
Debugging Parallel Applications via Provisional Execution

Filippo Gioachin
Department of Computer Science

University of Illinois at Urbana-Champaign
Email: gioachin@ieee.org

Laxmikant Kalé
Department of Computer Science

University of Illinois at Urbana-Champaign
Email: kale@illinois.edu

Abstract—While debugging message-passing parallel appli-
cations, a notoriously difficult bug to solve is a race condition:
messages from different sources may arrive at a processor
in any order, and the processing of these messages in some
particular order is not handled correctly by the application.
What compounds the difficulty is that this bug may not
manifest itself until the application is deployed at large scale,
and even then it may happen only in a small fraction of runs.

By allowing a developer to quickly test the outcome of the
computation resulting from handling several messages in a
specific order while the application is running, we enable a
fast way to inspect the application for the existence of race
conditions. Furthermore, this can help reduce the need for large
machine allocations to discover race conditions. A fundamental
component of the feature is the capability to perform the
provisional delivery of a message quickly, providing an equally
fast rollback.

I. INTRODUCTION

Debugging is a fundamental component of software de-
velopment, and one of the most time consuming. When it
comes to parallel computing, discovering the cause of a
problem becomes even more difficult. One of the reasons for
this increased complexity is the presence of race conditions.
This means that when the application is executed repeatedly
with the same input, the application can behave differently.
This is distinct from the concept of non-determinism, where
an application may produce different results, but all valid
solutions. In a race condition, some of the possible message
interleavings produce an incorrect result. Different message
interleaving can happen, for example, when the latency
introduced by the switches in the communication network
delays some messages more than others.

To eliminate non-determinism from an application, a
commonly used technique is record-replay. The idea is to
record the order in which messages are processed during an
execution, and enforce this order in subsequent executions.
Several tools have explored this possibility [1], [2], [3]. With
this technique, a programmer can reproduce an application’s
bug identically until the cause is found. This procedure has
a drawback: it requires a first execution, in which the bug
manifests itself, to be captured. Sometimes the bug appears
at every execution, only on different processors each time;
for this kind of problems standard record-replay techniques
work fine. Other times, the bug may appear sporadically

and recording the bug may be a challenging task in itself.
For example, imagine a situation where processor A sends
two messages: α to processor C, and β to processor B; B,
upon receiving β, sends message γ to C; and the application
misbehaves only when γ is processed before α. If α is
sent before β, α will generally arrive at C before γ, and
execute first. Nevertheless, α could be lost and require
retransmission on the network, making γ execute first. This
kind of scenario is difficult to capture, as it may occur only
once every thousands of executions. Increasing the size of
the machine may trigger the problem more frequently, for
example α and β could take different paths in the underlying
hardware network. Nevertheless, the problem remains: how
many times does the user have to repeat the experiment
before obtaining a trace with the bug? If the crash happens
late in a program’s execution, how many resources will be
consumed in the recording process?

Another problem that may hinder the recording of the
bug is if the recording itself corrupts the timings of the
communications. While some recording techniques are less
intrusive than others, and they can reduce the probe effect,
it cannot be taken for granted that the bug will appear while
recording is enabled. For some applications, moreover, the
minimal recording necessary to capture the bug may include
large amount of data, such as timers or other system calls.
Again, how much time will the user be willing to spend
waiting for the bug to present itself in a recorded execution?

Record-replay techniques guarantee that messages are
processed during replay in the same order in which they
were processed during the recording phase. The opposite is
also possible: forcing messages to be delivered out-of-order.
This may expose the bug very early in the application, and
may not require large machines to be allocated to discover
the problem. For instance, in the example above, where
messages α and β were racing, one could try imposing the
delivery of β before α even though α is in the queue before
β. This operation can be done as easily on a small machine
as on a big one, thus relaxing the need for large machines
to obtain a suitable trace for the record-replay technique.
We shall see later in Section IX why this randomization
of messages in the queue cannot be trivially performed
automatically.

When looking at the messages enqueued on a given

processor, there are two ways to determine what to process
next. One is having the user to try certain combinations.
These permutations of messages could be random, or due
to his understanding of the program, or a hunch he might
have. The other, more automatic method, would be to have
the system explore the possible delivery orderings, and
report to the user when different orderings generate different
solutions. In this paper, we shall lay the foundations to allow
the testing of possible different execution paths, but consider
only paths specified by the user. In the future work section,
we shall expand on automatic search, and further challenges
that it poses.

In this paper, after some background, we illustrate what
features are useful to a programmer debugging his or her
parallel application in Section III, and in Section IV we
explore possible ways in which a debugging system can
provide to a programmer the capability to force a particular
processing order of messages, while retaining the possibility
to rollback and try a different ordering. We describe an
implementation of such debugging system in Section V, we
demonstrate that our system performs well and can be used
interactively in Section VI, and present a a case study in
Section VII. Related work will be compared in Section VIII,
followed by conclusions and future work.

II. BACKGROUND

The technique presented in this paper has been deployed
in the context of the CHARM++ parallel programming model
and the CHARMDEBUG debugger. In this section, we review
the main concepts and infrastructure that are relevant to this
work.

A. Charm++

CHARM++ is an increasingly popular programming
model to develop parallel applications. It is based on the
concepts of object-based virtualization and message driven
execution [4], [5]. In CHARM++, the programmer is respon-
sible for decomposing the computation into logically inde-
pendent entities, called chares, which live in a global object
space. This space spans the entire application, and chares
can communicate with each other by sending messages.
The parallel computation proceeds as messages trigger the
execution of methods on the destination chares. The parallel
runtime system is responsible for mapping the chares to
the allocated processors. This mapping can be modified
dynamically as the application evolves to compensate for
load imbalance or to optimize the communication among
chares. The runtime system is also responsible for routing
the messages, and delivering them to their destination chares,
wherever the destination chares are located.

