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Abstract

Debugging is a fundamental part of software development, and one of the largest

in terms of time spent. When developing parallel applications, debugging becomes

much harder due to a whole new set of problems not present in sequential applica-

tions. One famously difficult example is a race condition. Moreover, sometimes a

problem does not manifest itself when executing an application using few proces-

sors, only to appear when a larger number of processors is used. In this scenario,

it is important to develop techniques to assist both the debugger and the program-

mer to handle large scale applications. One problem consists in the capacity of the

programmer to directly control the execution of all the allocated processors, even if

the debugger is capable of handling them. Another problem concerns the feasibil-

ity of occupying a large machine for the time necessary to discover the cause of a

problem—typically many hours.

In this thesis, we explore a new approach based on a tight integration between

the debugger and the application’s underlying parallel runtime system. The de-

bugger is responsible for interacting with the user and receiving commands from

him; the parallel runtime system is responsible for managing the application, and

performing the operations requested by the user through the debugger interface.

This integration facilitates the scaling of the debugging techniques to very large

machines, and helps the user to focus on the processors where a problem manifests.

Furthermore, the parallel runtime system is in a unique position to enable powerful

techniques that can help reduce the need for large parallel machines when debugging

a large-scale application.
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1 Introduction

Astrophysicists seeking to understand how the universe evolved to the form we know,

or biologists seeking knowledge to defeat viruses that threaten our lives, require

enormous computational power. Parallel machines with thousands of processors

are the only form of computational power sufficient to address these issues with

significant accuracy.

Application developers have to constantly face the problem of errors, or bugs,

introduced in their applications while writing them. In fact, the development of an

application is often divided into two phases: writing the code to perform a certain

operation, and correcting the errors that have been introduced in the first phase.

On sequential programs, developers spend more time eradicating bugs than writing

new code[1]. For parallel programs, debugging time is even greater.

These errors can be of various natures, and discovering them can be time con-

suming. Examples of errors in simple programs range from simple type mistakes,

generally easier to detect and solve, to problems in the implementation of the desired

algorithm (i.e the application produces incorrect results), which tend to be harder

to identify.

In parallel applications, these bugs become harder to discover. For example, a

memory corruption may not only manifest itself later in the execution, but also on

another processor. Moreover, other bugs are added to those present in sequential

programs. These new bugs typically come from problems in the coordination among

the various processors involved in the task. For example, in distributed memory

systems, the transmitted data or the order in which this data is processed can be
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erroneous. In shared memory systems the synchronization on commonly shared data

structures can be problematic. In general, bugs in parallel applications are very hard

to find. One reason is the non-deterministic behavior of many parallel applications

due to timing differences between executions, thus resulting in intermittent errors

that appear only once in a while.

Moreover, bugs in parallel applications are sometimes completely hidden when

executing the application on a small number of processors, only to appear when

a larger number of processors is used. One possible reason is races between mes-

sages coming from different processors: on more processors it is more likely that

an ordering of the messages revealing the error will occur. Running the application

repeatedly on small configurations may eventually yield a message ordering showing

the problem. Unfortunately, this is not always true: message latencies in the under-

lying hardware layout may change the application’s behavior, and hide completely

the problem on the smaller configuration. For example, on larger systems, the net-

work configuration—typically torus or fat-tree in modern parallel computers—may

route different messages through different intermediate nodes. If one link is con-

gested, messages can arrive in an unexpected order.

Various tools exist to help programmers discover bugs in applications. Many

handle only sequential programs, while some are capable of handling parallel ap-

plications. Among the most widely used parallel debuggers are TotalView [2] from

TotalView Technologies, DDT [3] from Allinea, and Eclipse [4] from the Eclipse

Foundation. All these tools have the capability to handle applications written

in C/C++ and Fortran, and parallelized using MPI [5, 6, 7] or OpenMP [8, 9]

paradigms. They incorporate source-level debugging, allowing the programmer to

step through the source code. They also allow memory debugging by identifying

memory leaks, corruptions due to out-of-boundary writes of allocated blocks, and

other common mistakes. As production tools, they support various modern plat-
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forms and integrate with their batch schedulers.

Some of these tools have recently proven their scalability to two hundred thou-

sand processors running an MPI application. Even when allocating these many

processors, the interface they provide to the user has not changed: the user visu-

alize his program and steps through the individual instructions. In essence he is

still in charge of monitoring the entire application composed of many thousands of

processors. Moreover, this stepping procedure will only work well for application

where all the processors proceed in an almost lockstep fashion. If each processor is

allowed to branch and execute different parts of the code, then this method becomes

impractical.

Another restriction that these tools have is that when debugging an applica-

tion on thousands of processors, the entire set of processors must be allocated and

available at all time during debugging. During a typical debugging session, most

of the time is spent with the application waiting for the programmer to decide on

the next action. While for sequential programs the cost associated with the usage

of the processor is negligible (as the program is typically run on the programmer’s

workstation), for parallel programs this is usually not the case. Most computing

centers require jobs to be submitted to a batch scheduler which will later start them

using a set of processors exclusively allocated to the job. Allocating a large number

of processors can be impractical, very expensive, or both. It is impracticable be-

cause the job may be scheduled to run after a long delay (up to many days) unless

a special reservation is prearranged—difficult for debugging sessions which might

span over several days with repetitive short runs. It is expensive due to the cost

associated with the large number of computing hours used.

The aim of this thesis is to develop scalable techniques to improve the profi-

ciency of debugging message-passing parallel applications. In particular, we target

the debugging of parallel applications when problems happen at large scales with
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thousands, or possibly millions, of processors. Our approach consists in both en-

abling the user to debug his application using a large number of processors as well

as reducing the need for very large machines during the whole debugging process.

When debugging an application on thousand of processors, the developer can

hardly control the progress of all the processors manually. The debugger has to

provide some utility to let the application run without explicit control by the user, or

unsupervised, and halt automatically upon error detection. The error condition can

be a variety of events. It can be something automatic, like the abnormal termination

of a process or the detection of a memory corruption by the system, or a condition

set by the user, like a traditional breakpoint or a failed correctness check. An

infrastructure for the user to insert correctness check dynamically is illustrated in

Chapter 3, while a tool for the automatic detection of memory corruption will be

presented later as part of Chapter 5.

Since debugging using very large machines can be cost prohibitive or very inef-

ficient for most programmers, a large portion of this thesis is devoted to reducing

the need for large machines during the majority of the debugging time. Chapter 4

discusses how an application can be virtualized, and debugged under an emulation

environment using only a fraction of the processors requested by the user. In this

scenario, the problem of shared resources arises. A discussion on how we propose to

solve it is presented in Chapter 5. When a problem can be isolated on a subset of

processors, these can be extracted from the whole application and executed under

a controlled environment. How to use record-replay techniques in a non-intrusive

way to extract processors from a large application is the topic of Chapter 6. Finally,

Chapter 7 illustrates how the user can benefit from the capability of testing the

effects produced by the delivery of messages in a specific order, with the possibility

to rollback the delivery of such messages. Each chapter describes the most related

work to the topic it describes, and possible future extension.

4



This thesis demonstrates the techniques described above in the context of the

Charm++ parallel runtime system [10, 11, 12], and CharmDebug [13, 14], the

parallel debugging tool tailored to Charm++ applications. Most results are there-

fore taken from applications natively written in Charm++. Additionally, some

results will be shown using the popular MPI programming model to demonstrate

the broader applicability of the proposed techniques. The specific implementation of

the MPI standard we used is AMPI [15]. As a side effect, this thesis also provides an

integrated environment containing several valuable debugging feature to developers

of Charm++ applications.
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2 Background

The techniques presented in this thesis have been deployed in the context of the

Charm++ parallel programming model and the CharmDebug debugger. In ad-

dition, some techniques leverage previous work on performance prediction, and in

particular the BigSim framework. In this chapter, we shall review the main concepts

and infrastructures that will be used throughout this thesis.

2.1 Charm++

Charm++ [11] is a popular runtime system for developing parallel applications.

Several applications have been developed based on the Charm++ runtime system.

Among these are NAMD [16], a molecular dynamics code and winner of the Gordon

Bell award in 2002, OpenAtom [17] for Car-Parrinello ab-initio molecular dynamics

and ChaNGa [18] for cosmological simulations.

A[1]

A[2]

A[3]

B[8]

B[5] B[2]

C

Global Object Space

(a) User view.

A[1]

A[2]

A[3]

B[8]

B[5]
B[2]

C

Processor 0 Processor 1 Processor 2

(b) System view.

