

point to a program is simple if the program already supports the moving of

work to and from the accelerator device.

96

CHAPTER 9
Control Point for Load Balancing

Period

Load balancing is an important task in many types of parallel programs.

The work must be partitioned across the available processors in a balanced

manner in order to obtain good parallel efficiencies on large systems.

Historically, parameters related to load balancing in HPC applications

are manually configured by the creator of an application based on some

experimental runs, as is done in various Charm++ applications [42, 43], or are

prescribed by a user when launching the application. Even in other parallel

programming systems it is common to specify the load balancing frequency

as a runtime argument to the program [44]. Many HPC style load balancers

such as those in Zoltan are very expensive, as the entire problem domain

is repartitioned every load balancing step. Therefore the load balancers are

used infrequently, commonly just at startup. Other load balancing systems

such as PLUM perform dynamic load balancing globally across processors,

investigating ways of minimizing the cost of load balancing, but without

addressing the issue of how frequently to perform the load balancing [45].

This chapter discusses how to automatically determine the frequency at

which dynamic load balancing operations ought to occur. An example

program is modified to expose a control point that controls the frequency

or period at which load balancing takes place. Two types of methods

for automatically adjusting the load balancing period are proposed. One

method, described in section 9.4, computes an approximation of the

benefit of a load balancing operation and adjusts the period based on

97

whether the load balancing operation was beneficial. The second method,

described in section 9.5, calculates the load balancing period using a closed-

form analytical formula which is optimal under certain assumptions of an

application’s behavior.

This chapter concludes with an analysis of the resulting performance of a

program when four different methods for choosing the load balancing periods

are used dynamically.

9.1 Application Overview

The example program simulates a 3-D volume discretized into tetrahedra.

As the simulation progresses, each tetrahedral element is considered to have

one of two material properties: elastic or plastic. Different physics routines

are used for the element depending on which material property is active,

and hence the amount of computation performed for each element varies.

The variation in computation time over the mesh changes as the simulation

progresses. Thus it is important to dynamically load balance the program,

as has been shown in previous research efforts that evaluated dynamic load

balancing techniques [42, 43].

This example program, called Fractography3D, was written primarily by

Scot Breitenfeld, Professor Philippe H. Geubelle, and Orion Lawlor. It

consists of about 6000 lines of Fortran code that uses the FEM framework

(later renamed ParFUM) to partition and store data on the parallel

tetrahedral mesh [46, 37]. The FEM framework is built upon Adaptive MPI

(AMPI), and hence on top of Charm++, which provides two useful interfaces

to the application: the FEM framework interface and an MPI interface.

9.2 Dynamic Load Balancing

The Charm++ runtime system provides instrumentation-based dynamic

load balancing. This load balancing system can be applied to AMPI

applications by migrating the virtual MPI processors (VPs) among the

physical processors. The time spent in computation by all virtual MPI

processors is automatically measured for use in a load balancing algorithm.

98

The principle of persistence, which is relevant for many scientific and

engineering applications, suggests that the recent measured performance

characteristics are useful for this task of load balancing because the future

behavior of the program should be similar to the measured recent behavior.

It has been shown in the past that the performance of Fractography3D

improves when dynamic load balancing is used [42, 43]. Prior to this work,

the users of the Charm++ load balancing framework were required to specify

the frequency at which the load balancing operations occur, either with a

command line argument or within the application code. Poor choices of load

balancing frequency could result in poor performance. This chapter describes

an automatic method for dynamically adjusting the frequency at which load

balancing operations are performed.

Figure 9.1 demonstrates that poor decisions for the load balancing period

result in poor application performance. The leftmost data point represents

a run where the GreedyLB load balancer is invoked every 5 application

timesteps while the rightmost data point represents a run where the same

load balancer is invoked every 7000 steps. All these runs were performed

on 200 processor cores of an IBM Power cluster named Blue Print at the

NCSA1.

In figure 9.1 it can be seen that the performance of the program varies

depending upon the load balancing period. The optimal configuration

appears to be around 1000. For periods less than 1000, the overheads

of load balancing become larger, while for periods greater than 1000, the

decreased load balance reduces performance. A scientist or engineer running

this program, however, would likely not want to run the program many

times with various load balancing configurations just to find the best period.

Hence this chapter proposes an automatic solution for dynamically varying

the load balancing period for the program. Ultimately the automatic

scheme provides uniform good performance when any value is chosen initially

for the load balancing period. Furthermore, automatic tuning of this

parameter can provide benefits in the case where the application’s load

balance characteristics change over time.

Ultimately, a load balancing period should be chosen for each load

balancing operation to minimize the total application time. For long-running

1The application is compiled with no optimization flags because it crashes due to an
unknown problem when the -O3 optimization flag is used.

99

0 1000 2000 3000 4000 5000 6000 7000

34000

36000

38000

40000

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Static Load Balancing Period (steps between load balances)
with GreedyLB Fractography3D for 20K steps

Figure 9.1: Performance of Fractography3D for separate runs each using a
different load balancing period.

applications, this is equivalent to minimizing the total time spent by a large

number of steps.

9.3 Adding a Load Balancing Period Control Point

One control point has been added to the Fractography3D program. This

control point determines the number of application timesteps between

successive calls to the load balancing library, which already were included

in the application albeit at fixed timesteps.

A few modifications to the program were required to add the control point

and respect the semantics required by the API. The modifications to the

program are listed in figure 9.2. They include a call that keeps the first VP

from migrating away from processor 0. The tuning framework is instructed

not to advance the phases on its own. A call to retrieve the control point

value and to advance to the next phase were added to the timestep loop in

the program just after each load balancing operation has completed. Because

the control point framework provides the new values only on processor 0, the

new control point value is broadcast to all VPs. Finally, the application

provides a notification to the tuning framework every step. This allows the

100

Declarations:

INCLUDE ’controlPointsf.h’

INTEGER :: newLdbPeriod

Prior to timestep loop:

IF(myid .EQ. 1) THEN

CALL CPEffectsIncrease_LoadBalancingPeriod ()

CALL setFrameworkAdvancePhaseF(noAdvancePhase)

CALL MPI_Setmigratable(MPI_COMM_WORLD , 0)

ENDIF

Within the timestep loop:

IF(myid .EQ. 1) THEN

CALL gotoNextPhase ()

newldbperiod = controlPoint (5 ,20000000)

ENDIF

CALL MPI_BCAST(newldbperiod , 1, MPI_INTEGER , 0,

MPI_COMM_WORLD , ierr)

nextLdbStep = itstep + newLdbPeriod

CALL MPI_Barrier(MPI_COMM_WORLD , ierr)

IF(myid == 1) THEN

CALL controlPointTimingStamp ()

ENDIF

CALL MPI_Barrier(MPI_COMM_WORLD , ierr)

Figure 9.2: New code added to Fractography3D to add a control point that
adjusts the load balancing period. No name is specified for the control point
because the fortran interface does not yet support multiple control points in
a single program.

framework to determine the execution time for each step. Because there are

more than one VP on each processor, due to the multiple possible orderings

of their computations within a single step, two barrier calls were added to

reduce the variation in the times observed for each step.

9.4 Adjusting the Period Based on Utility

A principled method for analyzing the utility of a load balancing operation

is to consider the execution times of steps before, during, and after the load

balancing operation to determine whether the load balancing operation is

beneficial.

The overhead required for the load balancing operation can be extracted

101

and compared to the benefit in execution time for the steps following the

load balancing operation. In a run of the program, only the actual execution

times of steps post load balancing can be measured, not the times for the

same steps if the load balancing operation had not been performed. Thus in

this analysis, an estimation must be made of the step execution times that

would have occurred if load balancing had not been performed.

To predict or estimate these alternative execution times, a model is created

to extrapolate the times from before the load balancing operation to the steps

following the load balancing operation. Then these predicted execution times

are compared to the actual execution time to find the benefits of the load

balancing operation. Finally the benefit is compared with the cost of the

load balancing operation itself.

The control point tuning framework can make this determination of

whether recent load balancing operations were beneficial or detrimental.

To automatically steer the load balancing period parameter, if recent load

balancing operations were beneficial, the load balancing period is halved.

If the recent load balancing operations were deemed to be detrimental to

performance, then the load balancing period is doubled. Although the

doubling and halving is potentially too coarse grained, it can quickly span

a wide range of values. Some Charm++ programs perform load balancing

every step (ChaNGa), while others only need to perform load balancing after

tens or hundreds of thousands of steps. Even though the doubling is possibly

too coarse grained, this chapter shows that in a real application, the achieved

application performance is good in spite of this potential problem.

The method for predicting the utility of each load balancing operation

requires the prediction of the execution times of the following steps had the

load balancing operation not been performed. Three such predictor models

are described in sections 9.4.1, 9.4.2, and 9.4.3. Then sections 9.4.4 and

9.4.5 describe specifically how to determine if the load balancing operation

is beneficial and correspondingly how to adjust the period.

9.4.1 Constant Predictor Model

The simplest way of predicting the time that would have been spent in the

steps following a load balancing operation is to assume that the average

102

time for a step prior to the load balancing operation would remain constant

for the steps after load balancing. If we have n steps prior to the load

balancing operation and m steps following the load balancing operation, then

the average expected execution time for the steps post load balancing would

be t̂ =
∑n

i=1 ti
n

, where ti is the measured time for step i. hence the total

execution time expected for the m steps would be E = m
∑n

i=1 ti
n

.

The temporal cost of load balancing is incurred by the step during which

load balancing is performed, and depending on the amount of asynchrony

in the program, possibly by one or more following steps as well. Thus we

can estimate the overhead of the load balancing operation at step b as L =

tb + tb+1 − 2t̂. This overhead L represents the extra time spent in steps

b and b + 1 when compared to the average time of the preceding n steps.

In tightly synchronized programs, only the time for step b will be affected

by the load balancing, but to more accurately represent the general case,

the implementation of this predictor method in the control point tuning

framework examines both steps b and b+ 1 as described above.

9.4.2 Linear Predictor Model

When the load is dynamically changing, then a higher order model could

more accurately describe the expected execution times for steps after the

load balancing operation. Thus a linear model is proposed in this section.

Figure 9.3 displays graphically how this linear prediction model works.

Instead of simply using the average of the n steps prior to a load balancing

operation, as is done by the constant predictor model, a line is fit through

those n points. Obviously, if n > 2 there are many such lines that

reasonably approximate the n points and their trend. A least-squares fit

is a commonly used fitting method, but it gives larger importance to outlier

points proportional to the square of their distances from the resulting line.

It is more beneficial in this case to use a line such that the area under the

line corresponds to the total time spent by the n steps because the total time

for a long series of steps is the ultimate metric of interest. Furthermore, for

polynomial fits of degree d, the least squares method costs O(nd3) instead

of the O(nd) methods used in this and the following sections2. Thus a least-

2if implemented using a O(n3) solver for a system of n equations.

103

Step
0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

Fo
r S

te
p

Linear
Prediction

Actual Time
for Phase

Benefit of Load
Balancing Step

Cost of Load
Balancing Step

Figure 9.3: The linear prediction model can be used to estimate the times
that would have occurred after a load balancing step if it were not performed.

squares fit is not used. The method used is both simpler than the least-

squares method, and it better represents the total time spent in the n steps.

The linear prediction model constructs a line that goes through the points(
n
4
, a1
)

and
(
3n
4
, a2
)

, where a1 =
∑bn2 +1c

i=2 ti
n
2
−1 and a2 =

∑n
i=bn2 +2c ti

n
2
−1 are the average

execution times for the first half of the steps and the second half of the steps

prior to the load balancing operation (excluding 2 steps that are affected by

a previous load balancing step).

It is a simple matter of algebra to evaluate the sum of the execution times

of the m steps following the load balancing operation. Because the load

balancing period may have been adjusted at the load balancing step, it is

not necessary that n = m. The total expected execution time for the m

steps following the load balancing operation is therefore:

E = m ·
(
a1 + a2

2
+

(n+m) (a2 − a1)
n

)
.