Messages exchanged are asynchronous, and the order
in which they are delivered to the destination chares is
non-deterministic. In particular, this is valid for messages
transferred over the network, where latencies may alter

the receipt order at the destination processor. CHARM++
provides a mechanism to record the order in which messages
were processed in one execution, and replay it later, thus
eliminating the non-determinism from the application [3].
This mechanism is based on the piecewise deterministic
assumption. This states that if a chare C processes a message
M when in state S0, then it will always transition to the same
state S1 and send the same messages {msgs}. I.e, if the
order in which messages are processed by a chare remains
the same (along with their contents), the chare will perform
the same computation and send out the same sequence of
messages.

B. CharmDebug

CHARMDEBUG is a parallel debugging environment
where the user interacts with a graphical user interface,
and is tailored to CHARM++ applications. This environment
is tightly integrated with the runtime system itself, and
is therefore capable of providing the user with the most
relevant information, such as the messages in the system,
the state of the chares, and their entry methods [6].

The communication between the CHARMDEBUG GUI,
which may be running on the user’s personal machine, and
the parallel application running on a large machine, happens
through the Converse Client-Server (CCS) protocol [7]. This
protocol is used over a single communication link between
the GUI and the parallel application. This, in conjunction
with the possibility to use the message driven execution
model to interleave debugging requests with normal applica-
tion messages, enables the debugging infrastructure to scale
to very large machines together with the application itself.

III. PROVISIONALLY DELIVERING MESSAGES

When considering how the user should be allowed to inter-
act with the system to test his hypothesis, several decisions
can be made. In particular, these involve how the system will
perform the delivery operation, and how it will allow the
rollback if the user decides to undo the delivery operation.
We call these delivery operations “provisional” for their
property of being not fully committed into the application,
and the possibility to annul them. Before entering into the
details of the system, let us start with the user’s perspective.

In a typical debugging scenario, the user will select a
message from a processor’s queue, and issue the delivery
command. The options available depends on the state of
the system and the message selected. Figure 1 shows the
different options available. When a processor is not in pro-
visional mode (Figure 1(a)), the user can either permanently
deliver a specific message or initiate the provisional delivery
with the selected message. Once inside this mode, mes-
sages still in the queue can only be delivered provisionally
(Figure 1(b)). For messages that have been provisionally
delivered (Figure 1(c)), two options are available: 1) rollback
the system until the selected message has not been delivered,

or 2) commit the message permanently on the processor.
The user can distinguish between messages already delivered
provisionally and messages still in the queue graphically:
messages already delivered provisionally are shown in pur-
ple at the beginning of the queue (Figure 2).

(a) Processor not in provisional
delivery, a message can either
be delivered permanently, or
provisional mode can be initi-
ated.

(b) Processor in provisional de-
livery and a non-delivered mes-
sage is selected, message can
only be delivered provisionally.

(c) Processor in provisional de-
livery and a provisionally deliv-
ered message is selected, multi-
ple options are available to either
commit or rollback.

Figure 1. Options available for different system status and message
selected.

Suppose the user has decided to provisionally deliver
messages from the queue in the following order: α, β, γ, δ, ε.
After provisionally executing this sequence, and examining
the resultant state, the user may select the third message
(γ), and using one of the options shown at that time, decide
to roll back the system and remain in provisional mode
with messages α and β, and have messages γ, δ, and ε
returned to the normal (undelivered) queue. Alternatively, he
can permanently deliver message γ and all its predecessors
(therefore messages α, β, and γ in order). Messages δ and
ε will be left as provisionally delivered. It is important to
notice that when committing message γ we cannot ignore
messages α and β since they were provisionally delivered
before message γ. If we ignored them, the system may
behave differently, as the order in which messages are pro-
cessed would have changed. In particular, it could terminate
abnormally. The same discussion applies also for messages
δ and ε when rolling back. For the rollback case, once the
system has voided the changes provoked by the processing
of the three messages, an option could be given to the user
to provisionally re-deliver messages δ and ε.

With this execution flow in mind, the system must meet
certain conditions to be useful. First of all, it ought to
survive crashes when in provisional mode. During normal
execution, when a failure appears (such as an assertion
failure or a termination signal), the system freezes the
faulty processor for inspection by the user. While the status
of the crashed processor is still retrievable, the program
cannot continue execution beyond the crashing point. This
is because the computation executed might have left the
processor in an unclean state. Therefore the user can only

restart the application after he finishes inspecting it. In the
case of a message provisionally delivered causing a fault
in the application, the user must still have the capability
to roll back the application to the point in time before the
crash, when the faulty message had not been delivered. From
this rolled back state, the user must be able to continue
execution normally, maybe specifying a different message
to be delivered.

Another condition to be met by the system is that it should
be usable interactively. The user may want to try different
options quickly, and see if the system produces the expected
output. If the system has a long response time, the debugging
may become impractical.

IV. EXPLORING SOLUTIONS

We considered several possible alternatives to deliver
messages provisionally before committing to a specific im-
plementation. First we considered the possibility to restart
the application from the beginning at every rollback. This
approach has the advantage of requiring the least amount of
changes to the runtime system, and only have the debugger
control the termination and restart of the execution. It also
provides a clean environment not corrupted from the delivery
of the messages provisionally.