Figure 2.1: Perceived decomposition of a parallel application into migratable chares.
Comparison between user and system view.
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The primary concept of Charm++ is object virtualization [19]. In Charm++,

the user divides the computation into small objects, called chares. These chares

live inside a “global object space”, as depicted in Figure 2.1(a). The runtime sys-

tem assigns these chares to the available processors, as illustrated in Figure 2.1(b).

By measuring the computational time utilized by each chare, and by dynamically

changing the assignment of chares to processors, the Charm++ runtime system

can automatically load balance the application [20]. The Charm++ infrastructure

also offers other automated performance optimization techniques, such as commu-

nication optimization [21].

module MyCharmModule {
array [1D] MyArray {

entry MyArray();
entry void MyMethod();
entry void MyMethod2(int);

}
}

Figure 2.2: Example of a charm interface (ci) file. Declaration of a chare array of
type MyArray of dimension one, with its constructor and entry methods.

Chares communicate with each other via asynchronous messages. Messages trig-

ger method calls on the destination chare. These methods are called entry methods.

The computation performed by an entry method upon receipt of a message depends

on the information carried by the message and the internal state of the chare re-

ceiving that message. Chares performing the same operation can be grouped into

collections of chares, and all chares in a collection share the same chare type. These

collections are indexable, and are also referred to as chare arrays. One special type

of collection, where exactly one chare in the collection is present on each processor,

is called a chare group. Since the state of a chare is encapsulated by the instantia-

tion of a C++ class that embodies it, all chares are considered independent entities,

irrespective of their type. The declarations of the chare types available in an ap-
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plication, as well as their entry methods, is specified in a charm interface file, or

simply ci file. Figure 2.2 shows an example of a simple ci file.

As an example, consider a parallel program for the simulation of galaxy for-

mation. This program will likely have multiple modules to compute the various

forces present in the universe: gravitational, hydrodynamic, magnetodynamic, etc.

For good performance, these modules may run simultaneously, thus allowing the

communication of one module to be overlapped with useful computation of another

module. By “simultaneously”, we mean that any given processor can participate in

the computation of all the different forces, interleaving their execution over time. In

the context of Charm++, the program will consist of several different collections

of chares, one for each force computation performed during the simulation, such as

SPH, gravity, etc. Each collection will consist of many chares, possibly thousands

or even millions, and each chare will perform a specific force computation on a small

portion of the simulation space. The coordination among them will be described by

the messages they exchange.

2.2 Converse Client-Server Model

There are several situations where an end-user, or even an application developer, can

benefit from interacting with a live parallel application. For example, visualizing

the application’s behavior during its operation or steering the computation dynam-

ically. An application developer may want to debug an application or visualize its

performance.

Converse Client-Server (CCS)[22] is a communication protocol that allows par-

allel applications to receive requests from remote clients. This protocol is part

of Charm++’s underlying system specifications and is therefore available to any

Charm++ application. Note that “application” does not mean only the user writ-
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ten code, but also the Charm++ runtime system and its modules that run as part

of the application itself. In this scenario, if a system module decides to use CCS, the

user code does not require any change, unless it wants to explicitly take advantage

of the feature.

In Charm++, CCS obeys to the normal Charm++ semantics. Upon a request

made by a CCS client, a message is generated inside the application. Computation

by the application is triggered by the delivery of this message. As such, CCS requests

are serviced asynchronously with respect to the rest of the application which can

proceed unaffected. When an application, or Charm++ module, desires to use the

CCS protocol, it must register one or more handlers, each with an associated tag.

This ensures that requests sent by clients can be correctly matched and delivered

to the intended handler. Registration is performed by calling a function in the

CCS framework. Moreover, at startup, a flag must be passed to the application to

ensure that the runtime system opens a socket and listens for incoming connections.

The connection parameters are printed to standard output by the Charm++ RTS.

Remote clients can send requests to the parallel application using this information.

After receiving a CCS request message, the application can perform any kind of

operation, including complicated parallel broadcasts and reductions. Finally, a reply

can be returned to the client via the CCS protocol.

2.3 CharmDebug

CharmDebug [14] is a graphical debugger designed for Charm++ applications. It

consists of two parts: a GUI with which a programmer interacts, and a plugin inside

the Charm++ runtime itself. The GUI is the main instrument that a programmer

will see when debugging his or her application. It is written in Java, and is therefore

portable to all operating systems. A typical debugging session is shown in Figure 2.3.
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The user will start the CharmDebug GUI on his own workstation. He can then

choose to start a new application to debug, or attach to a running application

manually, using the appropriate commands available in the GUI.

By default, every Charm++ application is integrated with debugging sup-

port in the form of a CharmDebug plugin. This plugin is responsible for col-

lecting information from the running application, and communicating with the

CharmDebug GUI. When a program starts, this plugin registers inspection func-

tions that the CharmDebug GUI will send requests to. This initialization happens

during Charm++’s startup without user intervention. Therefore, any program is

predisposed for analysis with CharmDebug. Additional debugging modules linked

into the application can extend the set of requests handled by the CharmDebug

plugin.1

In contrast with other debugging tools, with this plugin integrated in the appli-

cation itself, no external tool is necessary on every compute node. Thanks to the

coupling between these two components of CharmDebug, the user can visualize

several kinds of information regarding his application. Such information includes,

but is not limited to, the Charm++ objects present on any processor and the

state of any such objects, the messages queued in the system, and the memory

distribution on any processor.

In Charm++, every parallel application is integrated with debugging support

in the form of a CharmDebug plugin. When a program starts, this plugin registers

inspection functions that the CharmDebug GUI will send requests to. This initial-

ization happens by default during Charm++’s startup without user intervention.

Therefore, any program is predisposed for analysis with CharmDebug.

The communication between the CharmDebug GUI and the CharmDebug

1For the list of commands that the CharmDebug plugin handles, and a description of how
this list can be extended, please refer to Appendix A.
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Figure 2.3: Diagram of CharmDebug’s system.

plugin happens through the CCS high-level communication protocol. This lever-

ages the message-driven scheduler running on each processor in Charm++: in

addition to dealing with application messages, the scheduler also naturally han-

dles messages meant for debugging handlers. Note that since only one single con-

nection is needed between the debugger and the application under examination,

CharmDebug avoids the scalability bottleneck of having the debugger connect

directly to each process of the parallel application. Although lacking direct con-

nection to each processor, the user can request the debugger to open a GDB [23]

session for any particular processor. This gives the user flexibility to descend to

a lower level and perform operations that are currently not directly supported by

CharmDebug.

A potential problem for such model is that the communication with the remote

application requires messages to be delivered to the CharmDebug’s plugin. While

the application is executing normally, all messages are delivered by the Charm++

runtime system itself, together with the application’s own messages. On the other

hand, when the application is paused (or frozen) for inspection, the main runtime

scheduler responsible for message delivery is halted. This poses the problem of al-

lowing specific messages to still be delivered even while the application is frozen.
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Another problem is raised when the application is not only frozen, but also under in-

spection by the user through a sequential debugger attached to a specific processor.

The first problem has been solved by modifying the runtime system to selectively

allow certain messages to be delivered even while the application is in frozen state.

The latter problem is currently unsolved, and a tighter integration between sequen-

tial debugger and CharmDebug, beyond the scope of this thesis, is envisioned to

solve it.

Figure 2.4: Main CharmDebug window with program’s output, entry methods
list, processor sets, and listing of all the messages enqueued on a given processor.

Figure 2.4 shows the main view available to the user. As in most debuggers,
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this view contains a mechanism (on the right) to select certain sets of processors

to focus on. In the example, the default “all” set is available, and the user created

another set called “even” which is currently selected. Since in Charm++ the

main computational unit is an entry method, breakpoints can be set at the entry

methods’ boundaries. These are listed on the left side. They are grouped by the

containing chare type, and separated between internal to the Charm++ system

and user-defined. On the bottom, several entities can be visualized. These include

the chares and messages in the system, read-only variables and messages, and the

properties of each chare/message type. The user can select one entity (on the left)

and a processor (on the right) for which to visualize information. When highlighting

one entity, its content and/or description is expanded in the “Details” view.

Entities of a Charm++ application, being either chares on a processor or mes-

sages in the queue, can be inspected through CharmDebug in two ways. The first

method relies on the PUP (Pack/UnPack) framework. According to the Charm++

manual, “The PUP framework is a generic way to describe the data in an object

and to use that description for any task requiring serialization. The Charm++

system can use this description to pack the object into a message, and unpack the

message into a new object on another processor.” During the serialization process,

CharmDebug automatically records the type and name of each variable that it

serializes. The message created will be interpreted by the client interface later. This

approach allows independence from the underlying memory layout or specifics of the

architecture. A drawback is that it requires the user to write PUP routines for every

type that might be inspected. While many structures might already have a PUP

routine, such as those automatically generated by the Charm++ translator, oth-

ers may be lacking them. Moreover, the already existing PUP routines are usually

optimized to reduce the packed version of an object, for example by not including

some variables that are known to be not alive at migration time, thus omitting
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information that would be useful during debugging.