The execution time spent performing the load balancing operation for step

b can be approximated by finding how long steps b and b + 1 take, and

subtracting out the portion of that time which is likely to be the actual

application work. This amount of work is taken to be the average of the actual

104

measured steps from b+ 2 until the next load balancing operation, which we

call a′ =
∑m

i=b+2 ti
m−b−1 . Thus the cost of load balancing can be approximated by

L = tb + tb+1 − 2a′.

9.4.3 Quadratic Predictor Model

Although it is logical to consider further higher order models, higher order

polynomial interpolations do not behave well when predicting execution times

far away from the points used to construct the polynomial. Thus it is not

expected that higher order curves will be useful when m� n.

Furthermore, if a parabola is fit through the data points, it will likely be

concave downward because the steps just after load balancing will likely be

better than the later steps which settle into a poorly balanced configuration

with near constant step times. This downward concavity can produce a gross

underestimate of the execution times expected post load balancing because

the parabola’s values become negative, which is a problem especially when

m� n.

Even though it was not expected for the higher order models to be

useful, the quadratic model was still implemented in the control point tuning

framework.

Just as the linear model was constructed by interpolating two points

representative of subsets of the n − 2 points, a quadratic model could be

constructed as a parabola that passes through three points,
(
n
6
, a1
)
,
(
3n
6
, a2
)
,

and
(
5n
6
, a3
)
, where a1, a2, and a3 are the average execution times for the

first third, middle third, and final third of the points in the range 2 . . . n

respectively:

a1 =

∑bn−2
3

+1c
i=2 ti

n
3

a2 =

∑b2n−2
3

+1c
i=bn−2

3
+2c ti

n
3
− 1

a3 =

∑n
i=bn−2

3
+2c ti

n
3
− 1

.

105

To produce the expected execution time for m steps following a load

balancing operation assuming the load balancing had not occurred, a finite

integral of the area under the parabola, going through the three points can

be determined as follows. The area of the curve that is of interest is for

the m points following the load balancing operation, namely from x1 = 1
2

to

x2 = m
n

+ 1
2
.

E = a
x3

3
+ b

x2

2
+ c · x

∣∣∣∣x2

x=x1

a =
a1 − 2a2 + a3

2

b =
a1 − 4a2 + 3a3

2
c = a3

The same calculation of L for the linear prediction model can be used

without any modifications:

L = tb + tb+1 − 2a′.

9.4.4 Determining if a Load Balancing Operation is Beneficial

It is easy to predict whether a load balancing operation was beneficial once

the expected execution time E and the actual execution time A have been

calculated. First obtain A, as it is the actual measured execution time of

m steps following the load balancing operation prior to the subsequent load

balancing operation. The expected benefit due to load balancing is thus

B = E − A. Once L and B have been calculated, it can be determined

whether or not a load balancing operation was beneficial. If L > B, the load

balancing cost is higher than the expected time saved due to the improved

load balance. In this case the load balancing operation was likely detrimental

to the overall program’s performance because either the load balancing

operation did not help improve performance enough or the load balancing

operation was performed too soon after the previous one. Conversely, if

L < B, then the benefit due to load balancing outweighs the cost of the load

balancing operation and the performance of the overall program was likely

106

improved by the load balancing operation.

In the case where there is dynamic behavior (such as a continual increase

in the amount of work across the whole system) in the program, this

determination of the utility of each load balancing operation is still accurate

because only local information is used. At each load balancing operation,

only a local window of application steps around the operation are examined

to determine the operation’s utility. If a program’s behavior is slowly varying,

then the errors in this utility calculation will be small. If however, the

program’s behavior is wildly erratic, then neither this scheme nor any other

will be of much use.

9.4.5 Automatically Adjusting Load Balancing Period Based
On Utility

Anytime a recent load balancing operation is deemed to be beneficial, the

load balancing period ought to be increased, as more frequent load balancing

may further be beneficial. If the load balancing operation was deemed to

be detrimental, then load balancing operations ought to be performed less

frequently. In the control point framework, the load balancing period control

points are either multiplied by 1
2

or 2 in either of these two scenarios.

9.5 Analytical Model for Optimal Load Balancing

Period

This section derives an analytical model for the optimal load balancing period

for programs exhibiting a certain type of load imbalance pattern. Although

just one analytical model is contained herein, in the future other analytical

models could be developed to accurately reflect other more complicated

models of dynamic load imbalance.

Assume that the execution time for a step that occurs in the perfectly load

balanced state is the constant tmin. Assume further that the execution times

for steps degrade at a rate of m sec
step2

. Assume the cost of each load balancing

operation is a constant value c sec. Assume that each step immediately after

each load balancing step has an execution time of tmin. It can be proven

that the optimal load balancing scheme performs load balancing operations

107

at fixed intervals of steps. Specifically the optimal choice for load balancing

period is
√

2c
m

. The proof of this claim is found in Appendix A.

9.5.1 Practical Concerns for the Analytical Model

There are some practical concerns with just choosing the optimal value
√

2c
m

for the load balancing period. Figure 9.4 shows the per-step execution times

for a run of Fractography3D. The first two load balancing steps are performed

at steps 1500 and 3000 respectively. It is clear in the figure that the second

load balancing step does not return the subsequent step times to the minimal

step time of about 0.3s. Instead the load balancing operation only results

in a modest decrease in execution time. This means that the load balancing

operations in the Fractography3D application do not result in a behavior

that satisfies the assumptions upon which the
√

2c
m

analytical model is based.

Thus it is not expected that this simple analytical model will be very useful

for all applications. In this dissertation, no other analytical models have

been developed for more complicated types of applications, although it is

likely possible that other models could be useful.

0 1000 2000 3000 4000 5000 6000
Application Step

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ex
ec

ut
io

n
Ti

m
e

Pe
r S

te
p

Load Balancing Step #2

Figure 9.4: The load balancing operations in the Fractography3D application

do not result in a behavior that satisfies the assumptions upon which the
√

2c
m

analytical model is based.

108

One specific problem with a naive direct application of the
√

2c
m

analytical

model is that sometimes the measured values of the degradation rate is

negative (i.e. m < 0), which results in a non-real value for
√

2c
m

. This

occurs frequently in Fractography3D when short load balancing periods are

evaluated. Thus the mechanism implemented in the tuning framework will

only decrease the load balancing period if m > 0, and will double the load

balancing period if m < 0. This ensures that the load balancing period does

not get stuck at the minimal value as commonly occurs otherwise.

9.6 Results

The Fractography3D program was run on 200 processor cores of an IBM

Power cluster named Blue Print at the NCSA. The program’s 3-D simulation

domain was decomposed into 1000 AMPI VPs. Figure 9.5 shows the resulting

performance of the Fractography3D program over a range of values chosen

for the load balancing period. The load balancing period control point

is either static, or it is adjusted automatically using each of the three

utility approaches described in section 9.4 or the analytical model found

in section 9.5. The results show that if a poor initial choice of load balancing

period, such as 5 or 10 is made, then the static cases perform poorly, up

to 71% worse than no load balancing at all. But if the control point values

are automatically steered, even starting with these poor initial configurations

of 5 and 10, the resulting program performs 48% better than the program

without load balancing.

Selected resulting trajectories for the control point values as the program

runs are displayed in figures 9.6, 9.7, 9.8, and 9.9. These trajectories reveal

that the constant predictor and quadratic predictor heuristics generally favor

longer load balancing periods (less frequent load balancing) than the linear

predictor heuristic. The analytical model results in the most frequent load

balancing, converging to about 200 steps. The quadratic predictor scheme

is always faster than the static case when starting with any of the initial

load balancing periods up to 2000 steps. When using an initial value of 4000

steps, the three initial warm-up phases represent 60% of the total execution

time, and hence the utility of tuning is minimal. Longer runs for hundreds

of thousands of steps, such as those used by the original engineers writing

109

-80%

-60%

-40%

-20%

0%

20%

40%

60%

5 10 50 100 500 1500 2000 4000

Benefit Due To Load Balancing

Im
p

ro
ve

m
en

t
O

ve
r

N
o

LB

Initial Control Point Value (LDB Period)

Static
Analytical Model: sqrt(2c/m)
Benefit Predictor: Constant
Benefit Predictor: Linear
Benefit Predictor: Quadratic

0

30000

60000

90000

120000

5 10 50 100 500 1500 2000 4000 No LB

Fractography3D Execution Time

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

Initial Control Point Value (LDB Period)

Figure 9.5: Performance of Fractography3D program for various choices of
initial control point value (load balancing period).

110

the program, would likely show the utility of tuning even with an initial load

balancing period of 4000 steps.

It can also be inferred from the decisions made by all the tuning schemes

that it is beneficial to perform frequent load balancing early in the program

and infrequent load balancing later on. This behavior is consistent with

previously reported analyses of the application [43]. Additionally, it was

shown in figure 9.5 that the best performing tuning scheme was generally

the utility based approach that uses the quadratic predictor. All the other

automatic tuning schemes performed similarly or slightly worse than the

quadratic one.

All 4 of the tuning schemes can be enabled in the control point tuning

framework using the following command line arguments: +CPLDBPeriod,

+CPLDBPeriodLinear, and +CPLDBPeriodQuadratic for the utility models

and +CPLDBPeriodOptimal for the analytical model described in this chapter.

9.7 Programmer Burden

The programmer burden of adding a load balancing period control point

is small. Only 18 lines of code are added to the program. These

small modifications to the program are displayed in figure 9.2. The most

burdensome modifications to the program are those for which the application

developer would need to understand the semantics of the control point

framework. Specifically, the first MPI rank explicitly disables its ability

to migrate during load balancing steps, because the first rank makes the

calls to controlPoint() . All control point calls are currently required

to be made on processor zero. Also, the framework is instructed not to

automatically advance from one phase to the next, so then the program

can call gotoNextPhase() when it is convenient. The tuning framework

expects the load balancing to be performed at the beginning of a phase, so

the calls must then be placed in the correct parts of the application timestep

loop, respecting certain ordering requirements. Other than these semantic

requirements, the adding of such calls to a program ought not take more

than an hour or two, or at most one day. Similar amounts of time might be

spent to manually tune the load balancing period for the program on a new

platform. Thus the programmer burden is low for this type of control point.

111

0 5000 10000 15000 20000
Application Step

10

100

1000

10000
Lo

ad
 B

al
an

ci
ng

 P
er

io
d

(#
 s

te
ps

)

Static
Analytical Model sqrt(2c/m)
Constant Predictor
Linear Predictor
Quadratic Predictor

Figure 9.6: Trajectory of a control point’s values for two steering heuristics
from initial value of 5 steps between successive load balancing operations.

0 5000 10000 15000 20000
Application Step

10

100

1000

10000

Lo
ad

 B
al

an
ci

ng
 P

er
io

d
(#

 s
te

ps
)

Static
Analytical Model sqrt(2c/m)
Constant Predictor
Linear Predictor
Quadratic Predictor

Figure 9.7: Trajectory of a control point’s values for two steering heuristics
from initial value of 10 steps between successive load balancing operations.

112

0 5000 10000 15000 20000
Application Step

10

100

1000

10000
Lo

ad
 B

al
an

ci
ng

 P
er

io
d

(#
 s

te
ps

)

Static
Analytical Model sqrt(2c/m)
Constant Predictor
Linear Predictor
Quadratic Predictor

Figure 9.8: Trajectory of a control point’s values for two steering heuristics
from initial value of 50 steps between successive load balancing operations.

0 5000 10000 15000 20000
Application Step

10

100

1000

10000

Lo
ad

 B
al

an
ci

ng
 P

er
io

d
(#

 s
te

ps
)

Static
Analytical Model sqrt(2c/m)
Constant Predictor
Linear Predictor
Quadratic Predictor

Figure 9.9: Trajectory of a control point’s values for two steering heuristics
from initial value of 1500 steps between successive load balancing operations.
The first three phases are visibly flat because the control point framework
treats the first three phases for all applications as warm-up phases.

113

The burden of adding the control point, however, is only incurred once,

whereas the manual tuning of load balancing periods for each new input

dataset or for each new parallel platform is incurred repeatedly. Thus an

automatic scheme, possibly the one provided in this chapter, certainly ought

to be used.