This approach has several critical problems, the major
being its performance. By restarting the application at every
rollback, the whole initialization process has to be performed
over and over again, and it can take a significant amount
of time. Moreover, the application might already be at an
advanced stage in the execution, possibly requiring a very
long time to re-execute. Another obstacle is the difficulty to
restart the application. Job schedulers deployed on parallel
machines may decide to terminate the processor allocation
when the application ends, therefore making it impossible to
restart a new execution without waiting in the queue for a
new allocation. Moreover, if the user desires to provisionally
deliver messages on more than one processor, in order
to roll back a single processor, the whole system will
have to suffer a full rollback, and every processor that is
still in provisional mode ought to re-deliver the messages
provisionally. Record-replay techniques are also needed to
guarantee the delivery of the messages in the same order
up to the point where the user has started the provisional
delivery.

To prevent having to restart the application from the
beginning, a different approach could be used with support
from fault tolerance protocols. The debugger could issue a
global checkpoint command when initiating a provisional
delivery, and simulate a processor fault when it needs to
roll back. The fault tolerance scheme will internally roll back
the application to the point in time when the checkpoint was
taken. The time to roll back now depends on the time that the
fault tolerance mechanism will take to restart the application
from the checkpoint. The basic technique of storing the

Figure 2. Screenshot of the message queue. Some messages have been delivered provisionally (in purple on top), while others are still in the regular
queue.

checkpoint to disk and restart the application by loading the
image from disk has similar disadvantages as a full restart:
it may still have to wait in the job scheduler’s queue, and it
will force the rollback of all the processors in the system. It
will only avoid the complication of record-replay techniques
to guarantee message ordering.

The other two fault tolerance schemes in CHARM++ can
provide better support to cover the problems mentioned
above. Double in-memory checkpoint [8] can tolerate the
rollback without having to restart the application from disk,
and therefore avoiding potential problems with job sched-
ulers. Message logging [9] can further avoid the rollback
of all the processors when only one needs to terminate the
provisional mode. Nevertheless, in the current implementa-
tion, the processor that is rolled back due to a fault, real
or simulated, is supposed to be a newly started process

which has to join the set of the already running processes
composing the rest of the application. For example, the
underlying network communication system will have to be
updated to reflect the change of process. In LAPI or MPI,
communicators will most likely have to be re-instantiated;
in UDP, port numbers will need to be re-synchronized.

One disadvantage of all fault tolerance schemes is that
they often require some modification in the application
to support it, and will result in a non-fully transparent
approach. For example, in CHARM++, the user will have
to provide Pack/Unpack routines capable of migrating all
the objects to and from storage. These routines are generally
not needed without fault tolerance. Even when these routines
are present, they might not allow the checkpoint to happen
at any given point in time, as they may be optimized
for performance by restricting the point in time where a

checkpoint can be taken. With all the different approaches
currently available, there is still the problem of guaranteeing
that the state of the application after the restart is identical
to that before the checkpoint was taken. Memory layout
can be significantly different, and the application’s control
flow may also be different. These differences may hinder the
determinism of the execution and void the whole provisional
delivery scheme.

The last approach that was considered, and was later
decided upon, uses fork system calls to spawn a new sub-
ordinate process to carry on the provisional delivery without
touching all the intricate connections already established
between the application’s processors. The parent process
of the fork operation always contains the saved state of
the application, and by reverting the control back to it, the
application can be easily rolled back. This scheme involves
neither disk I/O nor job schedulers. Moreover, the capability
of operating systems to perform copy-on-write of the virtual
address space during the fork operation allows for fast switch
between provisional delivery mode and normal mode. This
approach also offers the advantage that, upon rollback, the
state of the application is exactly as it was at the moment
the application entered provisional delivery mode, including
the memory layout. This makes it easier to track bugs that
depend on the relative memory location between distinctly
allocated memory blocks.

One aspect that is not covered by the process forking
approach is that input and output operations are not masked
by the runtime system. This implies that if the execution of
a particular entry method prints a string to standard output,
and the user later rolls back the execution of that entry
method, the printed string will not be deleted from the output
stream, and a new execution of the method will print the
string again. The same is valid for operations on open files
or other system calls. In particular, stored data could be
corrupted. Solutions can be built to avoid this problem, for
example by intercepting certain system calls, and providing a
provisional execution environment where also input/output
is treated correctly. For the purposes of this paper, these
issues will not be considered further.

This solution using process forking, as well as the oth-
ers, builds upon the piecewise deterministic assumption
described in Section II-A. If the outcome of a computation
changes depending on conditions other than the state of the
system and the content of the message processed, provision-
ally delivering a message at a certain point in time would
yield a different result each time. This would make testing
executions paths harder since the user will have to consider
the possibility that re-delivering a message could produce a
different result each time. Fortunately, applications tend be
behave piecewise deterministically, therefore not hindering
the applicability of the methods illustrated. For applications
not in this category, more robust solutions can be sought as
an extension of this work.

V. IMPLEMENTATION

Each processor in the application is treated independently
from all others, and the user is allowed to independently
decide to deliver a message provisionally on any of them.
The automata describing the behavior of a given proces-
sor is presented in Figure 3. When in normal mode, the
user can decide to deliver a message immediately, and
remain in normal mode, or provisionally, and transition
to the provisional mode. In both cases, the entry method
associated with the delivered message is invoked on the
target processor. When in provisional mode, the user can
either deliver more messages provisionally, or rollback and
undeliver some messages. If a rollback is performed, the
processor transitions to normal mode only if all the messages
that have been provisionally delivered on the processor are
undelivered, otherwise it remains in provisional mode.