Figure 2.5: Screenshot of CharmDebug’s introspection mechanism. The informa-
tion contained in a chare element of type “TreePiece” is unrolled for inspection.
Pointers can be dereferenced for further details.

The second method of inspecting application entities is through the “Inspector”

framework which was created as part of this thesis. This framework builds a descrip-

tion of the application’s object types inside CharmDebug. The raw memory is

then loaded directly from the application on demand, and CharmDebug interprets

it according to the declared type of the memory. This allows CharmDebug to be

completely independent of the application, and enables operations such as memory

casts, where the memory can be reinterpreted as different types. While this method

is more generic, and can be used to read any data from the application, there are

cases where the content of the raw memory is still difficult to interpret. For exam-
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ple, messages containing marshaled parameters store the information as a sequence

of bytes, without context. For these, a PUP routine automatically generated by

the Charm++ translator is better suited to interpret the data. Thus, the two

methods are complementary. Figure 2.5 shows a screenshot from CharmDebug

while inspecting a chare element of ChaNGa, a cosmological simulator written in

Charm++, using the Inspector framework.

2.4 BigSim Emulator

BigSim [24, 25] is a simulation framework that provides fast and accurate perfor-

mance evaluation of current and future large parallel systems using much smaller

machines, while supporting different levels of fidelity. It targets petascale systems

composed of hundreds of thousands of multi-core nodes. The main purpose of the

simulation framework is to help application developer better understand the appli-

cation’s behavior (including its performance) by actually running the application in

a virtualized target machine environment defined by a user.

BigSim consists of two components. The first component is a parallel emulator

that provides a virtualized execution environment for parallel applications. This

emulator generates a set of event logs during execution. The second component

is a post-mortem trace-driven parallel simulator that predicts parallel performance

using the event logs as input, and supports multiple resolutions for prediction of

sequential and network performance. For example, the simulator can (optionally)

predict communication performance accurately by simulating packets of each mes-

sage flowing through the switches in detail, using a parallel discrete event simulation

technique. Since the simulator only considers the trace logs and does not re-execute

the application at the code level, it is not suitable for debugging purpose. However,

the BigSim Emulator, which supports emulation of a very large application using
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only a fraction of the target machine, is useful for debugging. In the remainder of

this section, we shall focus our attention on the emulator component.

Since multiple target processors are emulated on one physical processor, the

memory usage on a given physical processor may increase dramatically. It may thus

become impossible to fit the whole application into the physical memory available.

Interestingly, many real world scientific and engineering applications, such as molec-

ular dynamics simulation, do not require a large amount of memory. For example, in

one experiment, researchers were able to emulate NAMD [26] running on a 262,144-

core Blue Waters machine [27] using just 512 nodes of the Ranger cluster, a Sun

Constellation Linux Cluster at the Texas Advanced Computing Center (TACC).

For applications with large memory footprint, the physical amount of memory

available per processor indeed poses a constraint. However, even in this scenario, we

can still emulate these applications by using an efficient out-of-core technique [28, 29]

optimized for the BigSim Emulator. During an out-of-core emulation, the emulator

can move the memory associated to a virtual processor between the physical memory

and a bulk storage, such as local hard drive. When a virtual processor that resides on

the bulk storage is needed during the emulation, the emulator fetches the entire data

of that virtual processor into the main memory before scheduling it. This process

is similar to the swapping performed by operating systems. However, emulator

runtime tends to schedule the swapping more efficiently due to its knowledge of

when and what data will be needed by looking ahead in the message queues.

Clearly, out-of-core execution, even with optimization, incurs a much higher

overhead than the pure in-memory execution, mainly due to the constraint imposed

by disk I/O bandwidth. For example, a slowdown of about 18 times in terms of the

total execution time of a Jacobi application was observed in [28].
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2.4.1 BigSim Emulation Implementation Details

BigSim Emulator started as an emulator for the Blue Gene/Cyclops machine. Later,

it evolved into a general purpose emulator for a large variety of parallel machines,

several at the petascale level, including Blue Waters [27]. It is written using

Converse [30], a portable and efficient runtime system that supports a variety

of communication sub-systems such as infiniBand, Myrinet, and IBM Blue Gene

DCMF, among others. Converse also provides support for user-level threads via

a common machine independent interface.
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Figure 2.6: BigSim Emulator Architecture.

Figure 2.6 illustrates the architecture of the BigSim Emulator. In the figure, the

box represents one physical processor, many of which are used in a parallel emula-

tion. In this example, the physical processor is emulating two nodes of the target

machine. In general, however, this number will be much larger. Each target node,

or virtual node from here on, represents a multi-core processing unit with shared

memory. Based on their functionality, these cores are divided into communication

and worker processors. Both are emulated as Converse user-level threads. Com-
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munication processors are in charge of polling the network for incoming messages,

and delivering them to the correct worker processors. This is done by storing each

message into the message queue associated to the destination worker processor of

that message. Similarly, worker processors continually dequeue messages from their

own message queues, and handle these messages appropriately. This generally im-

plies calling a handler function specified by the message itself. Certain messages

that are not assigned to a specific worker processor may also be handled directly by

a communication processor. Note that the network polled by the communication

processors is not the physical network, but the virtual network established by the

emulator itself. On each physical processor, in addition to the virtual nodes, there is

also a Converse scheduler. The main function of this scheduler is to poll messages

from the Converse queue, and dispatch them to the recipient emulated virtual

node. The Converse queue contains all the messages arriving from target nodes

emulated by other physical processors, as well as the messages sent from one virtual

node to another virtual node in the same physical processor.
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3 Handling Large Scale Applications

When debugging a parallel application that exhibits problems only on very large

machines, in addition to the usual problems the programmer faces while debugging

his application, there is also the problem of the amount of data that needs to be

handled. This problem affects both the debugger system infrastructure, as well as

the final user of the debugger. The debugger’s infrastructure has to be capable

of handling large applications efficiently, without increasing the latency for com-

mon operations such that the usability would be hindered. The user must not be

overwhelmed by the amount of information that he has to consider. Both of these

aspects are equally important to allow the debugging of a parallel application on a

large machine, and will be the main topic of this chapter. 1

3.1 Tools Scalability

Several tools exist to help a programmer to debug his parallel applications. Among

the most widely used there is TotalView [2] from TotalView Technologies, and

DDT [3] from Allinea. Historically, both these debuggers have maintained a di-

rect connection to each processor in the application. This hinders usability when

using thousands of processors due to the large response time for even simple op-

erations. Recently, in concurrency with this thesis, Allinea has developed a new

infrastructure based on tree connectivity to improve the collection of data from a

1Part of the work in this chapter is reprinted, with permission, from the Proceedings of the
23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS 2009): “Dynamic
High-Level Scripting in Parallel Applications”, by Filippo Gioachin and Laxmikant V. Kalé c©2009
IEEE. [31]
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large scale parallel application [32]. Other tools like STAT (Stack Trace Analy-

sis Tool) [33], based on MRNet [34], have shown excellent scalability to very large

machines. Unfortunately, STAT is not a full debugger, and it can only focus the

programmer toward a set of processors to look at. Moreover, the range of errors

detected is limited.

All the tools described use external programs to control the processes embody-

ing the parallel application. This implies that the debugger has to understand the

specific implementation of the application’s underlying runtime system and commu-

nication library. For example, to provide the processor rank or pending messages

of an MPI application, the debugger has to know how the specific MPI implemen-

tation stores such information. Moreover, the debugger has to implement its own

communication infrastructure to scale to large machines.

In our approach, we leverage the runtime system underlying the parallel ap-

plication to extract the information in an implementation independent way. This

implies, in particular, that we can utilize the same network infrastructure that the

application is using to scale the collection of the data from the parallel application.

By doing so, the debugging techniques scale together with the scalability of the

application’s communication infrastructure.

While it is clear that Charm++ provides a flexible runtime system, this may

be less intuitive for other programming models. For example, in MPI applications,

MPI is considered a library in charge only of the communication between processors.

Nevertheless, if one considers a call to an MPI function as a transition between

the user code to the runtime system, MPI can be considered a runtime system

too. In general, when the application calls an MPI function, the specific MPI

implementation can perform any operation it desired, and may delay the return of

the control to the application. This same analogy can be applied to any parallel

programming paradigm.
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Figure 3.1: Performance of two different global operations on a parallel application:
collection of processor status and setting of a breakpoint. In comparison, time take
to perform the former operation in the original framework.