9.8 Summary

This chapter has shown that a control point that adjusts the frequency of load

balancing can be automatically adjusted, either using an analytical model,

or by using a utility evaluation approach. Even when a poor initial load

balancing period is chosen, the four proposed algorithms quickly correct the

poor choices resulting in good performance for the Fractography3D program

that exhibits dynamic load imbalances.

114

CHAPTER 10
Control Points in LU Factorization

10.1 Application Overview

In parallel implementations of dense matrix factorizations, there are many

parameters that drastically impact the performance of the application. Some

important parameters include the matrix decomposition block size, the

scheme for mapping the blocks onto processors, and parameters that balance

between memory requirements and forward progress. Portions of this chapter

have been published by Dooley et. al. [1].

10.2 Adding Control Points

A parallel implementation of dense LU factorization [1] written in Charm++

has been modified to include three control points. One control point

determines the block size. The second chooses between alternative schemes

that map blocks onto the processors. The third adjusts a threshold that

restricts the progress of the algorithm in order to restrict the required amount

of available memory.

Portions of this chapter c©2010 IEEE. Reprinted, with permission, from [1]. Some
figures and text were created by Jonathan Lifflander and Chao Mei.

115

10.3 Adapting Block Sizes

The first control point determines the size of the square blocks into

which the input matrix is partitioned. Varying the size of the blocks

affects performance. Larger block sizes provide higher performance for the

sequential matrix-matrix multiply kernel that composes a large fraction of

the total execution time for the LU factorization. Larger block sizes however

reduce the available parallelism both at the beginning and at the end of

the factorization. Figure 10.1 shows the effect of the reduced available

parallelism where processors are increasingly idle for larger block sizes. The

tuning scheme that adjusts grain sizes from section 7.4 was applied to this

LU program’s block size control point. The figure corresponds to a run of

the program with a N = 10240 sized matrix on 64 cores, one core per node,

of the Surveyor BG/P system at Argonne National Laboratory.

Switching block sizes between successive matrix factorizations might

require an additional permutation of the data across the processors, however

the matrix is of size Θ (n2) while the computation time is Θ (n3), so for

large matrices, the cost of switching from one block size to another is

negligible. Furthermore, the program might already be permuting the data

when assembling the matrix.

10.4 Selecting Block to Processor Mappings

When the LU program was written, two different mapping schemes were

investigated. The classic block-cyclic mapping scheme is a scheme that

has low network communication costs. There are two mapping schemes

implemented in the LU program. The mapping schemes define the processor

that creates and perform operations on each chare array element and its

corresponding matrix block. The first is a traditional block-cyclic mapping

that exhibits low network communication costs. A new more balanced

mapping called balanced snake mapping has higher communication costs but

a better balance of work across all processors especially at the beginning and

end of each matrix factorization [47], and achieves better performance for

certain problem sizes and numbers of processors. In both cases, the mapping

schemes are static, so the blocks do not migrate between processors within a

116

5 10 15 20 25
Program Iteration

8

9

10

11

12

lo
g2

(B
lo

ck
 S

iz
e)

0

20

40

60

80

100

Idle & O
verhead Percentage

Idle (Avg. Over Processors)
Overhead (Avg. Over Processors)
Block Size

5 10 15 20 25
Program Iteration

7

8

9

10

11

12

13

lo
g2

(B
lo

ck
 S

iz
e)

0

20

40

60

80

100

120

Execution Tim
e

Execution Time
Block Size

Figure 10.1: 20 successive matrix factorizations are performed as the control
point determining the decomposition block size is decreased every four
iterations when idle time is high. Ultimately a steady state alternates
between block sizes of 28 or 29 which both achieve nearly identical execution
times.

117

Figure 10.2: A timeline view, colored by memory usage, of an LU program
run on 64 processors using a traditional Block-Cyclic Mapping for a N =
32768 sized matrix with 512× 512 sized blocks. The traditional block-cyclic
mapping suffers from limited concurrency at the end (the right portion of
this plot).

single LU factorization. All work associated with a block will be performed

on the processor owning the block.

Block-Cyclic Mapping

The block-cyclic mapping scheme is the traditional method used by many

parallel LU implementations [15]. The advantages of a block-cyclic mapping

are its simplicity and its relatively low communication volume. Each row or

column of blocks spans only
√
p of the p processors. Thus all of the multicasts

have at most
√
p destination processors. However, the disadvantage is that

the work is unevenly balanced near the end of the computation. Figure

10.2 visualizes the entire computation for a run of the LU program on

64 processors. In an attempt to fix the imbalance near the end of the

computation, a second mapping scheme was developed.

118

Mapping starts here

...

N

N-1

N-2

...
3

2

1

Figure 10.3: The traversal order for the balanced snake mapping.

Balanced Snake Mapping

In order to balance the amount of work that is performed on each processor, a

new mapping scheme was developed called a balanced snake mapping. Figure

10.3 helps illustrate the order in which blocks are mapped in this scheme1.

The blocks are traversed in the order shown by the arrows. This traversal

order visits the blocks in roughly decreasing order of the amount of work

expected to be performed by each block. As each block is visited, it is

assigned to the processor which has been assigned the smallest amount of

work so far. Thus the first p heaviest blocks will be assigned in a round

robin manner to the processors, and the remaining blocks will be assigned

in a manner that attempts to balance the load across the processors. The

assignment function also forces subsequent blocks in traversal order to be on

different processors.

It is expected that the number of processors spanning each row of blocks

is larger than
√
p. In the case of 64 processors, with a matrix partitioned

into 64× 64 blocks, there are on average 43 unique processors spanning each

column of the matrix and 49 unique processors spanning each row of the

matrix. So in this case, the average number of unique processors on each row

1Figure 10.3 was created by Jonathan Lifflander.

119

and column is much higher than
√
p =

√
64 = 8. Thus the multicast of a

block along a row or column will involve more processors than the traditional

block-cyclic scheme, and the multicasts will therefore incur a higher overhead.

For large numbers of processors, the block-cyclic mapping performs better

than this newly proposed balanced snake mapping.

Comparison of the Two Mapping Schemes

Although the balanced snake mapping does a much better job of evenly

distributing the workload, the increased overhead for communication results

in small delays between many of the matrix-matrix multiplications when

compared to the block-cyclic mapping. Figure 10.2 shows that the block-

cyclic mapping exhibits a load imbalance near the end of the computation,

while the balanced snake mapping for the same problem exhibits a much

better load balanced, as seen in figure 10.4. When the N = 32768 problem

with 512 × 512 block sizes is run on 64 processor cores the balanced snake

mapping performs better, achieving 138 GFlop/s, whereas the block-cyclic

mapping yields 131 GFlop/s. A theoretical analysis of the computation and

communication properties of the block-cyclic mapping and some other matrix

decomposition schemes are provided elsewhere [48].

Automatically Determining The Optimal Mapping Scheme

Although it is clear that the block cyclic scheme has benefits for large

numbers of processors, and the balanced snake mapping exhibits a better

load balance for small matrix sizes, the decision of which scheme to use

for a specific problem size and machine depends upon the performance

characteristics of the machine as well as the problem size. Thus it is

advantageous for the choice to be made automatically. This section describes

one such method for choosing between the mapping schemes at runtime. It

is possible to automate the choice between the two mapping schemes. The

automatic decision can utilize the fact that the block-cyclic mapping scheme

produces larger amounts of idle time for some of the processors toward the

end of the factorization.

An automatic decision can be made between these two schemes by utilizing

the fact that the block-cyclic mapping scheme produces larger amounts of

120

Figure 10.4: Plot of memory usage on each processor over time, both without
and with adaptive scheduling using a 1000MB threshold.

121

Figure 10.5: Visualization of a program performing 10 LU factorizations.
After the third LU factorization, the measurement based automatic steering
framework instructs the program to use the snake-mapping instead of the
block-cyclic mapping. This adaptation reduces the amount of idle time found
in the subsequent seven factorizations.

idle time for some of the processors toward the beginning and end of each

factorization. To automatically determine which scheme to use, a control

point has been added to the LU program. In this case, the program specifies

that one mapping scheme will increase the available parallelism. The steering

framework can therefore turn the control point knob when a large amount

of idle time is detected. Figure 10.5 shows a performance visualization of

an execution of the program performing 10 consecutive LU factorizations.

The initial LU factorizations result in a large amount of idle time because

the matrix blocks are not well distributed across the processors. Hence after

a period of observation for the first 3 factorizations, the tuning framework

notices the large amount of measured idle time and adjusts the control point

value that switches from the block-cyclic mapping scheme to the balanced-

snake scheme. The subsequent LU factorizations complete more quickly.

122

10.5 Adapting Algorithmic Parameters that Affect

Memory Consumption

The third control point added to the LU program affects the memory usage of

the algorithm. In all high-performance LU factorization programs, an effort

must be made to maximize the parallelism while restricting the memory

requirements of the resulting program. Some possible methods include

processors communicating with each other to coordinate their data transfers,

or a user specifying a fixed amount of permitted lookahead. In this LU

implementation, a memory aware scheduling technique is used, and a control

point has been added to adjust a threshold T used in the scheduler. As the

value T increases, the scheduler encourages more parallelism to be exposed in

the program, and when the threshold is decreased, less parallelism is exposed,

so the program’s memory usage is generally reduced. The threshold does not

produce a hard memory bound.

We implemented an automatic tuning scheme that starts with a safer

low value for the control point and increases it while observing memory

consumption across all processors. The threshold is automatically increased

when it is observed that there is available unused memory on all processors.

When little free memory is available, the control point value is no longer

increased. The program’s memory usage does roughly increase with the

control point values, as seen in figure 10.6.

Figure 10.7 shows the relationship between the control point values and

the measured idle time and overhead time for the program. In this figure,

there is a large amount of idle time, 25%, occurring when T ≤ 2, but smaller

amounts of idle time 10% when T > 2.

10.6 Programmer Burden

The existing LU program, prior to adding control points, was capable of

performing an LU computation using different parameters such as multicast

strategy, block size, and mapping scheme. Thus to adjust these values

using control points from one factorization to the next was almost trivial.

Figure 10.8 lists the code added to the program that exposes the three control

points. In total only 15 lines are added.

123

0 200 400 600 800 1000 1200 1400 1600
Time (s)

400

600

800

1000
M

em
or

y
U

sa
ge

 P
er

 C
or

e
(M

B)

0

2

4

6

8

10

12

14

C
ontrol Point Value

Memory Usage
Control Point : T

Figure 10.6: Actual memory usage increases for an LU program as it performs
23 successive factorizations while a control point value (scheduler threshold
T) is increased.

2 4 6 8 10 12 14
Control Point Value : T

60

65

70

75

80

Ex
ec

ut
io

n
Ti

m
e

(s
)

0

20

40

60

80

100

Idle & O
verhead Percentage

Idle
Overhead
Execution Time

Figure 10.7: Measurements show that the idle time is higher(25%) for low
values of scheduler threshold T .

124

Declarations:

#include <controlPoints.h>

Once at startup:

ControlPoint :: EffectIncrease :: GrainSize("block_size");

ControlPoint :: EffectIncrease :: Concurrency("mapping");

ControlPoint :: EffectIncrease :: NumMessages("mapping");

ControlPoint :: EffectIncrease :: MessageOverhead("mapping");

ControlPoint :: EffectIncrease :: MemoryConsumption("

memory_threshold");

Between each iteration:

registerControlPointTiming(duration);

// Only advance phases every other iteration

if(iteration % 2 == 1 || iteration ==1){

gotoNextPhase ();

whichMulticastStrategy = controlPoint("multicast_strategy"

, 1, 3);

BLKSIZE = 1 << controlPoint("block_size", 5, 12);

mapping = controlPoint("mapping", 0, 1);

memThreshold = 100 + controlPoint("memory_threshold", 0,

20) * 50;

}

Figure 10.8: Code added to LU program to expose three control points.

125

The specification of the effects of the control points is straightforward,

but a mapping of the integer control point values to the values used by

the application is required. The LU program only supports block sizes that

evenly divide the matrix size, thus for matrices of size 2n, only block sizes that

are smaller powers of two are permissible. Thus whenever a control point

value 5 ≤ x ≤ 12 is retrieved, the value 2x is stored into the application

variable BLKSIZE . Just as the integer range needs to be mapped to a set

of values useful to the program for the block size parameter, a set of values

{0, 1} are mapped into two different mapping schemes, but this mapping

already existed in the LU program prior to the control point modifications.