Normal
Mode

Provisional
Mode

. Undeliver
 Some

Deliver Provisional

U ndeliver A ll

Deliver
Immediate

 Deliver
 Provisional

Figure 3. Description of the behavior of a processor when provisionally
delivering messages.

As discussed earlier, we decided to adopt a solution based
on the fork system call. When the system is in normal
mode, messages from other processors and CCS requests
are enqueued in the local processor’s queue, the latter are
also processed immediately by the system scheduler. This is
illustrated in Figure 4 for process Pe X . When instead the
system enters provisional mode, a new process is forked, and
the message is delivered in the child process. When the user
decides to rollback the application, the child is destroyed
and the parent resumes execution. We shall consider multiple
message delivery in the following section.

In theory, the provisional message could be delivered
either in the parent or in the child process. Nevertheless,
delivering it in the parent process has several drawbacks. If
the parent were to deliver the provisional message, then its
memory state would be modified, and only the child would
be able to continue execution after rollback. Unfortunately,
if the parent terminates, then the entire application may be
terminated by the job scheduler which will perceive one of
the application’s processes ending execution. Instead, termi-
nating the child process has no consequence. Furthermore,
having the child process continue execution and use the
communication infrastructure is a more fragile solution since
in some implementations only the parent may be allowed to
use the communication device.

 Pe X

CCS Request

CCS Reply

Queue

In
co

m
in

g
M

es
sa

ge

Figure 4. Control flow of a processor in normal mode. When a CCS
request arrives, the processor handles it and replies to the sender.

 Child

Pe X

Forw
ardR

eply

CCS

CCS
Request

Reply

(a) Response to a CCS external message.

Pe X

 Child

In
co

m
in

g

Queue

Forward
Queue

Generated

M
es

sa
ge

Message

(b) Response to an internal message from
another processor in the application.

Figure 5. Control flow of a processor when in provisional mode.

Figure 5 illustrates the control flow of processor Pe X
in provisional mode when either a CCS request or an
internal message arrives. In all scenarios, it can be seen
that the parent process is always in charge of the com-
munication with the external world, and the child process
only communicates internally with its parent. This is to
prevent potential corruption of the network state if the child
were to use it directly. The communication between the
two processes happens mainly through an anonymous pipe.
The most common scenario is in Figure 5(a) since CCS

requests are likely to arrive from the CHARMDEBUG GUI
as a consequence of an action from the user. In this case,
the request is forwarded to the child for handling, and then
the reply is forwarded back to the client. Note that only the
child process is capable of correctly handling the request for
Pe X since its memory reflects the delivery of the message.
For example, if the provisionally delivered message changed
a local variable V ar from 5 to 3, then the parent would
answer 5 to a request for V ar, while the child will answer
with the correct value 3.

When a regular message (α) arrives from another proces-
sor in the application, as shown in Figure 5(b), this message
is both enqueued in the parent’s local queue, as well as
forwarded to the child where it will be enqueued in the
local queue as well. For correctness, the message α must
be enqueued in both processes. It must be enqueued in the
parent process since it still has to appear in the processor’s
queue after rollback, when the child is gone. If it was not
recorded by the parent, once the child terminates execution,
α would be lost. It has to be received by the child process
otherwise the CHARMDEBUG GUI would not display it:
remember that the list of messages enqueued on a processor
is gathered through a CCS request that, as just described, is
handled by the child process during provisional mode.

It may appear that regular messages cannot arrive on a
processor while it is in provisional mode. However, regular
messages can be received by a processor in provisional mode
for at least two reasons. 1) Some other processor in the
system has not suspended execution, and is still processing
messages normally and sending out messages as a result.
2) The system is entirely suspended, but the user issued an
immediate delivery command on a processor, and a message
was generated as a consequence.

While handling a provisionally delivered message α, the
child process may possibly generate some message β. If this
message β were permitted to leave processor X and reach its
destination Y , then there would be a causal dependency from
processor X to processor Y on the order in which messages
have been delivered on processor X . If the destination
processor handles β, and then the user decides to rollback
the delivery of α on X , the execution of β on Y must also
be rolled back since β has not been created by X anymore.
This implies that processor Y must be able to rollback and
undeliver β. In our implementation, we solve this problem
by not allowing any message to cross the boundary of
a processor until the entry method which generated the
message has been committed by the user. Thus any message
generated as a consequence of a provisional delivery is
discarded.

One could envision an extension to our system where
messages like β are allowed to leave the boundary of a
processor, and can be delivered provisionally on the destina-
tion processor. Naturally the dependency introduced has to
be tracked and treated accordingly. If the source message

α is undelivered, then an undeliver command must also
be issued on message β. Conversely, if β is permanently
committed, also message α (and all its predecessors) ought
to be permanently committed. This dependency can clearly
be chained several times, thus producing potentially compli-
cated dependency graphs.

A. Delivery of Multiple Messages

Until now we have discussed how we can deliver a single
message provisionally, without considering what happens
when multiple messages are delivered provisionally. We
shall now extend our system to include multiple subsequent
messages provisionally delivered. In this scenario, we want
the capability to roll back the application to any point in time
between message deliveries. As the system becomes more
complicated, we shall introduce another communication
mechanism between the forked processes: shared memory.