Figure 3.1 shows two examples of operations that the user may perform. All

measurements are taken on the client side, therefore including any possible network

latency. The experiments were conducted using Kraken, a Cray/XT5 machine at the

National Institute for Computational Sciences at the University of Tennessee, and

a simple Charm++ application compiled using MPI as Charm++’s underlying

communication layer. The blue line at the bottom of the figure plots the time taken

to collect some information from every processor, in this case the status in which

the processor is (running, stopped, crashed, etc). In the red line (horizontal in the

middle of the figure) the user is setting a breakpoint on all processors. In this case

the time is higher since the sequential time on each processor to set a breakpoint is

higher.

It is important to note that using a single connection to the parallel application

is a necessary condition for high scalability, but not a sufficient one. To explain

this, the dotted blue line in Figure 3.1 shows the time taken by the status collection
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operations, using the original implementation of the CharmDebug framework. In

this case, the single connection was used very poorly by querying each processor

individually, one after another. The line shows a clear linear trend. The main prob-

lem was the lack of a multicast-reduction mechanism for general CCS requests: a

request could only be delivered to a single processor. Thus, the naive implementa-

tion was to use the CCS connection to loop over all processors. This was solved in

this thesis by generalizing the CCS framework to natively support broadcast and

multicast requests, thus obtaining the better performance.
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Figure 3.2: Time taken for the debugger to attach to a running parallel application,
compared with the launcher’s startup time.

During the experimentation phase, we also measure the time it takes for the

debugger to attach to the running application. This is plotted on the green curve (in

the middle) of Figure 3.2. As it can be seen, it scales perfectly until a few thousand

processor, after which it starts showing a slight degrade in performance. This is

due to the sequential work performed by the client to instantiate a data structure

containing the status collected from all the processors (shown on the blue line at
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the bottom). Note that this information is minimal (a few bytes per processor),

but on very large configuration it can alone account for a non-negligible amount

of time. This suggests that to continue scaling to even larger machines, either

the client itself is parallelized to some extent, or the client cannot be allowed to

store any per-processor information. This second approach might add latency even

for simple refresh operations if the require communication with the application.

Another consideration worth noting is the time taken to launch the application

on the parallel machine, shown on the red line on top of the figure. Even for a

fast job launcher like ALPS, starting an MPI application on one hundred thousand

processors takes more than two minutes. In comparison, the five seconds taken by

the debugger to attach are still negligible.

3.2 Unsupervised Execution

Even if the debugger program can handle a parallel application running on many

thousands of processors, the programmer that is using the debugger may not. He can

be easily overwhelmed by the amount of information presented to him. In current

debuggers supporting MPI parallel application, the user still follows the traditional

stepping programming model: he follows the execution on the various processors by

looking at the program execution line by line. While this might still work for MPI

application to some extent, for other programming paradigms this is not applicable.

For example, for Charm++ applications, there is no clear common control flow

among processors: each of them executes different entry methods asynchronously.

In this case a lockstep approach would be completely infeasible.

Instead, the way we see the programmer executing his application is with less

direct control, and some help from the application’s runtime system to control the

application and notify the user when something interesting happens. We call this
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mode of operation “unsupervised” since it does not require the direct control of the

application from the user. A similar approach is taken by the Abnormal Termination

Processing (ATP) available on Cray systems [35]. In this case, there is no user

monitoring the application, and if the application aborts, the operating system will

gather some information for some post-mortem analysis. This information does not

cover the entire application, but only of some processors of interest. This differs

from our approach since in our case the user is available when the application raises

an exception, and he can conduct live analysis on the still running application.

The type of events that the user can be notified of can be divided in two cat-

egories.2 On one side there are operations that the runtime system can perform

automatically on the application. For example, if the program triggers a fatal ex-

ception, the runtime system can maintain the faulty processor running for immediate

inspection. As part of this thesis, we developed a simple mechanism to detect signals

triggered by the application, report them to the user, and freeze the faulty proces-

sor for further inspection. Another type of automatic check is memory corruption

detection among virtual objects in the system. This will be described in detail in

Chapter 5.

The other category of notifications regards events that the user explicitly inserted

into the running application. A typical example is the setting of a breakpoint, when

it is triggered, the user is notified of the event and can follow the execution in detail.

Another condition that is notified to the user is the failure of an assertion in the

code. Assertion are commonly inserted into the application during compilation,

and they describe what the user believes should not happen by looking at his code.

While interactively debugging his application, however, the user may realize that

some other condition he was not expecting should be checked, and reported upon

2Please refer to Appendix A for the list of notification events currently available in
CharmDebug.
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failure. The typical solution is to stop the application, modify the source code,

recompile, and rerun it. The recompilation process can take a significant amount

of time, especially for large applications. This reiterated overhead can significantly

reduce user productivity. In the case of parallel applications, there is additional

overhead in the re-submission of the modified program to the scheduler queue, where

it might stay for a long time before being scheduled again for execution. Moreover,

sometimes the source code might not be available, making it impossible to add the

desired functionality.

In the remainder of this chapter, we shall present a solution developed inside

the Charm++ parallel runtime system. This solution provides the user with a

scripting interface to dynamically insert Python scripts to perform different kinds

of correctness checks. In particular, this scripts can be executed either just once, or

periodically upon a condition. Since Python is a high-level scripting language, it can

contain control flow statements, allowing great expressiveness. Moreover, Python

code is typically more compact than C or Java code, and it is well established that

programs written in scripting languages are easier to write than programs written in

declarative languages [36, 37]. In particular, since this script is dynamically inserted

into the running application, this can lower the probability of a bug in the checking

code itself.

3.3 The Charm++/Python Interface

Other than the debugging scenario presented in the previous section, there are

many situations where some new functionality might be desired at runtime. While

analyzing scientific data, intermediate results can steer the user towards new and

unexpected hypotheses. Unforeseen procedures might be needed to prove or disprove

these hypotheses. During a long-running simulation, the user might want to steer the
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simulation by modifying some parameter or internal data structure. For example,

he might want to inject new molecules while studying the behavior of an enzyme.

In all these situations, it would be convenient to simply write the function needed,

upload it to the running application, and use it immediately.

In this section, we present the generic interface we developed to allow the dy-

namic insertion of an arbitrary Python code into a running Charm++ application.

With this interface, a user can write Python code that will be uploaded to the run-

ning parallel application. Here, the Python code will be executed, and it will be able

to interact with the main Charm++ code. How the code can interact with the

main application is decided by the application developer, but the interface allows

enough flexibility to cover a wide variety of uses, if not all. Since Charm++ is

implemented in C++, we utilized the Python/C API [38] to make the two languages

interact and exchange data.

3.3.1 The Interface

We used the CCS protocol as the basic communication mechanism between remote

clients and the parallel application, also referred to as server. Upon CCS, we im-

plemented our interface to facilitate the programmer’s task to augment the parallel

application to interact with uploaded Python code, and to create clients capable of

generating Python requests.

A typical control flow for inserting a Python code is illustrated in Figure 3.3.

At the beginning of the execution, as with any other application using the CCS

protocol, the server registers a string identifying Python requests (step 1 in the

Figure). Subsequently, a remote client can send an Execute request containing

Python code. The server will, at this point, encapsulate the code into a message

and schedule it together with the other messages present in the system. Upon

delivery of the message, the server will create a new Python interpreter using the
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Figure 3.3: Execution flow of a Python code insertion.

Python/C API, initialize it with some basic information, and execute the user code

inside this interpreter (step 2). An ID representing the interpreter will be sent back

to the client for later usage (step 3). The client can then probe the server with

Print request to see if the code running on the server printed anything (step 4 and

5), possibly multiple times. Depending on the client setup, the server can finally be

queried for completion of the uploaded code with a Finished request (step 6 and 7).

In the default configuration, the server destroys the Python interpreter at the end

of the Python code. This destruction can be overridden by the client, as we shall

see. Notice, the application does not need to be stopped, and can continue with

normal execution. The request is delivered to the application as a message, and

is scheduled as any other message present in the application. Therefore, insertion

points are between message deliveries. In some scenario, the user might also want

to submit more than one request simultaneously.

Each of the three CCS messages—Execute, Print, Finished—is encapsulated by
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a C++ and Java object. Client programs written in these two languages can use

the provided classes to communicate with the parallel application. These classes

contain a series of flags that the user can set to modify the behavior of the server.

For example, a Request can return an ID for the interpreter as soon as it is created,

or wait on the server until the entire Python code has run and return a reply only at

that point. In this second case, an Execute request also provides the functionality of

a Finished request. The client can be implemented in multiple ways. It can maintain

a CCS connection for each Python request and use them to retrieve the prints from

different requests concurrently, or maintain a single CCS connection to the server,

and periodically probe for prints from the various active Python requests.