For the memory threshold, a small range of integer values 0 ≤ x ≤ 20 are

mapped onto a range of memory threshold values in 50MB increments. This

range was chosen arbitrarily, but the scaling factor of 50 is necessary because

the control points are only varied in increments of one, and increments of

1MB to the memory threshold would be too slow on modern machines with

thousands of megabytes of memory.

10.7 Summary

This chapter has shown that control points can adjust multiple aspects of

a parallel LU factorization program. The block size of the program can be

adjusted in response to the measured idle times. A binary control points can

choose between two alternative mapping algorithms. A final control point

allows a program to expand its memory footprint whenever excess available

memory is observed. These control points demonstrate that these three types

of parameters can be adjusted in response to measurements of memory usage

and idle time.

126

CHAPTER 11
Control Point for Communication

Throttling

Sorting is an operation that appears in numerous applications. For example,

in the decomposition of an n-body gravity program, a sorting operation

is required to partition the space-filling curve that orders the n bodies.

One main problem with sorting large numbers of items in parallel is the

large permutation of items that must occur. In parallel, correct algorithmic

choices must be made to keep this large permutation from overwhelming the

interconnection network, while also maximizing the use of the network to

minimize the total time spent in the sort operation.

11.1 Application Overview

A highly scalable parallel sorting algorithm has been implemented as a

Charm++ library [49]. The sorting algorithm performs a histogramming

operation to determine the final destination processor of all data values prior

to a single permutation of the data from the original owner processors to

the resulting destination processors. The parallel histogramming operation

computes appropriate splitter keys that mark the processor boundaries onto

which the original data items will be mapped. A special feature of this

algorithm is that it performs partial local sorts as the histograms are

being constructed. The full local sorting operation on each processor can

therefore be overlapped in part with the parallel histogramming operation

127

that determines the appropriate splitter keys. This overlap improves

the performance of the algorithm significantly. After the histogramming

operation completes, the splitter keys are then used to permute the locally

sorted data from its original processor to its final destination processor.

Finally, each processor sorts its local data that it received from the

permutation.

This sorting algorithm has been modified to expose multiple control points.

These control points expose pre-existing algorithmic parameters that were

originally adjusted manually or by a simple driver routine to find high

performance configurations. Converting these parameters to control points

was quite simple.

11.2 Adding Control Points

Although four tunable parameters have been exposed as control points,

attempts to adjust two of these resulted in application crashes due to bugs in

the library1. The two control points causing crashes are the hist thresh and

splice thresh parameters. Two other control points, however, can successfully

be varied causing the performance of the program to vary.

The first useful control point is called bucketCP. This parameter determines

the degree of throttling for messages in the all-to-all data shuffle. Specifically,

processor p will send its outgoing data to processors (p+ 1) through(
p+ chares

2bucketCP

)
without waiting on any incoming data. Then as each incoming

piece of data arrives, a corresponding piece is sent to a subsequent processor.

If the value of the control point is very high, then few outstanding messages

will be in flight, and the shuffle might not fully utilize the available

interconnection network. If the value of the control point is low, then a

large number of messages will be in flight, possibly causing contention in

the network. The effect of the control point is specified by the program:

lowering the control point value increases the available concurrency. The

tuning scheme proposed in section 7.4 already is capable of handling control

points with this specified effect.

1Converting application parameters to control points is only effective when those
application parameters actually can be varied without impacting the correctness of the
program. If varying these “parameters” causes the program to crash, then perhaps the
parameters were not actually parameters but rather were some type of constant.

128

The second control point is an application parameter called probe max

which determines the number of splitter key guesses, also called probes, used

for substeps in the histogramming operation. More splitter keys will allow

the histogram to converge more quickly, but the amount of work required to

build each local histogram increases.

11.3 Tuning Between Successive Sorting Operations

After the two control points were added to the parallel sorting program,

many random configurations were evaluated. Varying the bucketCP

control point produced the greatest changes in the performance of the

sorting operations, while the probe max control point had little effect on

performance. Figures 11.1 and 11.2 show the resulting performance of

the sorting operations as this control point is varied when running on 604

processor cores for two input data sizes of 223 and 234 64-bit keys respectively.

Figures 11.3 and 11.4 show results for larger problem sizes of 234 and 236 keys

but on 1870 processor cores. The figures display the minimum measured idle

time across all processors and the maximum overhead measured across all

processors. All four of these runs were performed on Jaguar, a Cray XT5

system at ORNL.

The bucketCP control point was allowed to vary within a range of 3 to 9

inclusive. Values less than 3 exhibited specific performance anomalies known

to occur on the Cray XT5 machines, so such small control point values were

not further analyzed. This specific performance anomaly causes messages to

be delayed for multiple seconds for no obvious reason. Figure 11.5 shows a

timeline view of the end of the data shuffling phase of a sorting operation on

1870 processor cores (170 nodes). The message was sent seconds before it

arrives on an otherwise idle processor core. Prior to the message finally being

delivered, all processors for the job are idle. Not only in the parallel sorting

program does this detrimental performance anomaly occur. The delayed

messages have been observed in other Charm++ applications on Cray XT5

systems, and no solution is yet known to fix the problem.

For large values of the bucketCP control point, few messages are sent at

the same time, resulting in a underutilization of the interconnection network.

Many one-way latencies are incurred as the messages are injected slowly into

129

3 4 5 6 7 8 9
Control Point Value (BucketCP)

0

2

4

6

8

10

12

14

Ex
ec

ut
io

n
Ti

m
e

(s
)

0

20

40

60

80

100

Idle & O
verhead Percentage

Execution Time
Idle Min
Overhead Max

Figure 11.1: Performance of sorting algorithm (N = 232) on 605 processor
cores (55 nodes) of Jaguar, over a range of values controlling the amount of
data sent early in the algorithm (bucketCP).

3 4 5 6 7 8 9
Control Point Value (BucketCP)

0

10

20

30

40

Ex
ec

ut
io

n
Ti

m
e

(s
)

0

20

40

60

80

100

Idle & O
verhead Percentage

Execution Time
Idle Min
Overhead Max

Figure 11.2: Performance of sorting algorithm (N = 234) on 605 processor
cores (55 nodes) of Jaguar, over a range of values controlling the amount of
data sent early in the algorithm.

130

3 4 5 6 7 8 9
Control Point Value (BucketCP)

0

2

4

6

8

10

12

14

16

Ex
ec

ut
io

n
Ti

m
e

(s
)

0

20

40

60

80

100

Idle & O
verhead Percentage

Execution Time
Idle Max
Idle Avg
Idle Min
Overhead Max
Overhead Avg
Overhead Min

Figure 11.3: Performance of sorting algorithm (N = 234) on 1870 processor
cores (170 nodes) of Jaguar, over a range of values controlling the amount of
data sent early in the algorithm.

3 4 5 6 7 8 9
Control Point Value (BucketCP)

0

10

20

30

40

50

60

Ex
ec

ut
io

n
Ti

m
e

(s
)

0

20

40

60

80

100

Idle & O
verhead Percentage

Execution Time
Idle Max
Idle Avg
Idle Min
Overhead Max
Overhead Avg
Overhead Min

Figure 11.4: Performance of sorting algorithm (N = 236) on 1870 processor
cores (170 nodes) of Jaguar, over a range of values controlling the amount of
data sent early in the algorithm.

131

Processor 0

Processor 1869

Time

A Delayed
37KB Message

1 Second

Figure 11.5: Horrible message delays occur for bucketCP = 1 and N = 236

on 1870 processor cores (170 nodes) of Jaguar, a Cray XT5 system at ORNL.
This timeline shows that a message was processed after a prolonged period
of no work on any processor. The cause for the multi-second network delays
for relatively short messages on XT5 systems is unknown.

132

the network. As processors are waiting for messages, the processor cores are

about 40% idle when this control point value is 9. For smaller values of the

control point, more messages are sent at once, and the processors spend less

time idle. For large problem sizes, as seen in figure 11.2 and 11.4, the larger

volumes of communication cause processors to exhibit larger overheads for

the smaller control point values.

In the four figures (11.1, 11.2 , 11.3, and 11.4), the best performing

configurations are for low bucketCP control point values. For these best

performing configurations, the minimum idle time across all processor cores

is a few percent. For the poor performing configurations with larger control

point values, the measured idle times are higher, up to about 40%. Thus it is

clear that a tuning scheme that decreases the control point values whenever

large idle times are measured ought to be able to successfully tune this control

point effectively. In the future if the XT5 performance anomaly is fixed, the

lower range could be expanded to gain a better understanding of how this

control point behaves.

11.4 Programmer Burden

The parallel sorting algorithm was tested by a program that already was

capable of varying parameters between multiple sorting operations. Thus

it was nearly trivial to modify this program to expose the pre-existing

parameters as control points. Just nine lines of code needed to be added.

11.5 Summary

This chapter analyzed the use of a two control points in a parallel sorting

library. One of the two control points caused only minor changes in

performance, but the second one influenced performance significantly. In

response to high idle time measurements, this second control point ought to

be reduced to increase the amount of available parallelism. Unfortunately,

the range of low values for the parameter could not be fully examined due

to peculiar observed performance bugs in the Cray XT5 system.

133

CHAPTER 12
Costs of Performance Tuning

There are three types of performance costs that need to be understood

to accurately evaluate the utility of tuning a parallel application with

control points. The first is the cost of measuring characteristics of the

running program. The second is the gathering of the measurements from all

processors. The third is the cost of generating a plan of which configuration

ought to be tested next. This chapter examines each of these three costs.

12.1 Cost of Tracing

The first important cost that must be incurred by a control point tuning

framework is the extra time spent recording measurements about the

tasks executing within each processor. When recording performance

measurements, each Charm++ entry method is timed, and the resulting

duration is accumulated into a few counters. Additionally, other data is

accumulated (summed) including the number of bytes in the message that

caused the invocation. The specific points where tracing is performed are

described in section 6.2.4. Modifying the counters and accumulating the

time and message sizes adds a fixed constant amount of work to each entry

method invocation. Because the entry methods may be short or long, the

relative impact of the constant additional cost varies.

The time spent recording the measurements for m entry method

invocations is mtc where tc is the cost added to each entry method

invocation. The relative cost, that is the overhead incurred by the program,

134

is approximately tc
te

where te is the average duration of an entry method

invocation (i.e. average grain size). For large entry methods, the overhead

becomes negligible: limte→∞
tc
te

= 0. For fine-grained programs with short

entry methods along the critical paths, the costs of these measurements will

become important.

Traditionally, Charm++ applications have been designed to exhibit neither

fine, nor coarse grain sizes, but rather to exhibit medium grain sizes [50, 51].

A typical configuration of NAMD might, for example, have entry method

invocations with durations from about 0.5ms to 1ms [52].

To analyze the costs incurred by the tracing module instances on

each processor, a synthetic benchmark program has been created. The

benchmark program exhibits, in a controlled manner, a wide range of different

computational grain sizes. The range of grain sizes investigated with this

benchmark includes those of typical Charm++ applications. The benchmark

program can then be run with or without the tracing module enabled to

measure the overhead cost incurred by the tracing module.

The benchmark sends a small message around a ring of processors multiple

times. The resulting entry methods on each processor perform a specified

amount of synthetic work. The amount of work is varied, resulting in

varying grain sizes. This program was then run in four configurations on

110 processor cores of 10 nodes of Jaguar, a Cray XT5 parallel machine.

The first configuration simply runs the benchmark with no tracing modules

enabled. In the second configuration, a tracing module was compiled in to

the program, but all of its function bodies are empty. The functions in this

no-op tracing module are invoked for each entry method invocation, but no

timing calls or measurements are made. This second configuration tests just

the overheads of the Charm++ tracing interface.

The third and fourth configurations actually make measurements of the

entry methods in a program. Both configurations measure grain sizes,

overheads, idle times, and message sizes. One of these configurations also

measures the memory footprint on the processor at each entry method

invocation. The resulting timings of the second, third, and fourth

configurations were compared with the baseline first configuration to infer

the costs of the different types of measurements. Figure 12.1 displays these

resulting costs across a range of application grain sizes.