Throughout this section, we will extensively use an exam-
ple scenario to simplify the descriptions. Given a processor
X represented by the system process P and at an initial
state S0, we provisionally deliver messages α, β, γ, and δ in
this order. Later, we undeliver message γ (and δ as a conse-
quence). Subsequently, we again deliver δ, thus having α, β,
δ provisionally delivered. Finally, we permanently commit
the delivery of α (thus leaving β and δ as provisionally
delivered). Figure 6(a) shows the messages in the queue
as well as the messages provisionally delivered after each
operation.

When delivering a first message provisionally, the system
will fork a sub-process which will handle the message, while
the parent process is used to later resume execution after
rollback. When a second message is delivered provisionally,
there are two options available: handle the second message
directly in the child process, or fork another process to
handle the second message. These two options are shown
in Figure 6.

Given the fact that they both provide the same capa-
bility, and only their performance may be different, we
implemented only one of the two methods, leaving the
implementation of the other as future work. In particular, we
implemented the method that uses a single child to deliver
all the messages provisionally delivered.

B. Single Forked Process

Figure 6(b) shows the execution flow of the application for
the example given earlier. At the first provisionally delivered
message, a child process (C) is forked. From this point on
all the CCS requests are handled exclusively by C. When
the following three requests for provisional delivery arrive at
the child process, they are treated as immediate delivery, and
process C delivers messages β, γ, and δ to the respective
recipient objects.

When the request to undeliver γ arrives, process C
terminates execution, indicating that a rollback should be

performed. The parent process P is notified of the termina-
tion of the child via the closing of the pipe which connects
the two processes. At this point, P needs to fork another
child process C ′ to return in provisional mode. The number
of messages that the newly forked C ′ has to deliver (two
in this case), and their order, is written by process C on
the shared memory segment before terminating execution.
This segment is established when the first message α is
provisionally delivered. This implies that process P can
distinguish between the case “Undeliver All” and “Undeliver
Some” (of Figure 3) by looking at the number written in the
shared memory segment: if the number is greater than zero
the system will remain in provisional mode.

The following request to deliver message δ is again
interpreted as an immediate delivery by the child process.
Finally, when the request to permanently commit message
α arrives, it is again interpreted by process C ′ which will
terminate execution. As before, C ′ writes the number of
messages that have to be re-delivered provisionally on the
shared memory segment before terminating. This number
is always identical to the number of messages that are
provisionally delivered (three in our example). Moreover,
this time C ′ also writes the number of messages that the
parent process has to execute before forking process C ′′. In
our example one (only α). Process P will look at these two
numbers, deliver one message immediately (α), decrement
the number of messages to provisionally deliver accordingly,
and finally fork the new child C ′′ to handle the provisional
delivery of the other two messages (β and δ).

Note that the combination of these two numbers covers
any possible operation the user may want, from full rollback
{0, 0}, to full commit {n, 0} (where n is the number
of messages provisionally delivered), plus anything in the
middle {n − k, k} (∀k : 0 < k < n). Also note that the
shared memory segment is only used to store permanent
data that both parent and child need to see. It is not used
to trigger events in the other process; for this purpose only
the bidirectional pipe is used. In other words, none of the
processes probes the share memory for value changes.

C. Multiple Forked Processes

Another alternative to manage multiple provisional deliv-
ery of messages is to fork a new child for every message that
is provisionally delivered. This is shown in Figure 6(c). Each
of the four messages α, β, γ, and δ generates a new process
that we will denote Cα, Cβ , Cγ , and Cδ . Between each
couple of parent-child processes there is a communication
channel. A single shared memory segment is also shared
among all processes. Clearly, the performance of this new
scheme when delivering multiple messages is poorer than
the previous method since a new fork operation has to take
place. Even with the copy-on-write cloning of the virtual
address space, this can be a substantial penalty.

Deliver α Deliver δUndeliver γ (and δ)Deliver β Deliver γ Deliver δ Commit α

δ
β
γ
ε

α
C. Q.

δ
γ
ε

α
β

C. Q.
δ
ε

α
β
γ

C. Q.
εα

β
γ
δ

C. Q.
δ
γ
ε

α
β

C. Q.
γ
ε

α
β
δ

C. Q.
γ
ε

β
δ

C. Q.
δ
β
α
γ
ε

C. Q.

(a) Message in the queue at every step, distinguishing in messages provisionally delivered “C.” and message in the regular
queue “Q.”

fork

Deliver α Deliver δ

δ

jo
in

fork

Undeliver γ (and δ)

β

Deliver β

β

Deliver γ

γ

Deliver δ

δ
α α

Commit α

jo
in α

fork

δ
β

C C' C''

P

(b) Using a single child process to deliver all messages.

P fork

Deliver α

fork

Deliver δUndeliver γ (and δ)
jo

in

fork

Deliver β

fork

Deliver γ

fork

Deliver δ

Cα

Cβ

Cγ

Cδ

C'δ

Commit α

α

(c) Using a new child process for every new message delivered provisionally.

Figure 6. Timeline of the execution on a processor when provisionally delivering messages: several messages delivered provisionally, and a rollback.

Note that when a CCS request arrives from a client, it will
be seen and served only by the innermost child process. If
the requested operation involves only the local state of the
processor, such as the collection of the message queue, no
extra communication is needed. Otherwise, if the operation
involves more than the innermost child process, for example
in the case of a rollback, the innermost process will inform
the other processes via the bidirectional pipes.