As described, the server returns an ID for the interpreter used to serve a partic-

ular Execute request. This ID can be used by the client in multiple ways. First, it

is needed to retrieve the finish status, or any print generated by the Python code.

Second, interpreters can be set to be persistent. In this case, the parallel appli-

cation will not discard the interpreter at the end of the execution of the Python

code. The client can then use this ID to issue a new Execute request on the existing

interpreter. In this way, the server will internally maintain the environment set by

a previous request, and build upon it. This can be used to upload Python routines

and modules, and subsequent requests can contain code using these modules. As

we will see in the results, the reuse of an interpreter also has performance benefits.

In the context of Charm++, all computation is performed inside entry methods,

and within the scope of the chare to whom the message was delivered. Dynamically

uploaded Python code is not an exception. When the code is uploaded and exe-

cuted, it runs inside the scope of a chare, determined during step 1 of Figure 3.3.

Notice that during registration either a single chare or a collections of chares can

be registered; in the latter case, the same script runs independently in each chare

of the collection. In the following section, we will describe three ways in which the
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Python script can interact with the Charm++ application: (1) low-level, to allow

the Python script to perform simple queries on the hosting chare; (2) high-level,

to allow the Python script to perform more complicated parallel operations on the

entire application; and (3) iterative, to apply a Python method to a set of objects

provided by the hosting chare.

module MyPython {
array [1D] [python] MyArray {

entry MyArray();
}

}

Figure 3.4: Definition of a chare array using the Python interface.

3.3.2 Cross Communication

Figure 3.4 shows the ci file for the server definition of a Charm++ array that can

receive Python requests. As can be seen by comparing it with Figure 2.2, the only

addition to a normal definition of a Charm++ array is the keyword “[python]”

in the definition of the chare array MyArray. The other necessary change to the

user code is the registration of a string for CCS requests to be identified as Python

requests for the chare array MyArray. The registration is a simple function call,

made by processor zero, into a registration routine with the string as parameter.

These two simple modifications are sufficient to have Python code execute inside

interpreters bound to the chare array MyArray. Naturally, if the Python script

could not interact with the chare object itself, it would not be very useful. There

are three interfaces to allow interaction between the code running in the Python

interpreter and the chare object linked to it.

The simplest way for the Python script to interact with the parallel application is

through the ck module. This Python module is imported into the interpreter before

the user script is allowed to run (by executing a default code), and allows Python
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to query some properties of the Charm++ environment. These are defined by the

system, and include some standard properties, like the processor and the node it is

running on, and some specific data about the chare running the interpreter, like the

index of the chare inside the collection.3 In addition, there are two other methods,

namely read and write, through which the Python script can read and write variables

with the same access privileges as the containing chare has. The user-defined C++

class (MyArray) inherits these virtual methods from a system-defined C++ class.

MyArray can redefine them overriding the default empty behavior.

The read method accepts as input parameter a single object, representing where

the data should be read from. This object can be a tuple or a list, thus allowing

multiple values to be passed in. An example of usage is illustrated in Figure 3.5

(which will later be described in more detail). Here, we pass a tuple of two values,

a string and an integer, as input parameter, and return a single integer as output.

To handle input and output from/to Python, the programmer can use the standard

Python/C API as well as an extra API provided by our interface (not described

here). The write method accepts two parameters, one representing where the data

should be written to, the other what data to write. It is up to the programmer

to define the read and write methods to correctly interpret the parameters passed

as input. A mismatch between definition and usage of these methods generates an

exception. If these methods do not give access to some portion of the data, the

Python code will not have access to it. This allows some control on what Python

can access. Similarly, some data can be made read-only by having it accessible

through the read methods but not the write method.

Nevertheless, the information gathered through the ck module is limited to the

scope of the processor and the chare that executes the script. If the script requires

information generated from a combined operation on all the chares in a collection,

3For a complete list of available functions, please refer to Appendix B.
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size = ck.read((”numparticles”, 0))
for i in range(0, size):

vel = ck.read((”velocity”, i))
mass = ck.read((”mass”, i))
mass = mass ∗ 2
if (vel > 1): ck.write((”mass”, i), mass)

Figure 3.5: Python code using only the low-level interface, without the iterate mode.

say the maximum value of a variable, then another Python module called charm can

be used. This Python module is constructed to contain all the methods in the ci

file declared as python. The example in Figure 3.6 shows the method run declared

as such.

module MyPython {
array [1D] [python] MyArray {

entry MyArray();
entry [python] void run();

}
}

Figure 3.6: Definition of a chare array using the high-level Python interface.

There are two differences between the methods of the ck module and those of the

charm module. The first is that the “python” keyword can be used in conjunction

with as many entry methods as needed, thus augmenting at will the set of functions

available through the charm module. Each of these functions can accept any number

of input parameters (the input parameters of the Python calls are always passed

by the Python/C API into the C function as a single tuple object), and provide

different functionality. The second is that methods of the charm module are run

inside a user-level thread. This allows the method to issue parallel operations and

suspend itself while waiting for the results. On the other hand, creating a user-level

thread has a small but not insignificant cost[39], making the high-level interface

slightly more expensive. Notice that parallel operations are initiated by the C++

functions defined in the user class (MyArray), and not by the Python script itself,
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which can always communicate only with its enclosing chare.

Finally, while the above modules allow the Python script to access the under-

lying chare and parallel application, there are situations when this is not the best

approach. Sometimes a small operation needs to be applied to large sets of homo-

geneous structures in the parallel application. An example is shown in Figure 3.5.

Here, we want to double the mass of all particles with high velocity, but the user

may want to apply many different operations to such particles. One way to solve this

problem is by utilizing the previously described interface. The user can write a loop

over the desired particles, and by using the low-level or high-level routines, access

all the needed information. Each call to ck.read and ck.write in the script invokes

the read and write methods, respectively, of the user-defined class MyPython. These

methods will retrieve/store the information from/to the appropriate locations. Most

likely, these locations will be some variable declared inside the MyPython class itself.

The other way would be to have the Charm++ application iterate over the avail-

able particles, and call a simple update method with each particle as input. This

is the third method of interaction between the Python script and the Charm++

application. The user defines two functions in the chare to provide a begin and next

iterator over the particles. Charm++ uses these two functions to iterate over all

the particles, and the user-provided Python method will be applied to each particle.

The Python code for this iterative mode is shown in Figure 3.7. This approach

can significantly reduce the complexity of the code that the user has to write (in

our example from six lines of code to two), and therefore reduce the probability of

making a mistake.

3.3.3 Error Handling

There are two possible situations in which an error is raised while running an up-

loaded fragment of code: (1) the uploaded code has an error, (2) the interface code
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def increase(p):
if (p.velocity > 1): p.mass = p.mass ∗ 2

Figure 3.7: Python code when using iterate mode.

written inside the parallel application is buggy.

In the second case, there is not much that can be done to prevent the applica-

tion from terminating. While it is possible to capture most signals and errors, the

application will likely be in an inconsistent state. If this happens, the application

should be corrected.

The case where the uploaded script is erroneous should be tolerated to the extent

possible. In our implementation, if the Python code raises an error, this error

will be captured and reported to the client as a regular printed string. The user

will be able to see the problem, and possibly correct the script and upload a new

request with a corrected code. In the implementation presented in this paper, if the

erroneous script modified the state of the application before raising the exception,

these changes could not be undone automatically. Therefore, it is up to the user to

consider what has executed, and take appropriate actions.

Sometimes, recovery may not be easy after the script has left the application in

an inconsistent state. In these cases, we still want the possibility to recover from

a failure as much as possible. One possibility to expand the coverage of automat-

ically recoverable errors is to use a checkpoint-restart approach. For example, the

provisional delivery methodology that will be presented in Chapter 7 can be used.

With this improvement, the state of the application can be saved before executing

the Python script, and restored upon failure of the script.

Even with the current limitations, we believe that our technique is still valuable.

Moreover, an appropriate definition of the atomicity of operations that modify the

application (e.g low-level vs. high-level) can help the final user to better recover

from mistakes.
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3.4 Usage within Parallel Debugging

We built upon the existing CharmDebug system. We used our interface to provide

an introspection platform to the user. The user can upload Python code to run only

once, after every message processed by the program, or selectively only after a subset

of messages. This code can perform checks on the status of the system and identify

problems at an early stage. The script is bound to a chare collection selected by the

user, and has access to any variable accessible to that chare.

Figure 3.8: Screenshot of CharmDebug.