In the figure it can be seen that the costs of performing these measurements

135

are very low, except for programs composed of incredibly short entry

methods. The costs are less than 1% for all configurations with entry methods

of durations at least 43µs. The cost when entry methods are 10µs is about

4% when all measurements are made. Furthermore, there is a noticeable cost

incurred when using a tracing module that doesn’t even perform any work.

Thus a significant portion of the costs are inherent to the current Charm++

tracing interface, which includes an iteration through lists of enabled tracing

models then multiple virtual method calls for every trace point, which

occurs at least twice per entry method invocation. Further optimizations

or refactoring of the tracing interface in Charm++ could reduce this cost.

When examining the results, the average cost per entry method invocation

can be calculated. In the configuration performing all measurements, the cost

for each entry method invocation is 0.60µs. When the memory footprint is

not measured, the cost drops slightly to 0.53µs. The expected costs can

be inferred from these two values. The expected cost model, as shown in

figure 12.2, matches the observed measurements of figure 12.1.

For applications with fine or ultra-fine grain sizes, it may be necessary to

further reduce the time used in the tracing module, if control points will be of

use. The types of applications exhibiting such fine granularities include the

many modern applications that will be strong-scaled to the next generation

of supercomputers. For example, scaling a given molecular system in NAMD

to large numbers of processor cores will necessarily result in a finer grain

decomposition and hence shorter entry method invocations.

The benchmark program has not yet been used to measure the costs of

performing other more complicated types of measurements. However, the

costs of performing one such complicated measurement, that of recording

critical paths, is discussed in chapter 4.

12.2 Cost of Gathering Measurements From All

Processors

After entry methods have been instrumented by a tracing module, the

measured results need to be combined from all processors so that a decision

can be made on the next set of control point values to use. The control

point framework broadcasts a request to all processors, and a reduction is

136

0 200 400 600 800 1000 1200 1400 1600
Entry Method Duration (microseconds)

0

1

2

3

4

C
os

t (
Pe

rc
en

ta
ge

)

Measuring: Idle, Overhead, Grain Size, Memory Usage
Measuring: Idle, Overhead, Grain Size
No-Op Tracing Module

Figure 12.1: Costs of gathering measurements for a synthetic benchmark
performing a 1-D ring communication pattern with varying amounts of
synthetic work each hop.

0 200 400 600 800 1000 1200 1400 1600
Entry Method Duration (microseconds)

0

1

2

3

4

Ex
pe

ct
ed

 C
os

t (
Pe

rc
en

ta
ge

)

0.60us Cost Per Entry Method
0.53us Cost Per Entry Method

Figure 12.2: Model for the expected costs incurred when introducing a fixed
overhead for each entry method invocation. This model matches well the
observed costs shown in figure 12.1.

137

performed to merge the data across all processors as described in section 6.2.4

and displayed in figure 6.3. A program was created for measuring the time

taken to perform this broadcast, reset the local counters, and perform the

reduction of data to one processor. The program performs this operation

10000 times, and was run on a range of processors of Jaguar. Table 12.1

reports the time required to request and gather the data. Even on a large

number of processors, it takes less than 2ms to perform one operation. In

a real-world application, this gathering of data would be interleaved with

the execution of the program itself, possibly perturbing the application’s

behavior. These low costs imply that it ought to be possible, even on

the largest scale machines, to gather measurements every few seconds, with

negligible costs.

Number of Time to Request and Combine
Processor Cores Measurements from All Processors

110 0.64 ms
10010 1.30 ms
50006 1.65 ms
100100 1.98 ms

Table 12.1: Time to request and combine trace data from all processors for
large numbers of processors, including the time to perform a broadcast then
extract measurements and perform a reduction.

12.3 Costs of Determining Next Control Point Values

The final cost investigated in this chapter is the cost of determining the next

set of control point values based on the gathered data from a small number of

recent phases. In this dissertation, a performance steering approach is taken,

whereby only a small number of recent phases must be examined prior to

making the decision on what values to use in the next phase. Thus the cost

of scanning through a bounded number of recent phases is O(1).

To analyze the typical expected times for plan generation, the nelder-

mead simplex algorithm is run for a benchmark application. This algorithm

was chosen because it examines data for at most n recorded phases, when

there are n control points. Thus, we can vary the number of control points

to measure the cost of a plan generation algorithm that examines different

138

Search Space Time To
Dimension Generate Plan

10 0.77 ms
3 0.31 ms
2 0.24 ms

Table 12.2: Cost of generating a plan (new control point values configuration)
for a phase using the Nelder-Mead Simplex Algorithm.

amounts of the historic measurements. Although various tuning schemes will

have different computational characteristics, the simplex algorithm ought to

provide a useful prediction of at least the order of magnitude of the costs.

Figure 12.2 shows that it takes on average 0.77ms to determine the new

set of control point values for each phase using the Nelder-Mead Simplex

algorithm with 10 control points, where up to 10 previous phases are

examined. When two or three control points are used, the time spent

determining the next configuration is less than 0.5ms 1.

12.4 Summary

This chapter showed that the overhead of instrumenting an application, the

expected costs of gathering performance measurements, and the costs of

planning new configurations is low. Microbenchmarks showed that the costs

of recording and gathering measurements does indeed depend upon the grain

size of the application, and for typical grain sizes, these costs are just small

fractions of 1%. The costs of planning new configurations for each phase are

likely to be under one microsecond.

1These times correspond to runs of programs on a single Apple OSX 10.6.2 Mac Pro
with two 2.8 GHz Quad-Core Intel Xeon processors.

139

CHAPTER 13
Related Work

13.1 Single Node SMP Autotuning

A common modern approach to obtaining good performance on single-node

multicore systems is to use an autotuning framework. Such frameworks

generate multiple implementations of a program, library, or function and

execute the variants on the target platform to find the one that performs

best [53, 54]. Such frameworks include PERI [55], POET [56], SPIRAL [57],

FFTW [58], ATLAS [59], and PHiPAC [60]. The autotuning frameworks

which are implemented in compilers or runtime systems often achieve

performance comparable to hand-tuned programs [53]. All these projects

try to prune the search space to reduce the set of configurations that need

to be evaluated. It is also well known that the performance space is often

non-linear, and thus it is difficult to effectively prune the exponentially large

search space.

The PERI project has included the creation of application-specific code

generators for three programs. They believe that “application-specific

auto-tuners are the most practical near-term approach for obtaining high

performance on multicore systems” [61]. Their generated versions of

application-specific algorithms are tested to determine the one with optimal

performance [62, 63, 61, 64]. These existing approaches all show that

autotuning is indeed useful for finding good implementations for single

shared-memory nodes, that the optimization spaces are large, that the

optimal configurations vary between different types of processors, and that

140

the actual program performance space is too complex to be fully understood

and controlled by an application programmer. From a software engineering

approach, it has been argued that “autotuning is indispensable, as manually

tuning thread assignment, number of pipeline stages, size of data partitions

and other parameters is difficult and error prone. . . . Tunable architectural

patterns with parallelism at several levels need to be discovered” [54]. This

thesis work has proposed methods for tuning parallel programs at a high

level of parallelism, namely across many distributed memory nodes.

Various techniques have been developed for controlling the grain size or

scheduling mechanisms for dynamic task parallelism models. For example,

various efforts have found that it is important to create the appropriate

number of threads for a divide & conquer style parallel program [32, 65, 66,

67]. The techniques involve instrumenting trial runs or the beginnings of a

run in order to build models of the execution times for tasks at each level in

a recursion tree. Then the models allow the further decompositions of the

program to be of a desired grain size [32, 67]. The issue of automatically

decomposing a problem is particularly important in the field of parallelizing

compilers [68, 69]. Various feedback guided dynamic techniques have been

developed to adjust the grain size for the blocks in the decomposition of

parallel loops [70, 71, 72, 73]. Although these techniques are of great

importance to parallel programming for single-node shared memory systems

such as upcoming multicore desktops when using languages or models such

as Cilk or OpenMP, these techniques do not address many of the difficulties

that are encountered running on distributed-memory systems that do not

use a single task scheduler.

The TADL project deals with software engineering aspects of single-node

multicore autotuners. Programs are written using their frameworks and

compiler, while an associated autotuner tunes the parameters found in the

framework. The TADL compiler can automatically instrument programs

written in TADL script. The tunable parameters, which are annotated

with applicable ranges, are adjusted by three plugin optimizers: random,

swarm, and hill climbing. All tuning is performed entirely offline from run

to run [74, 75, 76, 77, 78]. One main benefit of this system is that the TADL

scripting language shortens the amount of code written by the programmer,

hopefully improving productivity. The main downside is that only certain

patterns or frameworks are provided, and the programmer must compose

141

a program from the existing patterns. The TADL project recently started

investigating how idle time measurements might be used to adjust replication

ratios, but this work is not yet published.

An alternative approach for automatically improving the performance

of a code is to use a feedback guided compiler to iteratively recompile a

program to test compiler optimizations in the hopes of eventually improving

its performance [79].

13.2 Tuning Large-Scale Distributed-Memory

Applications

Recently, performance tuning and optimization has been an important

research field for new computing systems with large processor core counts.

No unified solution has been found for effectively programming the new

multicore, heterogeneous, and massively parallel machines. The complexities

of the systems, both in the software development ecosystem and the complex

architectures, can hinder the performance of even simple applications.

It has previously been shown that communication libraries benefit from

effectively choosing between multiple algorithms or protocols for a single

communication pattern [80, 81, 82]. Algorithms and protocols have

various performance tradeoffs involving latencies, latency tolerance, total

communication bandwidth, applicability to specific network topologies, and

transient memory overheads. In the inspector-executor paradigm, accesses to

distributed data structures are observed at runtime by an inspector then an

optimized communication schedule is created for subsequent uses in an HPF

program [83, 84].

13.2.1 Autopilot

The tuning system with the most similarities to the research in this

dissertation is called Autopilot [85]. Autopilot is a system that gathers

performance data for grid applications through sensors, either directly

accessing program variables or calling functions that have been added to

a program. Information provided by these sensors can be analyzed by a set

of fuzzy logic rules to trigger actuators that adapt the behavior of a program.

142

It is possible in the autopilot system to adapt a program’s use of resources

such as a filesystem by changing its access patterns or prefetching methods.

The autopilot system does not attempt to allow programmers to express the

behavioral effects that would occur when an actuator is executed. Thus the

rules that trigger actuators need to be written to handle the specific set of

sensors provided by the program. So far, only a prototype implementation

of Autopilot exists and the only published use cases of Autopilot are in the

tuning of prefetching and caching parameters in a parallel file system for the

PPFS II I/O benchmark [86] and for rescheduling grid applications when

performance contracts are violated [87].

13.2.2 Active Harmony

Relatively little has been published about automatic, dynamic tuning for

large-scale distributed memory systems. One of the few projects to attempt

to automatically tune applications on the scientific computing world’s

distributed-memory systems is Active Harmony [88].

Active Harmony supports various automatic tuning idioms:

• Sequential programs and their libraries can expose tunable parame-

ters [89, 90].

• Applications (possibly parallel) can expose tunable parameters that

are tuned automatically in an offline manner across program runs [88],

or in a manner that reuses performance data and configurations

from previous runs to speedup convergence in the “black-box tuning

process” [91].

• MPI applications and libraries can expose tunable parameters that

are tuned automatically in an online manner from one iteration to a

subsequent similar iteration [89].

• Parallel applications or their libraries expose tunable parameters that

are tuned “in parallel” with different configurations tested across

processors within a single application iteration [92, 93].

• Migration of threads or procedures for load balancing purposes using

measured communication costs and processor loads in the harmony

143

SDSM scheduler on up to 8 processors [94].