Any CCS request that arrives on a processor is initially
received by the topmost ancestor P since it is responsible
for receiving all the messages from the external world. From
P , the request needs to be transmitted to the bottommost
descendant. If the message has to travel through all the
intermediate forked processes, this operation per se would
be very expensive. Instead, we envision an additional pipe
connecting the topmost ancestor P with the bottommost
descendant. Since all the forked processes are the bottom-
most descendant at some point in time, this pipe needs
to be connected to all the children in turn. Luckily, this
is simplified by the semantic of forks. Since the pipe
established between P and a child process is maintained

open across the fork operation, a new child automatically
inherits this direct connection to process P . A potential
problem is that all the processes will have simultaneous
access to this pipe. Nevertheless, if only the bottommost
process is allowed to use it, then only one process will be
using it at any time and no contention will arise.

When the request to undeliver γ arrives, process Cγ will
terminate execution and write the total number of messages
to undeliver on the shared memory segment. This number is
equivalent to the number of processes that need to terminate
execution. Following the pipe connecting each process to
its parent, process Cδ will receive the undeliver command
and terminate itself. When the command reaches Cβ , this
process will not terminate, and instead continue execution
normally as the bottommost descendant. In particular, it will
reply to the awaiting client debugger. Subsequently, a new
process C ′

δ will be created when the request to deliver δ
reaches process Cβ .

It is interesting to note that this approach with multiple
processes does not require re-delivery of messages when
performing a rollback, but only the destruction of processes.

This can lead to a cleaner interface to the user than the
previous method of using a single child. This comes from
the fact that by re-delivering the same message multiple
times during rollbacks might have side effects that could
be difficult to hide from the user. For example, if an entry
method prints a string, and this entry method is re-executed
during rollback, the system will print once again that string,
possibly confusing the user.

Finally, when the command to permanently commit α
arrives, process C ′

γ will inform the original process P that α
has to be permanently delivered. In general, the number and
order of messages to permanently deliver will be written in
the shared memory segment. P will then proceed to deliver
the desired messages. At this point, no other operation would
be required for the correctness of the method. However,
leaving processes like Cα alive can potentially lead to
a rapid increase in the number of processes used. These
processes can clobber the operating system resources and
create problems. Thus, some method of garbage collecting
them is necessary. This can be done lazily every time a
commit command is issued. After C ′

γ writes the number of
messages to permanently deliver and sends a message to P ,
it can also send another message up the pipe connecting
it to its parent Cβ . This message can then travel up the
pipes connecting each process with its parent until it reaches
the processes which are not needed anymore (Cα in this
case). Cα can then terminate itself while leaving the other
processes alive. Note that Cβ will also need to modify its
parent pipe to point directly to the topmost ancestor instead
of Cα, thus completing the bypass of Cα.

VI. PERFORMANCE EVALUATION

Each of the two methods for delivering multiple messages
provisionally has some advantage and some disadvantage.
Some of these were already highlighted while explaining
the two methods. In this section, we shall focus on the
performance of the described method. We gathered experi-
mental data for the single process fork, and we infer some
performance information for the other method with multiple
processes. The configuration we used is a dual quad-core 2.0
GHz Intel Xeon workstation. Both the client CHARMDEBUG
and the parallel CHARM++ application were running locally.
We measured the time both on the server side as well as at
the client side. This second measurement includes the pre-
and post-processing performed by the Java GUI. Table I
shows the performance for various operations performed by
delivering and undelivering messages provisionally.

The main consideration is that all the latencies are very
small, on the order of a couple of milliseconds perceived
by the client. This means that a user issuing a command
to deliver a message, or to roll back the application, will
be perceived as an instantaneous operation. It is important
to notice that this time, and the relatively large difference
between the server time and the client time, is mainly due to

Server side µs Client time µs
First provisional message 375 ± 294 2,061 ± 90
Following provisional messages 48 ± 20 1,519 ± 32
End provisional 240 ± 65 1,583 ± 26
Undeliver (+5 redeliver) 681 ± 161 2,100 ± 43
Commit 1 (+4 redeliver) 594 ± 102 2,169 ± 31

Table I
PERFORMANCE OF SINGLE FORKED PROCESS DURING VARIOUS

PROVISIONAL DELIVERY OPERATIONS WITH RELATIVE STANDARD
DEVIATIONS. MEASUREMENTS IN MICROSECONDS.

the sequence of operations performed by the CHARMDEBUG
debugger. After executing the desired user command, it
reloads the state of the application and the list of messages
present in the queue, thus adding two more requests to the
server. This is necessary since the delivery of a message
might have generated a change in the system that ought to
be displayed to the user.

On a more detailed analysis, it can be seen that when
delivering messages provisionally, the first one suffers a
much bigger overhead than the following ones. This is due
to the fork operation necessary to create the child process
when entering provisional mode. The subsequent messages
are delivered without the need of this operation, thus they
are much faster. To exit provisional mode and return to
normal mode, the time is slightly lower than in the other
direction, but still significantly higher than a single message
delivery. To undeliver only some messages, or to commit
some messages permanently, the time doubles. This is due
to the need to destroy a process and recreate a new one.
Note that this time can increase significantly if the number
of messages to re-deliver provisionally is large, or if these
messages require a long execution time.

An analytical comparison can be made between the two
provision delivery methods. The first message is going to
take similar time for both systems, while the following
messages are going to be much more expensive when using
multiple processes. Further, let n be the total number of
messages provisionally delivered up to the current time, and
let k be the number of messages we are undelivering. By
forking one new process for every message provisionally
delivered, the rollback speed is independent of n, and
depends only on k. On the other hand, by using one single
child process, the speed depends on the number of messages
that we are not undelivering, in our example (n−k), and how
much time these messages take to execute. Clearly, none of
the two methods is faster under all conditions, and there
will be a crossing point for certain values of n and k. When
committing k messages permanently, a similar discussion
applies, this time with the single process dependent on n and
the multiple processes dependent on k. An analytical model
for the time taken by each operation is presented in Table II.
Given the large variances obtained in the experimental setup,
we leave this model in symbolic notation.