Figure 3.8 shows a screenshot taken from CharmDebug. On the right side the

user can select the entry methods after which the introspection code should be run,

or if None is selected, the code will run only once. On the left side, the user can

choose the instantiated chare collection that will be hosting the script (at the top),

and enter the actual Python code below. Once the code is sent, the CharmDebug

plugin inside the parallel application will receive the code, and either execute it

immediately and only once, or install it for repeated use. If installed, the code will
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Figure 3.9: Screenshot of CharmDebug displaying installed Python scripts.

then automatically be triggered when the specified entry methods are called. The

user can also visualize the list of Python scripts installed. An example of this view

is shown in Figure 3.9. If the Python script returns any value other than “None”,

the parallel application will be suspended, and the user will be notified. He can

then use the other views of CharmDebug to inspect the application state in more

detail.

As we have seen in Section 3.3.1, to have a Python script delivered to a par-

ticular chare collection, the ci file requires that collection be defined as “python”.

Nevertheless, we did not want to require the programmer to declare every chare

collection as “python”.

To solve these problems, we used a chare group as target for the Python script.

This chare group is called CpdPythonGroup and is part of the CharmDebug plugin

module. CpdPythonGroup uses the iterative method, as described in Section 3.3.1,

to iterate over all the chares in the chare collection selected by the user from the

dialog box in Figure 3.8. For each chare in the collection, the user-specified Python

code is executed in conjunction with that chare. This Python code can access a vari-

able inside that chare by using three helper functions. These functions are exported

by CpdPythonGroup through the high-level interface into the charm module. They

are: getArray, to browse through arrays, getValue, to return a specific field of a
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data structure, getMessage, to return the message being delivered, and getCast, to

perform dynamic casts between objects. All three functions return either opaque

objects or simple type objects, such as int or float. Opaque objects can represent

any complex data structure in the application, similar to a void pointer in C++.

Simple type objects represent primitive data types in C++. To start browsing, the

Python code receives an opaque object representing the chare on which it is running

as input.

Another major challenge was the fact that while we wanted to have full intro-

spection capability, where the user would be able to read and modify all variables,

C++ does not support reflection. This means that at runtime, the application alone

cannot identify its data layout. Therefore, the opaque object alone is not enough

for the helper functions to provide the desired functionality. Our solution was to

require the user to specify the type of every object when calling any of the helper

functions. The CharmDebug graphical tool modifies every call to the helper func-

tions, and adds the additional information needed at runtime to browse through

the data structures. For example, in a call to getValue, CharmDebug adds to the

parameters (1) the type of the resulting value and (2) the offset of the requested

field from the beginning of the requested class type. This information is available to

CharmDebug since it internally constructs a representation of the class hierarchy

of the running application. This representation is needed by CharmDebug for

other purposes, therefore its creation is not an overhead.

Figure 3.10 shows an example of code that can be issued through CharmDebug

to perform introspection checks on the running application. Here, we perform a

simple check on an array of doubles, to check if their values are between some

bounds. Initially, we load the size of the array into the integer value “length” and

the opaque value representing the C++ array “data” into the value “arr”. Then we

loop through all the values in the array, retrieve the ith element, and check if it is
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def check(self):
length = charm.getValue(self, MyArray, len)
arr = charm.getValue(self, MyArray, data)
for i in range(0, length):

value = charm.getArray(arr, double, i)
if (value > 10 or value < -10):

print ”Error: value ”, i, ” = ”, value
return i

Figure 3.10: Introspection code to check range of an array.

within range. If not, we return a value to stop the parallel application.

3.5 Performance

The time the user has to wait between sending the code and receiving a response

is important for the success of an interactive system. Response time is a known

problem in existing tools. The benchmarks show that the time is very short (mil-

liseconds). While evaluating the performance of our implementation, we focused

on the overhead we incur. We did not consider the time spent to satisfy the user

request (e.g the time spent in the loop to check the array correctness in Figure 3.10),

since this can take as much as needed, and is not part of our interface. We also did

not consider memory overhead.

We created two benchmarks with the same behavior as the two case studies

described4. We ran our benchmarks on the NCSA Linux Cluster Abe, which consists

of dual socket quad core Intel 64 2.33 GHz nodes interconnected with infiniBand

OFED 1.2, through the batch scheduling queue.5 We used the net-linux ibverbs build

of Charm++ v6.0.1 (publicly available), compiled with gcc 3.4.6 and optimization

-O3. The Python interpreter available was v2.5.2. We used the default Charm++

timers which, for this platform, is gettimeofday.

4The benchmarks are available as part of the Charm++ distribution under the directory
tests/charm++/python

5Data in this section was collected with help from Dr. Sayantan Chakravorty.
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Execution time in ms
#procs 1 2 4 8 16 32 64 128

no reuse 41 69 222 474 503 1904 2905 1844
with reuse 0.7 0.8 0.9 0.9 1.3 1.2 1.9 1.9

Table 3.1: Client request processing time results in milliseconds with varying number
of processors. The Python script runs inside an interpreter connected to a chare
group.

Execution time in ms
#calls 0 1 2 4 8 16 32 64 128 1000

time 0.14 0.16 0.17 0.19 0.22 0.31 0.46 0.77 1.48 10.18

Table 3.2: Time to execute the script with varying number of calls to the high-level
interface.

The first benchmark creates a single chare where the Python requests are pro-

cessed. The Python code contains a call to a high-level function. This C++ function

broadcasts to all processors, which perform a certain amount of computation in par-

allel. The computation is defined by a simple loop with timer. At the end, a return

value is reduced from all processors, and returned to the Python client, which prints

it. The amount of computation performed by each processor in parallel is specified

as an input parameter. We measured the time on the client, from when the Execute

request is sent, until the ID of the interpreter used is returned back to the client.

We made the Execute request wait for the completion of the Python code on the

server. The total request time thus consists of (1) round-trip time of the message

between the client and the server (within the same cluster); (2) creation of a user-

level thread inside Charm++; (3) creation of a new Python interpreter by the

server (optional); and (4) execution of the Python script itself. For each execution,

we sent 30 requests to the same server.

The results are shown in Figure 3.11 with varying number of processors and

amount of computation performed by each processor. Dotted lines represent each

request allocating a new Python interpreter on the server, while solid lines represent

the same interpreter reused. The difference between corresponding lines show that
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Figure 3.11: Client request processing time results in milliseconds with varying
amount of computation (different color) and number of processors (X axis). The
Python script runs inside an interpreter connected to a single chare. Dotted lines
have a new interpreter created every request; solid lines have the same interpreter
reused over multiple requests.

the creation of a new Python interpreter (point 3) takes between forty to fifty

milliseconds. This number is independent of the number of processors as expected,

since the interpreter is created only on processor zero by a single chare. From the

solid lines, by subtracting the amount of computation performed by the Python

script which is known, we obtain the overhead of creating a new Python interpreter

and a user-level thread. This is in the range of one to two milliseconds.

Execution time in ms
#elements 1 4 16 25 100 400 2500 10000

total 10.04 39.95 160.5 248.3 1017 4010 25158 100926
per element 10.04 9.99 10.03 9.93 10.20 10.03 10.06 10.09

Table 3.3: Time to execute the script with varying number of elements over which
to iterate.
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Execution time in ms
size 8000 1000

#chares 64 256 1024 4096 25600 100 400 10000
original 186 156 163 315 1144 9.8 67 297

with Python 188 155 159 312 1151 9.9 64 289

Table 3.4: Execution time of a 5-point 2D Jacobi application on a matrix with
dimension sizeXsize decomposed into #chares chares on 32 processors.

In the second benchmark, we used the CpdPythonGroup group, and sent a

Python request to it. This request did not perform any work. Again we ran this

test with varying number of processors, both creating new Python interpreters every

request, and reusing the old one. Table 3.1 shows the results. As in the previous

test, by reusing the same Python interpreter, we suffer only a few milliseconds of

overhead. On the other hand, the overhead of creating new Python interpreters at

every request grows to about two seconds for more than 32 processors. We do not

understand this behavior completely, and we are still investigating it.

In all situations, having the client reuse the same Python interpreter for multiple

requests reduces the overhead of the interface to below two milliseconds. This

overhead can be tolerated both in a scenario of a user interactively writing code

to upload, and in the scenario of a batch process uploading requests. Moreover,

the performance results show that our implementation scales well up to at least

128 processors. This proves that our technique of uploading a high-level scripting

language such as Python into a running parallel application is not only desirable,

but also practicable.

Furthermore, we analyzed in greater detail the time spent to execute the Python

script. We first tested the time taken to make a call from Python to Charm++.