Published application tuning scenarios with Active Harmony are listed

in table 13.1. The tuning of these applications follows a standard auto-

tuning approach, namely, evaluating different configurations over one or

more program iterations, and eventually converging on a configuration that

maximizes an objective function. The assumptions are that the programs will

have little variability from iteration to iteration, except for short transient

spikes, so eventually the objective function will be optimized. Almost

always the objective function is simply the execution time for an application

iteration, but Active Harmony is capable of optimizing other objective

functions, of which the literature describes two: compressed file sizes (the

effectiveness of compression algorithms), and memory usage. These objective

functions are optimized directly using actual measurements of the objective

function. The tuning never takes into account any other type of behavioral

measurements of the application (except for load balancing), as is done in

this dissertation.

13.2.3 MATE

The third similar parallel automatic tuning framework is called MATE [96,

97, 98, 99, 100, 101, 102]. A main goal of the MATE system is to facilitate the

automatic tuning of parallel applications without modifying the application

source code at all. Thus their “automatic”, also called “black-box”, approach

uses DynInst to rewrite the memory of a running program in order to modify

function calls or variables within a program [102]. This approach allows

functions to be replaced, eliminated, inserted, or instrumented in the running

program. Additionally, modifications can be made to function parameters

when function calls are intercepted. This approach explicitly addresses the

types of adaptations that do not benefit from application level knowledge.

The second type of automatic tuning approach supported by the MATE

system is called the “cooperative approach.” It requires that “developers

must prepare the application for the possible changes by modifying its

source code.” To do this, the developer is required to express “what

should be measured in the application, what performance model should be

used, and what can be changed in the application” [102]. This requires a

144

A
p
p
li
ca

ti
on

M
ea

su
re

m
en

ts
O

b
je

ct
iv

e
N

u
m

b
er

of
P

u
b
li
ca

ti
on

F
u
n
ct

io
n

P
ro

ce
ss

or
s

T
ab

le
A

b
st

ra
ct

io
n

L
ib

ra
ry

T
im

e
T

im
e

1
[8

9]
C

om
p
re

ss
L

ib
ra

ry
T

im
e

F
u
n
ct

io
n

of
:

1
[8

9]
C

om
p
re

ss
io

n
R

at
io

T
im

e,
C

om
p
re

ss
io

n
R

at
io

A
ct

iv
e

D
at

a
R

ep
os

it
or

y
T

im
e

T
im

e
32

[8
9]

Im
ag

e
R

ec
on

st
ru

ct
io

n
T

ab
le

A
b
st

ra
ct

io
n

L
ib

ra
ry

M
em

or
y

M
em

or
y

1
[9

0]
G

S
2a

T
im

e
T

im
e

64
[9

5]
P

E
T

S
c

T
im

e
T

im
e

32
[8

8]
P

O
P

T
im

e
T

im
e

32
or

48
0

[8
8]

G
S
2

T
im

e
T

im
e

12
8

[8
8]

H
P

L
T

im
e

T
im

e
16

[9
2]

P
S
T

S
W

M
T

im
e

T
im

e
32

[9
2]

P
O

P
T

im
e

T
im

e
32

[9
2]

T
ab

le
13

.1
:

S
om

e
p
u
b
li
sh

ed
u
se

ca
se

s
of

A
ct

iv
e

H
ar

m
on

y

a
U

se
d

si
m

u
la

ti
on

to
an

al
y
ze

P
R

O
tu

n
in

g
al

go
ri

th
m

.

145

large amount of expertise both in knowledge of the application and also in

the appropriate methods for creating tuning mechanisms for each type of

performance problem. In the literature, two example use cases have been

provided. Both use cases adapt parameters used by a master process as it

assigns tasks to workers. Neither case deals with the issues of synchronizing

updates to multiple processors. There is almost no overlap in practice

between the published uses of MATE and the work described in this thesis,

except for the conceptual idea of gathering measurements and using them to

reconfigure a program.

One published use case of cooperative tuning in MATE is to balance the

load across multiple heterogeneous workers in a master/worker system [99,

100, 103, 101, 102]. Such load balancing is not the focus of this dissertation,

as much research has been performed in the past on load balancing. The other

use case of cooperative tuning finds an optimal number of worker processes in

a master/worker application [96, 99, 103, 102]. The number of worker tasks,

and correspondingly compute nodes, is increased as long as it will result in

a faster program. Expanding to larger amounts of resources is not the type

of optimization that is the focus of this dissertation. In this dissertation, the

goal is to run an application as fast as possible on a fixed set of dedicated

processors.

13.2.4 Critical Paths

The tuning approach proposed in this dissertation makes extensive use of

observed performance observations, both simple statistical measurements

and complicated critical-path profiles. Some work has been done in the

past to detect critical paths as a parallel program runs. The seminal work

for critical path profiling describes how a critical path can be created as a

distributed PAG [18]. Subsequent extensions to that seminal work detects

critical paths in PVM programs by using a two phase approach [10, 16, 19,

20]. In the first phase, messages are sent along the edges of the program

activity graph. This is done by sending a second message anytime a PVM

communication call is made. When a detailed critical-path profile is needed,

the critical-path profile is reconstructed through a backwards traversal to

gather information about the tasks performed along the path. A similar

146

technique works with MPI programs [11]. These approaches are only used

to produce profiles of the critical paths that are used in offline visualization

or offline performance analysis tools. This dissertation demonstrates that

critical path information can be used in a novel way, namely, to perform

online, automatic tuning of parallel programs.

13.2.5 Other

Some other projects have investigated other types of dynamic adaptation

of parallel distributed memory applications. These projects do not attempt

to reconfigure running programs as is proposed in this dissertation. One

system attempts to adapt its vector communication algorithms in response

to an important factor, the load on the NIC within an SMP node [104].

Some language specific communication mechanisms have also been tuned at

runtime. In the inspector-executor paradigm, collective accesses to distributed

data structures are observed at runtime by an inspector then an optimized

communication schedule is created for all subsequent uses of the collective

operations in an HPF program [83, 84].

13.3 Novelty of Control Points for Automatic Tuning

The research presented in this dissertation is different than other existing

autotuning approaches in three important ways:

• The tuning framework encourages applications to provide information

about the behavioral effects of each control point.

• The tuning framework observes characteristics of the executing pro-

gram, other than just its overall performance or memory consumption,

to make intelligent tuning decisions.

• The utility of the tuning framework has been demonstrated for use on

large-scale distributed memory parallel platforms, not just in single node

shared-memory programs.

147

CHAPTER 14
Future Work

This dissertation is a part of a wider research effort to investigate the utility

of automatic, dynamic adaptations of parallel programs on large distributed-

memory platforms. The use of control points is one new piece of this approach

that will continue in the future as these wider research efforts continue.

As this dissertation is only a part of this larger effort, some problems and

questions left open by this dissertation will be revisited in the future.

Although this paper proposes a large catalog of possible control points in

chapter 5, many of them have not yet been examined fully within the context

of real applications. In the future, application developers will incorporate

more of these control points in their applications and corresponding new

tuning algorithms will be developed and evaluated.

The control point tuning framework has been designed with respect to

the plan of tuning of many control points within a single application as it

runs. If multiple tuning algorithms are enabled then a random choice is

made from among their plans generated by the different algorithms. In the

future, an obvious next step is to develop a metric that specifies the predicted

benefits for each plan. Then a more informed choice could be made, possibly

using a weighted random choice. Or the configuration with greatest predicted

benefit could be chosen for future examination. A completely different system

for choosing the new planned configurations would be to perform different

types of adaptations as the program runs. For example, data decomposition

schemes are adjusted early on in the program while less impacting load

balancing parameters are adjusted throughout the remainder of the program

run. Designing such a system correctly requires a good understanding of

148

each possible tuning scheme. This dissertation attempts to improve the

understanding of various independent tuning schemes so that in the future,

more elaborate schemes can be developed.

As parallel languages become increasingly more complicated, it is

conceivable that compilers would be able to generate control points, or insert

other types of useful instrumentation into a parallel program. The languages

themselves could also provide better interfaces for exposing information

about static control flow or data flow. With dynamic compilation in managed

languages such as Java, control points could additionally modify the behavior

of the JIT optimizer.

The case studies described in this dissertation are HPC style applications.

Other fields of applications might benefit from the use of control points. It

will become especially important to develop control point systems for desktop

applications if future desktop computer architectures become similar to the

distributed memory parallel systems of today.

149

APPENDIX A
Derivation of Optimal Load Balancing

Period

Assume that the execution time for a step that occurs in the perfectly load

balanced state is the constant tmin. Assume further that the execution times

for steps degrade at a rate of m sec
step

. Assume the cost of each load balancing

operation is a constant value c sec. Assume that after each load balancing

step has an execution time of tmin. Below we prove that the optimal load

balancing scheme performs load balancing operations at fixed intervals of

steps. Further, the optimal choice for load balancing period is
√

2c
m

.

Let ni, i ∈ {1, 2, ...q} represent the number of steps between the i− 1th

and ith load balancing operations. Then N =
∑q

i=1 ni represents the total

number of steps in the execution of the program of which q steps involve a

load balancing operation.

The total execution time for the program is thus:

Etotal =

q∑
i=1

(
c+

ni∑
j=1

(tmin + (i− 1)m)

)
(A.1)

= q · c+
(
tmin −

m

2

) q∑
i=1

ni +
m

2

q∑
i=1

ni
2 (A.2)

We prove by contradiction that the minimum value of the execution time

E occurs when 0 ≤ max{n1, n2, . . . , nq} −min{n1, n2, . . . , nq} ≤ 1, that is,

all the different ni are all nearly equal. For the sake of contradiction, assume

ni ≥ nj + 2 for some i, j. Then we can select different steps for the load

150

balancing operations by decreasing ni to ni − 1 and increasing nj to nj + 1.

The total execution time for this configuration would differ from the original

by the following amount:

(
tmin −

m

2

)
((ni − 1)− ni + (nj + 1)− nj) + (A.3)

m

2

(
(ni − 1)2 − n2

i + (nj + 1)2 − n2
j

)
= m (−ni + nj + 1) (A.4)

≤ m (−2 + 1) = −m (A.5)

Thus because m > 0, the performance of this new set of load balancing

steps will improve the performance of the program by m. Then we have

contradicted the fact that original configuration was optimal. Hence any

optimal execution must not have ni ≥ nj + 2 for any i, j. Thus because the

q values ni must sum to N , it is necessary that ni ∈ {bNq c , d
N
q
e}∀i.

Now the total execution time can be rewritten as:

Etotal = q · c+
(
tmin −

m

2

) q∑
i=1

ni +
m

2

q∑
i=1

ni
2 (A.6)

≈ q · c+
(
tmin −

m

2

)
N +

m

2

q∑
i=1

(
N

q

)2

(A.7)

= q · c+
(
tmin −

m

2

)
N +

mN2

2q
(A.8)

Next we find the q that minimizes the total execution time by finding the

q such that d
dq

(Etotal) = 0

d

dq
(Etotal) = 0 =⇒ (A.9)

d

dq

(
q · c+

(
tmin −

m

2

)
N +

mN2

2q

)
= 0 =⇒ (A.10)

c− mN2

2q2
= 0 =⇒ (A.11)

q =

√
mN2

2c
(A.12)

151

Thus the minimal execution time occurs for q =
√

mN2

2c
, which yields an

optimal load balancing period of N
q

=
√

2c
m

.

152

REFERENCES

[1] Isaac Dooley, Chao Mei, Jonathan Lifflander, and Laxmikant Kale. A
study of memory-aware scheduling in message driven parallel programs.
In Proceedings of 17th Annual International Conference on High
Performance Computing, 2010.

[2] Jack Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK
benchmark: past, present and future. Concurrency and Computation:
Practice and Experience, Jan 2003.

[3] Parry Husbands and Katherine Yelick. Multi-threading and one-sided
communication in parallel LU factorization. In SC ’07: Proceedings of
the 2007 ACM/IEEE conference on Supercomputing, pages 1–10, New
York, NY, USA, 2007. ACM.

[4] Laxmikant V. Kale, Eric Bohm, Celso L. Mendes, Terry Wilmarth, and
Gengbin Zheng. Programming Petascale Applications with Charm++
and AMPI. In D. Bader, editor, Petascale Computing: Algorithms and
Applications, pages 421–441. Chapman & Hall / CRC Press, 2008.

[5] Parallel Programming Laboratory, Department of Computer Science,
University of Illinois, Urbana, IL. The Charm++ Programming
Language Manual, (Version 6.1.3), 2010.