Single process Multiple processes
First provisional msg c+m c+m
Foll. provisional msgs m c+m
End provisional d d · n
Undeliver k messages d+ c+m · (n− k) d · k
Commit k messages d+ c+m · n (m+ d) · k

Table II
ANALYTICAL COMPARISON OF THE TWO PROVISIONAL DELIVERY

METHODS FOR MULTIPLE SUBSEQUENT DELIVERIES. n IS THE TOTAL
NUMBER OF MESSAGES PROVISIONALLY DELIVERED, k THE NUMBER
OF MESSAGES BEING UNDELIVERED/COMMITTED; c, d, m THE TIME

FOR CREATION OF A PROCESS, DESTRUCTION OF A PROCESS, AND
DELIVERY OF A MESSAGE, RESPECTIVELY.

VII. CASE STUDY

In this section we present a simple case study where the
ability to quickly deliver messages and test the outcome
of the operation can lead the user to a quick solution to
the bug. The example we chose is parallel prefix. This is a
standard computation where, given an array with n elements,
at the end of the computation the array will be like follows:

ai =
i∑

k=1

ak. The operational flow in parallel is described in

Figure 7. At each step i of the algorithm, processor p sends
its current value to processor p+ 2i.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Step 0

Step 1

Step 2

Step 3

T
im

e

Figure 7. Parallel algorithm for prefix computation.

If a barrier is placed at every step of the algorithm, no
problem is present. However, to increase the performance,
this barrier can be relaxed, and computation can be allowed
to overlap. A naive remove of the barrier will nevertheless
result in race conditions (buffering is necessary for a correct
implementation). Assume that element p0 is proceeding fast,
and it sends out messages marked m01, m02 and m04 in
rapid succession. Assume further that element p2 is late
and the message m24 is delayed. What can happen is that
element p4 receives the message from p0 before receiving
the message from p2. At this point, p4 will incorrectly update
its local value, and the algorithm will generate a wrong
solution. Buffering incoming messages if they arrive too
early is a common solution to this problem.

Let us review how a programmer can debug his appli-
cation using CHARMDEBUG and the provisional message
delivery system. After the application has been started, the
user can see several messages in the queue to pass the local
value to the next element. One of these messages for a later
phase is highlighted in Figure 8. The user can then decide
to provisionally deliver this message. He can then switch
to inspect the destination object of that message (element
4 in our case), and notice that its local value has been
updated to an incorrect value (i.e not valid according to
the parallel prefix algorithm). Alternatively, he can inspect
the new messages that appear in the local queue (generated
by the provisional delivery of the message), and notice that
again the wrong value is sent out. If one single message
delivered provisionally is not enough, the user can deliver
more messages. He can also rollback the system, and try a
completely different order.

A similar problem occurred in CHANGA cosmological
simulator. In this case, a series of messages were racing
during a parallel sorting operation, and some ordering among
the messages was generating a stall in the application. By
using the provisional delivery mechanism, we could easily
look at the messages in the queue and try the delivery of
some of them. The outcome of the execution would be an
additional help to the programmer to understand why and
how the messages were racing. This problem was the initial
trigger to develop this provisional delivery mechanism.

VIII. RELATED WORK

In addition to providing a mechanism to record and replay
an application deterministically, some tools also provide
the capability to modify the order in which messages are
handled, and thus test different execution paths. In [10],
the authors consider the possibility to detect races between
messages by grouping them into “waves”. The algorithm
proposed assumes that the set of messages generated by a
program does not change if some messages are delivered
in a different order. The paper also evaluates how to find
all possible messages that can be delivered at any point
in time in a systematic way. More recently, extensions
on how to identify possible races between messages by
efficiently scanning the search space have been presented for
distributed systems [11] and for MPI applications [12]. An
interesting extension to the generation of possible orderings
of message delivery, and how to explore the generated
space without maintaining all possible executions active, is
presented in [13].

A tool to allow the user to select messages to be delivered
in different order is MAD [14]. In this case, the tool allows
any message to be exchanged when a wildcard receive is
issued by the MPI program. The system, upon the user
decision, will re-execute the entire application with the
modified message ordering.

Figure 8. Screenshot of CHARMDEBUG while debugging the parallel prefix application. Multiple messages are enqueued from different steps.

A similar implementation, using the fork system call, is
available through the GDB debugger [15] for sequential pro-
grams. When debugging his sequential program, a user can
issue the checkpoint command, and have the program
store a copy of itself in a cloned process. This procedure
could be applied to one of the processes that is part of a
parallel application. However, the effects of the execution of
the cloned process will be immediately visible on the other
processors composing the parallel application. This would
prevent rollback, and render the operation useless.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel approach to enable
a programmer to effectively search for race conditions in
a parallel program. Given an idea he might have on where

the problem is located, he can quickly confirm or refute his
idea by testing what happens when messages are processed
in a certain order. One major advantage of our approach is
that the application is still running while the user makes his
decision, and the entire procedure is interactive, with a fast
response from the application to the user commands.

This mechanism could also be used by automatic tools
that would perform an unsupervised search of all (or certain)
orderings of messages. These tools would then notify the
user when a discrepancy is detected on the final states gener-
ated by two different message orderings. For this automatic
mechanism to work, we can identify two challenges that
need to be overcome.