We used the second benchmark, and increased the amount of work performed by

the Python script by adding calls to the charm.getValue method. We ran the bench-

mark on a single processor to avoid pollution from the parallel environment. We
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collected and averaged ten requests, excluding the first one. Since the Python script

runs on each processor independently from the others, the results reflect on the

multiprocessor case as well. Table 3.2 shows the time taken to execute the script

with varying number of calls to the high-level interface. By linearly interpolating

the results, we can see that one function call accounts for about 10µs. This value is

independent of our implementation and depends on the Python/C library.

Secondly, we tested the overhead of the iterative interface to apply the same

Python operation to multiple input elements (see Figure 3.7). We again used the

second benchmark. Table 3.3 shows the results with varying number of elements

over which iterating. It can be seen that the time scales linearly with the number

of elements, therefore the overhead of repeatedly calling Python for each element is

virtually zero.

Finally, we experimented with a real application to see the impact of repeatedly

running Python scripts to check for application bugs. We used a 5-point 2D Ja-

cobi application. Through CharmDebug, we installed a lightweight version of the

code in Figure 3.10 stripped of the time consuming loop (since we are interested in

the overhead only). This checking code ran after every message exchanged by the

application (roughly four times the number of chares). We ran this on a 4-node

Linux cluster, each node composed of dual socket quad core Intel Xeon 2.0 GHz,

against the “original” program (which does not even contain the [python] keyword).

Table 3.4 shows the performance results with varying amount of computation, de-

termined by the matrix size, and granularity, determined by the number of chares.

The overhead to link the Python interface and run the checking code is negligible

in all scenarios, even in the extreme ones with thousands of chares.
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3.6 Related Work

In the realm of parallel debugging, there are several tools that a programmer can

use to understand why his program is misbehaving and correct the problem. Widely

used commercial products are TotalView [2] from TotalView Technologies, and

DDT [3] from Allinea. At least one of these tools is generally available in the

majority of parallel supercomputers. Within the Open Source community, a tool

worth mentioning is Eclipse [4]. Several Eclipse plugins have been developed to ad-

dress parallel computing, in particular the Parallel Tools Platform (PTP) [40]. All

these debuggers target applications written both in C/C++ and Fortran languages,

and using MPI and/or OpenMP as programming models. None of them supports

the Charm++ programming model natively. They all could manage Charm++

programs if Charm++ were built with MPI as its underlying communication layer.

In this case, though, users would be exposed to the Charm++ implementation,

rather than their own program.

Other tools performing dynamic insertion of code into a running application

include DynInst[41]. While an application is running, they allow an external pro-

gram, called mutator, to attach to the running application, and modify its code

image. After the image has been modified, the application will continue running

the new code. This approach allows great flexibility in how the code is modified.

Nevertheless, DynInst is not meant to be used directly by the user to write the new

code, but through other tools that will simplify the modification process, which is

otherwise tedious and potentially error prone. More recently, Dyner[42] has pro-

vided a TCL interface to the DynInst library to allow any modification to the user

code in a simpler way. While this approach allows any modification at the source

level, it does not provide the right level of abstraction for some kind of applications,

like data analysis. Our aim is to allow the user to easily write a snippet of code
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to perform the desired operation while the application is running, and having it

run immediately. In our approach the application developer retains the faculty to

provide operations at the desired level of abstraction, and deny others that should

not be used directly. This is an advantage for closed-source codes, where the user

otherwise has to step down to the assembly level.

Other tools[43, 44] are used to patch non-stop applications to update them from

one version to the following. These programs, like DynInst, provide low-level patch-

ing mechanisms, which again are not suitable for some kind of applications. More-

over, the patching mechanism is only for expert programmers, as the uploaded code

is supposed to have passed all correctness tests.

GDB[23] provides the capability to inspect variables when the program is sus-

pended at a breakpoint, as well as suspend execution when a condition is satisfied. A

breakpoint in GDB can be set at any instruction line in the source code. While this

is a powerful tool for debugging, if the condition is complicated, this approach might

not be practical. For parallel distributed applications written in MPI, TotalView[2]

can provide similar functionality. Again, if the checking code to run is complicated,

writing it correctly might be challenging. It is agreed that scripting languages such

as Python, Lua or Ruby are easier to use than programming languages like C/C++

or Fortran. In our approach, we focused on the usage of scripting languages to

simplify the on-the-fly writing of checking code.

On the topic of introspection within application written in C++, many tools

have been built[45, 46, 47, 48, 49]. The main scope of these works is to provide the

program itself access to its data types. In our approach, we used the information

already collected by CharmDebug to provide this capability. Nevertheless, these

other approaches are also viable implementations, and might be considered in future

work.
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3.7 Future Work

In addition to the interface illustrated in this chapter to allow a user to update

Python scripts into a running parallel operation to perform correctness checks, in-

terfaces for other programming languages could be provided. For example, a similar

approach could be taken to dynamically insert a C/C++ piece of code to perform

the same operation. The user could be unfamiliar with the Python language and

prefer something he is more familiar with. One aspect to consider would be the

operation that the inserted checking code should be allowed to perform. While for

Python scripts the interaction with the main code can be controlled to some extent

via the programmed interface, with C/C++ code this would be more difficult.

As described towards the beginning of the chapter, as applications need to be

debugged on larger and larger machines, even simple operations can be prohibitive

on a sequential client if they entail a computation proportional to the number of

processors allocated. A possible direction is to maintain only collective information

on the client, in addition to what is being displayed. Instead, any additional infor-

mation would reside on the parallel machine, and be gathered back to the client only

upon request. This solution would highly scalable in the long term since it would

allow to continue scaling the debugger together with the application itself, without

additional resource allocation to the debugging infrastructure itself. However, there

may be some information that can be required often, and having to always gather

it from the remote application can decrease the responsiveness of the debugger.

An example of such information is the status of each processor in the application.

For this and other basic information, the client could store and process them using

more than a single processor. As workstations and even laptops are moving towards

multicore architectures, this approach is more feasible.
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4 Virtualized Debugging

Debugging a parallel application requires numerous iterative steps. Initially, the

application is tested on simple benchmarks on a few processors. This can already

capture many errors due to the communication exchanges between the processes.

Later, during production runs, the application will be deployed with larger input

datasets, and on much bigger configurations. Oftentimes, in this new scenario, the

application will not behave as expected, and will terminate abnormally. When this

happens, the programmer is left to hunt the problem at the scale where it manifests,

with possibly thousands of processors involved. If lucky, he may be able to recreate

the problem on a smaller scale and debug it on a local cluster, but this is not always

possible.

One example of a bug that may not be reproduced on a smaller scale is when the

bug is located in an algorithm, and this algorithm depends on how the input data

is partitioned among the processors. Reducing the problem size might be a solution

to scale down the problem, but the inherent physics of the problem may not allow

that. Another example is when the physics simulation output is incorrect. In this

case, the problem can derive from rare conditions that only big datasets expose.

Again, the problem size may not be reduced since otherwise the bug disappears. In

all these examples, the only alternative left to the programmer is to use the whole

machine, and debug with the full problem size on possibly thousands of processors.

Interactive sessions on large parallel machines are usually restricted to small

allocations. For large allocations, batch scheduling is often required. To debug the

application, the programmer will have to launch the job through the scheduler and
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be in front of the terminal when the job starts. Unless a specific allocation slot is

pre-requested, this can happen at unpredictable, inconvenient times. Furthermore,

the nature of debugging is such that it may require multiple executions of the code to

track the bug, and to try different potential solutions. This exacerbates the problem

and leads to highly inefficient debugging experience.

Moreover, debugging sessions on a large number of processors are likely to con-

sume a lot of allocation time on supercomputers, and significantly waste precious

computation time. During an interactive debugging session, the programmer usu-

ally lets the program execute for some time and then pauses it to inspect its data

structures, then iteratively advances it step-by-step, while monitoring some data of

interest. Therefore, processors are idle most of the time waiting for the user to make

a decision on what to do next, which is a very inefficient use of supercomputers.

The innovative approach we describe in this research is to enable programmers

to perform the interactive debugging of their applications at full scale on a simu-

lated target machine using much smaller clusters [50]. We do this by making each

processor in the application a virtual processor, and mapping multiple virtual pro-

cessors to a single physical processor. This reduces the processor count needed for

debugging. This mapping is transparent to the application, and only the underlying

runtime system needs to be aware of the virtualization layer. A parallel debugger

connected to the running application presents to the programmer the vision of the

application running on thousands of processors, while hiding the fact that maybe

only a few dozen were actually used.

Our idea transcends the programming model used for the virtualization and how

the debugging infrastructure is implemented. The only important component is a

parallel runtime system adapted to support virtualization of processing entities. To

prove the feasibility of this approach, we implemented it within the Charm++

runtime system, using the BigSim emulation environment and the CharmDebug
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debugger. Thus, applications written in Charm++ will be the main target for our

debugging examples. MPI applications are supported via AMPI [15], a virtualized

implementation of the MPI standard.