[6] Laxmikant V. Kale, Gengbin Zheng, Chee Wai Lee, and Sameer
Kumar. Scaling applications to massively parallel machines using
projections performance analysis tool. In Future Generation Computer
Systems Special Issue on: Large-Scale System Performance Modeling
and Analysis, volume 22, pages 347–358, February 2006.

[7] Gene H. Golub and Charles F. Van Loan. Matrix Computations
(Johns Hopkins Studies in Mathematical Sciences). The Johns Hopkins
University Press, October 1996.

[8] Toshio Endo, Kenji Kaneda, Kenjiro Taura, and Akinori Yonezawa.
High performance LU factorization for non-dedicated clusters. In
Proceedings of the 4th International Symposium on Cluster Computing
and the Grid (CCGrid 04), pages 678–685, 2004.

153

[9] Isaac Dooley and Laxmikant Kale. Detecting and using critical paths
at runtime in message driven parallel programs. In 12th Workshop
on Advances in Parallel and Distributed Computing Models (APDCM
2010) at IPDPS 2010., April 2010.

[10] J.K. Hollingsworth. Critical path profiling of message passing and
shared-memory programs. Parallel and Distributed Systems, IEEE
Transactions on, 9(10):1029–1040, Oct 1998.

[11] M Schulz. Extracting critical path graphs from mpi applications.
Cluster Computing, 2005, pages 1 – 10, Sep 2005.

[12] Message Passing Interface Forum. MPI-2: Extensions to the message-
passing interface, 1997. http://www.mpi-forum.org/docs/mpi-20-
html/mpi2-report.html.

[13] Abhinav Bhatele, Sameer Kumar, Chao Mei, James C. Phillips,
Gengbin Zheng, and Laxmikant V. Kale. Overcoming scaling challenges
in biomolecular simulations across multiple platforms. In Proceedings
of IEEE International Parallel and Distributed Processing Symposium
2008, April 2008.

[14] Ramkumar V. Vadali, Yan Shi, Sameer Kumar, L. V. Kale,
Mark E. Tuckerman, and Glenn J. Martyna. Scalable fine-grained
parallelization of plane-wave-based ab initio molecular dynamics
for large supercomputers. Journal of Comptational Chemistry,
25(16):2006–2022, Oct. 2004.

[15] Parry Husbands and Katherine Yelick. Multi-threading and one-sided
communication in parallel lu factorization. In SC ’07: Proceedings of
the 2007 ACM/IEEE conference on Supercomputing, pages 1–10, New
York, NY, USA, 2007. ACM.

[16] Jeffrey K. Hollingsworth. An online computation of critical path
profiling. In SPDT ’96: Proceedings of the SIGMETRICS symposium
on Parallel and distributed tools, pages 11–20, New York, NY, USA,
1996. ACM.

[17] Chao Huang and Laxmikant V. Kale. Charisma: Orchestrating
migratable parallel objects. In Proceedings of IEEE International
Symposium on High Performance Distributed Computing (HPDC),
July 2007.

[18] Cui-Qing Yang and Barton P. Miller. Critical path analysis for the
execution of parallel and distributed programs. In Proceedings of the
Eighth International Conference on Distributed Computing Systems,
pages 366–373, 1988.

154

[19] J. K. Hollingsworth and B. P. Miller. Parallel program performance
metrics: a comprison and validation. In Supercomputing ’92:
Proceedings of the 1992 ACM/IEEE conference on Supercomputing,
pages 4–13, Los Alamitos, CA, USA, 1992. IEEE Computer Society
Press.

[20] J Hollingsworth and Barton Miller. Slack: A new performance metric
for parallel programs. cs.umd.edu, Jan 1994.

[21] Eric Bohm, Abhinav Bhatele, Laxmikant V. Kale, Mark E. Tuckerman,
Sameer Kumar, John A. Gunnels, and Glenn J. Martyna. Fine Grained
Parallelization of the Car-Parrinello ab initio MD Method on Blue
Gene/L. IBM Journal of Research and Development: Applications of
Massively Parallel Systems, 52(1/2):159–174, 2008.

[22] Eric Bohm, Sayantan Chakravorty, Pritish Jetley, Abhinav Bhatele,
and Laxmikant V. Kale. CkDirect: Unsynchronized One-Sided
Communication in a Message-Driven Paradigm . In Proceedings of
International Workshop on Parallel Programming Models and Systems
Software for High-End Computing (P2S2), August 2009.

[23] M. J. Sottile and R. G. Minnich. Supermon: a high-speed cluster
monitoring system. In Cluster Computing, 2002. Proceedings. 2002
IEEE International Conference on, pages 39–46, 2002.

[24] Aroon Nataraj, Matthew Sottile, Alan Morris, Allen D. Malony, and
Sameer Shende. TAUoverSupermon: Low-Overhead Online Parallel
Performance Monitoring. Lecture Notes in Computer Science, 4641:85–
96, August 2007.

[25] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and
Vivek Sarkar. X10: an object-oriented approach to non-uniform
cluster computing. In OOPSLA ’05: Proceedings of the 20th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 519–538, New York, NY, USA, 2005.
ACM.

[26] Shivali Agarwal, Rajkishore Barik, Dan Bonachea, Vivek Sarkar,
Rudrapatna K. Shyamasundar, and Katherine Yelick. Deadlock-free
scheduling of x10 computations with bounded resources. In SPAA
’07: Proceedings of the nineteenth annual ACM symposium on Parallel
algorithms and architectures, pages 229–240, New York, NY, USA,
2007. ACM.

155

[27] Ganesh Bikshandi, Jose G. Castanos, Sreedhar B. Kodali, V. Krishna
Nandivada, Igor Peshansky, Vijay A. Saraswat, Sayantan Sur, Pradeep
Varma, and Tong Wen. Efficient, portable implementation of
asynchronous multi-place programs. In PPoPP ’09: Proceedings of the
14th ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 271–282, New York, NY, USA, 2009. ACM.

[28] J A Nelder and R Mead. A simplex method for function minimization.
Computer Journal, 7:308–313, 1965.

[29] A. Gursoy and L.V. Kale. High-level support for divide-and-conquer
parallelism. In Proceedings of Supercomputing ’91, pages 283–292,
November 1991.

[30] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An
Efficient Multithreaded Runtime System. In Proc. 5th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
PPoPP’95, pages 207–216, Santa Barbara, California, July 1995. MIT.

[31] Hartmut Kaiser, Maciek Brodowicz, and Thomas Sterling. Parallex an
advanced parallel execution model for scaling-impaired applications.
In ICPPW ’09: Proceedings of the 2009 International Conference on
Parallel Processing Workshops, pages 394–401, Washington, DC, USA,
2009. IEEE Computer Society.

[32] Alejandro Duran, Julita Corbalán, and Eduard Ayguadé. An adaptive
cut-off for task parallelism. In SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages 1–11. IEEE Press,
2008.

[33] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krish-
namoorthy, and Jarek Nieplocha. Scalable work stealing. In SC
’09: Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, pages 1–11, New York, NY, USA,
2009. ACM.

[34] B. Shen, M. Hubler, G. H. Paulino, and L. J. Struble. Functionally
graded fiber-reinforced cement composite: Processing, microstructure,
and properties. Cement and Concrete Composites, 30(8):663–673, 2008.

[35] Matthew T. Tilbrook, Robert J. Moon, and Mark Hoffman. Finite
element simulations of crack propagation in functionally graded
materials under flexural loading. Engineering Fracture Mechanics,
72(16):2444 – 2467, 2005.

156

[36] M. Wosko, B. Paszkiewicz, T. Piasecki, A. Szyszka, R. Paszkiewicz,
and M. Tlaczala. Application and modeling of functionally graded
materials for optoelectronic devices. In Photonics and Microsystems,
2005. Proceedings of 2005 International Students and Young Scientists
Workshop, pages 87–89, July 2005.

[37] Orion Lawlor, Sayantan Chakravorty, Terry Wilmarth, Nilesh
Choudhury, Isaac Dooley, Gengbin Zheng, and Laxmikant Kale.
Parfum: A parallel framework for unstructured meshes for scalable
dynamic physics applications. Engineering with Computers, 22(3-
4):215–235, September 2006.

[38] Sayantan Chakravorty, Aaron Becker, Terry Wilmarth, and
Laxmikant V. Kalé. A Case Study in Tightly Coupled Multi-Paradigm
Parallel Programming. In Proceedings of Languages and Compilers for
Parallel Computing (LCPC ’08), 2008.

[39] NVIDIA. CUDA 2.0 Reference Manual. NVIDIA Corporation, Santa
Clara, CA, USA, June 2008.

[40] NVIDIA. CUDA 2.0 Programming Guide. NVIDIA Corporation, Santa
Clara, CA, USA, June 2008.

[41] Aaron Becker, Isaac Dooley, and Laxmikant Kale. Flexible hardware
mapping for finite element simulations on hybrid cpu / gpu clusters.
In SAAHPC : Symposium on Application Accelerators in HPC, July
2009.

[42] Gengbin Zheng, Michael S. Breitenfeld, Hari Govind, Philippe
Geubelle, and Laxmikant V. Kale. Automatic dynamic load balancing
for a crack propagation application. Technical Report 06-08,
Parallel Programming Laboratory, Department of Computer Science,
University of Illinois at Urbana-Champaign, June 2006.

[43] Gengbin Zheng. Achieving high performance on extremely large parallel
machines: performance prediction and load balancing. PhD thesis,
Department of Computer Science, University of Illinois at Urbana-
Champaign, 2005.

[44] J. Nagib, C. Árebe, A. Beguelin, and Bruce Lowekamp. Dome: Parallel
programming in a distributed computing environment. In Proceedings
of the International Parallel Processing Symposium, 1996.

157

[45] Rupak Biswas, Leonid Oliker, Sajal K. Das, and Daniel J. Harvey.
Portable parallel programming for the dynamic load balancing of
unstructured grid applications. In IPPS ’99/SPDP ’99: Proceedings
of the 13th International Symposium on Parallel Processing and the
10th Symposium on Parallel and Distributed Processing, pages 338–
342, Washington, DC, USA, 1999. IEEE Computer Society.

[46] Milind Bhandarkar and L. V. Kalé. A Parallel Framework for Explicit
FEM. In M. Valero, V. K. Prasanna, and S. Vajpeyam, editors,
Proceedings of the International Conference on High Performance
Computing (HiPC 2000), Lecture Notes in Computer Science, volume
1970, pages 385–395. Springer Verlag, December 2000.

[47] Isaac Dooley, Chao Mei, Jonathan Lifflander, and Laxmikant Kale. A
study of memory-aware scheduling in message driven parallel programs.
In PPL Technical Reports 2010, number 10-05, March 2010.

[48] B Hendrickson and E Womble. The torus–wrap mapping for dense
matrix calculations on massively parallel computers. Siam J Sci Stat
Comp, Jan 1994.

[49] Edgar Solomonik and Laxmikant V. Kale. Highly Scalable Parallel
Sorting. In Proceedings of the 24th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), April 2010.

[50] L.V. Kale and Sanjeev Krishnan. Medium grained execution in
concurrent object-oriented systems. In Workshop on Efficient Im-
plementation of Concurrent Object Oriented Languages, at OOPSLA
1993, September 1993.

[51] Vikram A. Saletore. A distributed and adaptive dynamic load
balancing scheme for parallel processing of medium-grain tasks. In
Proceedings of the Fifth Distributed Memory Computing Conference
(5th DMCC’90), volume II, Architecture Software Tools, and Other
General Issues, pages 994–999, Charleston, SC, April 1990. IEEE.

[52] Sameer Kumar, Chao Huang, Gheorghe Almasi, and Laxmikant V.
Kalé. Achieving strong scaling with NAMD on Blue Gene/L. In
Proceedings of IEEE International Parallel and Distributed Processing
Symposium 2006, April 2006.

[53] Mary Hall, David Padua, and Keshav Pingali. Compiler research: the
next 50 years. Commun. ACM, 52(2):60–67, 2009.