The first challenge relates to identifying whether two
final states, generated by two different message orderings,

are identical or not. Note that simply comparing the state
of the memory is not enough. For example, a linked list
could contain elements in different order, but if this does
not affect the algorithm, then the two states should be
considered equivalent. Floating point values may also be
bit-wise different, but still represent correct final states. One
possible solution to this problem is to have the programmer
insert a specification if two states of the same CHARM++
object are equivalent.

The second challenge to consider is which message order-
ings are valid. Let us first define a buggy application as an
application where, for a particular input, the output result can
be incorrect. From this definition comes the corollary that an
application does not contain a bug if, for any possible valid
input, the output produced is always correct. This translates
this second challenge as preventing the system from giving
false positives.

At first glance one may say that any permutation of
messages present in the queue is a valid ordering. This can
be true for programming models like MPI, where upon a
wildcard receive, all messages that can match that receive
are to be assumed equally valid. However, in CHARM++
this is not true. Consider, for example, the situation where
an object sends itself (or to a local group) two messages, A
and B. If A is sent before B, then in CHARM++ message A
will always be processed before message B, given how the
local queue behaves.1 If the messages had priorities, these
would need to be considered as well. In the same example,
if A has a lower priority than B, and the two messages are
sent from within the same entry method, then in CHARM++
message B will always be delivered first. Therefore, given
the definition above, an ordering that exposes a bug when
the messages are processed in an order which never happens
in a normal execution is a false positive. Finding exactly
which orderings are valid and which are not is a challenging
task, especially when considering the transitivity property in
message orderings.

ACKNOWLEDGMENT

This work was supported in part by the NSF Grant OCI-
0725070 for Blue Waters.

REFERENCES

[1] M. Ronsse and K. De Bosschere, “RecPlay: a fully integrated
practical record/replay system,” ACM Trans. Comput. Syst.,
vol. 17, no. 2, pp. 133–152, 1999.

[2] C. Gottbrath, “Quickly Identifying the Cause of Software
Bugs with ReplayEngine,” TotalView Technologies, Tech.
Rep., August 2008.

1The processing order of local message in a CHARM++ application
is valid at the time this paper is written. Future releases of CHARM++
may alter the scheduler’s behavior, and programmers should refer to the
CHARM++ manual for assumptions that can be made about the scheduler.

[3] F. Gioachin, G. Zheng, and L. V. Kalé, “Robust Record-
Replay with Processor Extraction,” in Proceedings of the
Workshop on Parallel and Distributed Systems: Testing, Anal-
ysis, and Debugging (PADTAD - VIII), Trento, Italy, July
2010.

[4] L. V. Kale and S. Krishnan, “Charm++: Parallel Programming
with Message-Driven Objects,” in Parallel Programming us-
ing C++, G. V. Wilson and P. Lu, Eds. MIT Press, 1996,
pp. 175–213.

[5] L. V. Kalé, “Performance and productivity in parallel pro-
gramming via processor virtualization,” in Proc. of the First
Intl. Workshop on Productivity and Performance in High-End
Computing (at HPCA 10), Madrid, Spain, February 2004.

[6] F. Gioachin, “Debugging Large Scale Applications with Vir-
tualization,” Ph.D. dissertation, Dept. of Computer Science,
University of Illinois, September 2010.

[7] F. Gioachin, C. W. Lee, and L. V. Kalé, “Scalable Interaction
with Parallel Applications,” in Proceedings of TeraGrid’09,
Arlington, VA, USA, June 2009.

[8] G. Zheng, L. Shi, and L. V. Kalé, “FTC-Charm++: An
In-Memory Checkpoint-Based Fault Tolerant Runtime for
Charm++ and MPI,” in 2004 IEEE International Conference
on Cluster Computing, San Dieago, CA, September 2004, pp.
93–103.

[9] S. Chakravorty and L. V. Kale, “A fault tolerance protocol
with fast fault recovery,” in Proceedings of the 21st IEEE
International Parallel and Distributed Processing Symposium.
IEEE Press, 2007.

[10] R. Kilgore and C. Chase, “Re-execution of Distributed Pro-
grams to Detect Bugs Hidden by Racing Messages,” in
In Proceedings of the International Conference on System
Sciences, 1997, p. 423.

[11] C. Flanagan and P. Godefroid, “Dynamic partial-order reduc-
tion for model checking software,” SIGPLAN Not., vol. 40,
no. 1, pp. 110–121, 2005.

[12] S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. Kirby,
R. Thakur, and W. Gropp, “Implementing efficient
dynamic formal verification methods for mpi programs,”
in Recent Advances in Parallel Virtual Machine and
Message Passing Interface, ser. Lecture Notes in Computer
Science, A. Lastovetsky, T. Kechadi, and J. Dongarra, Eds.
Springer Berlin / Heidelberg, 2008, vol. 5205, pp. 248–
256, 10.1007/978-3-540-87475-1-34. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-87475-1-34

[13] B. Schaeli and R. D. Hersch, “Dynamic testing of flow graph
based parallel applications,” in PADTAD ’08: Proceedings of
the 6th workshop on Parallel and distributed systems. New
York, NY, USA: ACM, 2008, pp. 1–10.

[14] D. Kranzlmüller, C. Schaubschläger, and J. Volkert, “A Brief
Overview of the MAD Debugging Activities,” in AADEBUG,
2000.

[15] Free Software Foundation, “GDB: The GNU Project Debug-
ger,” http://www.gnu.org/software/gdb/.