158

[54] Victor Pankratius, Christoph Schaefer, Ali Jannesari, and Walter F.
Tichy. Software engineering for multicore systems: an experience
report. In IWMSE ’08: Proceedings of the 1st international workshop
on Multicore software engineering, pages 53–60, New York, NY, USA,
2008. ACM.

[55] D H Bailey, J Chame, C Chen, J Dongarra, M Hall, J K Hollingsworth,
P Hovland, S Moore, K Seymour, J Shin, A Tiwari, S Williams, and
H You. Peri auto-tuning. Journal of Physics: Conference Series,
125:012089, 2008.

[56] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan.
Poet: Parameterized optimizations for empirical tuning. Parallel
and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE
International, pages 1–8, March 2007.

[57] M. Puschel, J.M.F. Moura, J.R. Johnson, D. Padua, M.M. Veloso,
B.W. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen,
R.W. Johnson, and N. Rizzolo. Spiral: Code generation for dsp
transforms. Proceedings of the IEEE, 93(2):232–275, Feb. 2005.

[58] M. Frigo and S.G. Johnson. Fftw: an adaptive software architecture
for the fft. Acoustics, Speech and Signal Processing, 1998. Proceedings
of the 1998 IEEE International Conference on, 3:1381–1384 vol.3, May
1998.

[59] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated
empirical optimizations of software and the atlas project. Parallel
Computing, 27(1-2):3 – 35, 2001.

[60] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel.
Optimizing matrix multiply using PHiPAC: a portable, high-
performance, ansi c coding methodology. In ICS ’97: Proceedings of
the 11th international conference on Supercomputing, pages 340–347,
New York, NY, USA, 1997. ACM.

[61] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams,
Jonathan Carter, Leonid Oliker, David Patterson, John Shalf, and
Katherine Yelick. Stencil computation optimization and auto-tuning
on state-of-the-art multicore architectures. In SC ’08: Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, pages 1–12,
Piscataway, NJ, USA, 2008. IEEE Press.

[62] S Williams, K Datta, J Carter, L Oliker, J Shalf, K Yelick, and
D Bailey. Peri - auto-tuning memory-intensive kernels for multicore.
Journal of Physics: Conference Series, 125:012038 (15pp), 2008.

159

[63] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine
Yelick, and James Demmel. Optimization of sparse matrix-vector
multiplication on emerging multicore platforms. Parallel Computing,
35(3):178 – 194, 2009. Revolutionary Technologies for Acceleration of
Emerging Petascale Applications.

[64] S. Williams, J. Carter, L. Oliker, J. Shalf, and K. Yelick. Lattice
boltzmann simulation optimization on leading multicore platforms.
Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on, pages 1–14, April 2008.

[65] Michael Voss and Rudolf Eigenmann. Dynamically adaptive parallel
programs. In ISHPC ’99: Proceedings of the Second International
Symposium on High Performance Computing, pages 109–120, London,
UK, 1999. Springer-Verlag.

[66] Hans-Wolfgang Loidl and Kevin Hammond. On the granularity
of divide-and-conquer parallelism. In Proceedings of the Glasgow
Workshop on Functional Programming, Ullapool, Scotland, July 1995.

[67] Prechelt. Efficient parallel execution of irregular recursive programs.
Parallel and Distributed Systems, IEEE Transactions on, 13(2):167 –
178, 2002.

[68] Radu Rugina and Martin Rinard. Automatic parallelization of divide
and conquer algorithms. In In Proceedings of the 7th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages
72–83, Jan 1999.

[69] Bernd Freisleben and Thilo Kielmann. Automatic parallelization of
divide-and-conquer algorithms. In CONPAR, volume 634 of Lecture
Notes in Computer Science, pages 849–850. Springer, 1992.

[70] Tatiana Tabirca, Len Freeman, Sabin Tabirca, and Laurence Tianruo
Yang. Feedback guided dynamic loop scheduling: convergence of
the continuous case. The Journal of Supercomputing, 30(2):151–178,
November 2004.

[71] Oleh Olkhovskyy. Feedback guided scheduling for two-dimensional
loops. In UKHEC Technical Reports, Jan 2001.

[72] D.J. Hancock, J.M. Bull, R.W. Ford, and T.L. Freeman. An
investigation of feedback guided dynamic scheduling of nested loops.
In International Workshops on Parallel Processing, 2000. Proceedings,
pages 315–321, 2000.

160

[73] J. Mark Bull. Feedback guided dynamic loop scheduling: Algorithms
and experiments. In Euro-Par ’98: Proceedings of the 4th International
Euro-Par Conference on Parallel Processing, pages 377–382, London,
UK, 1998. Springer-Verlag.

[74] Christoph A. Schaefer, Victor Prankratius, and Walter F. Tichy.
Engineering parallel applications with tunable architectures. In
International Conference on Software Engineering (ICSE), May 2010.

[75] Thomas Karcher, Christoph A. Schaefer, and Victor Pankratius. Auto-
tuning support for manycore applications - perspectives for operating
systems and compilers. Accepted for ACM SIGOPS Operating System
Review. Special Issue on the Interaction among the OS, Compilers, and
Multicore Processors, April 2009.

[76] Christoph A. Schaefer. Reducing search space of auto-tuners using
parallel patterns. In IEEE Computer Society, editor, Proceedings of
the 2nd ICSE Workshop on Multicore Software Engineering, pages 17–
24, May 2009.

[77] Christoph A. Schaefer, Victor Pankratius, and Walter F. Tichy. Atune-
il: An instrumentation language for auto-tuning parallel applications.
In Springer Berlin / Heidelberg, editor, Proceedings of the 15th
International Euro-Par Conference on Parallel Processing, volume
LNCS, pages 9–20, August 2009.

[78] Otilia Werner-Kytölä. Automatic Tuning of the Degree of Parallelism of
Programs. publikation, IPD Tichy, University of Karlsruhe, Germany,
October 1999.

[79] Zhelong Pan and Rudolf Eigenmann. Rating compiler optimizations
for automatic performance tuning. In SC ’04: Proceedings of the 2004
ACM/IEEE conference on Supercomputing, page 14, Washington, DC,
USA, 2004. IEEE Computer Society.

[80] L. V. Kale, Sameer Kumar, and Krishnan Vardarajan. A Framework for
Collective Personalized Communication. In Proceedings of IPDPS’03,
Nice, France, April 2003.

[81] Ahmad Faraj, Xin Yuan, and David Lowenthal. Star-mpi: self tuned
adaptive routines for mpi collective operations. In ICS ’06: Proceedings
of the 20th annual international conference on Supercomputing, pages
199–208, New York, NY, USA, 2006. ACM.

[82] M.J. Koop, T. Jones, and D.K. Panda. Mvapich-aptus: Scalable
high-performance multi-transport mpi over infiniband. In Parallel
and Distributed Processing, 2008. IPDPS 2008. IEEE International
Symposium on, pages 1–12, April 2008.

161

[83] Joel Saltz, Kathleen Crowley, Ravi Mirchandaney, and Harry
Berryman. Run-time scheduling and execution of loops on message
passing machines. J. Parallel Distrib. Comput., 8(4):303–312, 1990.

[84] Siegfried Benkner, Piyush Mehrotra, John Van Rosendale, and Hans
Zima. High-level management of communication schedules in hpf-like
languages. In ICS ’98: Proceedings of the 12th international conference
on Supercomputing, pages 109–116, New York, NY, USA, 1998. ACM.

[85] Randy L. Ribler, Huseyin Simitci, and Daniel A. Reed. The autopilot
performance-directed adaptive control system. Future Gener. Comput.
Syst., 18(1):175–187, 2001.

[86] Randy L. Ribler, Jeffrey S. Vetter, Huseyin Simitci, and Daniel A.
Reed. Autopilot: Adaptive Control of Distributed Applications. In
Proc. 7th IEEE Symp. on High Performance Distributed Computing,
Chicago, IL, July 1998.

[87] Daniel Reed and Celso Mendes. Intelligent monitoring for adaptation
in grid applications. Proceedings of the IEEE, 93(2):426 –435, feb. 2005.

[88] I-Hsin Chung and Jeffrey K. Hollingsworth. A case study using
automatic performance tuning for large-scale scientific programs. In
International Symposium on High Performance Distributed Computing
(HPDC), June 2006.

[89] Cristian Ţăpuş, I-Hsin Chung, and Jeffrey K. Hollingsworth.
Active harmony: towards automated performance tuning. In
Supercomputing ’02: Proceedings of the 2002 ACM/IEEE conference
on Supercomputing, pages 1–11, Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press.

[90] I-Hsin Chung and Jeffrey K. Hollingsworth. Runtime selection among
different api implementations. Parallel Processing Letters, 13(2):123–
134, 2003.

[91] I-Hsin Chung and Jeffrey K. Hollingsworth. Using information
from prior runs to improve automated tuning systems. In SC ’04:
Proceedings of the 2004 ACM/IEEE conference on Supercomputing,
page 30, Washington, DC, USA, 2004. IEEE Computer Society.

[92] Ananta Tiwari, Vahid Tabatabaee, and Jeffrey K. Hollingsworth.
Tuning parallel applications in parallel. Parallel Comput., 35(8-9):475–
492, 2009.

162

[93] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, and
Jeffrey K. Hollingsworth. A scalable auto-tuning framework for
compiler optimization. In IPDPS ’09: Proceedings of the 2009 IEEE
International Symposium on Parallel & Distributed Processing, pages
1–12, 2009.

[94] Jeffrey K. Hollingsworth and Peter J. Keleher. Prediction and
adaptation in active harmony. Cluster Computing, 2(3):195–205, 1999.

[95] Vahid Tabatabaee, Ananta Tiwari, and Jeffrey K. Hollingsworth.
Parallel parameter tuning for applications with performance variability.
In SC ’05: Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, page 57, Washington, DC, USA, 2005. IEEE
Computer Society.

[96] Anna Morajko, Eduardo César, Tomàs Margalef, Joan Sorribes, and
Emilio Luque. Dynamic performance tuning environment. In Euro-
Par ’01: Proceedings of the 7th International Euro-Par Conference
Manchester on Parallel Processing, pages 36–45, London, UK, 2001.
Springer-Verlag.

[97] Anna Morajko, Oleg Morajko, Josep Jorba, Tomás Margalef,
and Emilio Luque. Dynamic performance tuning of distributed
programming libraries. In ICCS’03: Proceedings of the 2003
international conference on Computational science, pages 191–200,
Berlin, Heidelberg, 2003. Springer-Verlag.

[98] Anna Morajko, Oleg Morajko, Tomàs Margalef, and Emilio Luque.
Mate: toward scalable automated and dynamic performance tuning
environment. In Lecture Notes in Computer Science, volume 3149,
pages 98–107. Springer Berlin / Heidelberg, 2004.

[99] E. Cesar, J.G. Mesa, J. Sorribes, and E. Luque. Modeling
master-worker applications in poetries. In High-Level Parallel
Programming Models and Supportive Environments, 2004. Proceedings.
Ninth International Workshop on, pages 22–30, 26 2004.

[100] Anna Morajko, Paola Caymes, Tomàs Margalef, and Emilio Luque.
Automatic tuning of data distribution using factoring in master/worker
applications. In Lecture Notes in Computer Science, volume 3515,
pages 132–139. Springer Berlin / Heidelberg, 2005.

[101] A. Morajko, P. Caymes-Scutari, T. Margalef, and E. Luque. Mate:
Monitoring, analysis and tuning environment for parallel/distributed
applications. Concurr. Comput. : Pract. Exper., 19:1517–1531, 2007.

163

[102] Anna Morajko, Tomàs Margalef, and Emilio Luque. Design and
implementation of a dynamic tuning environment. J. Parallel Distrib.
Comput., 67(4):474–490, 2007.

[103] Anna Morajko, Eduardo Cèsar, Paola Caymes-Scutari, Tomàs
Margalef, Joan Sorribes, and Emilio Luque. Automatic tuning of
master/worker applications. In Lecture Notes in Computer Science,
volume 3648, pages 95–103. Springer Berlin / Heidelberg, 2005.

[104] Costin Iancu and Steven Hofmeyr. Runtime optimization of vector
operations on large scale smp clusters. In PACT ’08: Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, pages 122–132, New York, NY, USA, 2008. ACM.

164