4.1 Related Work

As mentioned in Section 3.6, several tools exist to debug parallel programs on large

machines. However, they all require to allocate the whole set of processors used for

debugging. If the users desires to perform his debugging using one hundred thousand

processors, then a big machine has to be used and occupied for long periods of time

for the debugging to happen. This alone can hinder the capability to debug a large

scale application.

Virtualization for High Performance Computing has been claimed to be impor-

tant [51]. Nevertheless, no tool known to the author provides a debugging envi-

ronment tailored to thousands of processors or more, while utilizing only the few

processors that a local cluster can provide. A few techniques have been devel-

oped in contexts other than High Performance Computing leveraging the concept

of virtualization. These target the debugging of embedded systems [52], distributed

systems [53], or entire operating systems using time-travel techniques [54, 55]. All of

them target virtual machines (such as Xen [56] or IBM Hypervisor [57]) where the

entire operating system is virtualized. Using virtual machines may pose problems

for a normal user as the installation and configuration of such virtual environments

require administration privileges, and most supercomputers do not provide them by

default. Our technique, as we shall see, resides instead entirely in the user space,

and does not suffer from this limitation.

47



4.2 Debugging Charm++ Applications on

BigSim

In order to combine the BigSim emulation system described in Section 2.4 with

the CharmDebug debugging framework, several new problems had to be solved.

Most arose from the fact that CharmDebug needs to deal with the virtualized

Charm++ and other virtualized layers in the emulation environment.

Normally, Charm++ is implemented directly on top of Converse, which is re-

sponsible for low-level machine-dependent capabilities such as messaging, user-level

threads, in addition to message-driven scheduling. This is shown on the left branch

of Figure 4.1. When Charm++ is re-targeted to the BigSim Emulator, there are

multiple target Charm++ virtual processors running on one physical processor, as

explained in the previous section. Therefore, all layers underneath Charm++ must

be virtualized. This new software stack is shown in the same Figure 4.1, on the right

branch. Specifically, the virtualized Converse layer becomes BigSim Converse,

which is the Converse system implemented using the BigSim Emulator as com-

munication infrastructure. This is equivalent to treating the BigSim Emulator as a

communication sub-system.

4.2.1 Communicating with Virtual Processors

One problem we had to overcome was the integration of the CCS framework into

BigSim. CCS connects CharmDebug and a running application considering each

operating system process as an individual Charm++ processor. However, in the

BigSim Emulation environment, CCS is unaware of the emulated virtual proces-

sors because it is implemented directly on Converse. Therefore, it needs to be

adapted to the emulation system so that the CharmDebug client can connect

to the emulated virtual processors. To achieve this, we created a middle layer for
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Figure 4.1: BigSim Charm++ Software Stack.

CCS (virtualized CCS) so that messages can reach the destination virtual processor.

The target of a CCS message becomes now the rank in the virtual processor space.

Figure 4.2 depicts the new control flow.

When a CCS request message is sent from CharmDebug to a virtual proces-

sor, the message first reaches the CCS host (1). From here, it is routed to the

real processor where the destination virtual processor resides (2). The processor

level scheduler in Converse will pick up the request message, but not execute the

message immediately. Instead, it enqueues the message to the corresponding vir-

tual node, and activates it (3). The scheduler on the virtual node will serve the

CCS request by invoking the function associated with the request message (4), and

return a response message. Notice that the response does not need intervention

from Converse since the virtual processor has direct access to the data structures

stored in the common address space. Multicast and broadcast requests are treated

in the virtualized environment. While this can add some overhead to the execution
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of a CCS request, it greatly simplifies the system and the code reuse between the

emulated and non-emulated mode.
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Figure 4.2: Diagram of CCS scheme under BigSim Emulation.

Some CCS request messages are not bound to any specific virtual processor. For

example, CharmDebug may send CCS requests to physical processors to query

processor-wide information such as those related to the system architecture or the

memory system. However, since all virtual processors on the same physical processor

have access to the processor information including the whole memory, any of these

virtual processors can, in fact, serve the CCS requests. Therefore, our approach is to

have CharmDebug client always send such CCS requests to a virtual processor on a

physical processor. This approach greatly simplifies the design and implementation

of the CCS protocol, since we eliminate the need of having to specify if the request

needs to be treated at the physical processor level, or at the virtual processor level.
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4.2.2 Suspending Virtual Processors

Another challenge was to figure out how to suspend the execution of a single vir-

tual processor. Notice that while a processor is suspended, we still want to deliver

messages to it. For example, requests from the debugger should be honored re-

gardless of the processor’s state. At the same time, we do not want other virtual

processors emulated inside the same physical processor to be affected. In the non-

virtualized environment, the technique we use to suspend a processor is to enter a

special scheduler when the processor needs to be suspended. In this mode, regular

messages are placed into a queue, and buffered in FIFO order until the processor is

allowed to handle them. This scheduler is also in charge of driving the network, and

receiving incoming messages. In this way, commands from the debugger can still be

executed. In the virtualized environment, the scheduler that drives the network and

forwards messages to the virtual processes is a separate entity from the scheduler

inside each virtual processor. In this case, it is not possible to have each virtual

processor driving the network, which will be too chaotic.

We modified our scheme to move the buffering of messages inside each individ-

ual virtual processor. When a worker processor needs to suspend due to an explicit

debugger “freeze” command or due to a breakpoint, it calls its own scheduler re-

cursively. Since this scheduler is stateless, such a recursive scheme is feasible. This

new scheduler then starts the buffering of messages. When the processor is released

by the debugger, and is allowed to continue its normal execution, we terminate the

internal scheduler, and return control to the outer one. Buffered messages are guar-

anteed to be executed in the same order as they were received while we exit from the

internal scheduler. Meanwhile, the main Converse scheduler remains the only one

that drives the network and receives messages. Moreover, the Converse scheduler

is always active, and never enters a buffering mode.
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With the techniques described, we can now debug applications in the virtualized

environment as if they were running on a real machine. We shall see an example of

using CharmDebug on a real application in Section 4.5.

4.3 Debugging MPI Applications on BigSim

Debugging a large scale MPI application on a smaller machine requires running

multiple MPI “processes” on one processor. This can be done using existing MPI

implementations, if allowed by the operating system. However, this is often infea-

sible for various reasons. First, operating systems often impose hard limits on the

total number of processes allowed by a user on one processor, making it challenging

to debug a very large scale application. Secondly, processes are heavy-weight in

terms of creation and context switching. Finally, there are very few MPI implemen-

tations that support out-of-core execution, which is needed for running applications

with large memory footprints.

To overcome these challenges, we adopted the same idea of processor virtualiza-

tion used in Charm++: each MPI rank is now a virtual processor implemented

as a light-weight Converse user-level thread. This leads to Adaptive MPI, or

AMPI [15], an implementation of the MPI standard on top of Charm++. As il-

lustrated in Figure 4.3, each physical processor can host a number of MPI virtual

processors (or AMPI threads). These AMPI threads communicate via the underly-

ing Charm++ and Converse layers. This implementation also takes advantage of

Charm++’s out-of-core execution capability. Since AMPI is a multithreaded im-

plementation of the MPI standard, global variables in MPI applications may be an

issue. AMPI provides a few solutions to automatically handle global variables [58]

to ensure that an MPI application compiled against AMPI libraries runs correctly.

Debugging MPI applications can now use any arbitrary number of physical pro-
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Figure 4.3: AMPI model of virtualization of MPI processes using Charm++.

cessors. For example, when debugging Rocstar [59], a rocket simulation program in

MPI developed by the Center for Simulation of Advanced Rockets (CSAR) at the

University of Illinois, a developer was faced with an error in mesh motion that only

appeared when a particular problem was partitioned for 480 processors. Therefore,

he needed to run the application on a large cluster at a supercomputer center to

find and fix the bug. However, the turn-around time for a 480 processor batch job

was fairly long since the batch queue was quite busy at that time, which made the

debugging process painfully slow. Using AMPI, the developer was able to debug

the program interactively, using 480 virtual processors distributed over 32 physical

processors of a local cluster, where he could easily make as many runs as he wanted

to resolve the bug.

Since AMPI is implemented on top of Charm++, the basic techniques for

debugging as described in Section 4.2 work on AMPI programs automatically. In

addition, if the user desires to perform more in-depth analysis on a specific MPI

rank, he can choose to start a GDB sequential debugger attached to the processor
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Figure 4.4: Screenshot of GDB attached to a specific MPI rank, and displaying its
stack trace.

hosting that rank, and focus on the desired rank. This GDB process is shown in

Figure 4.4 for a simple test program. In this example, the user has set a breakpoint

on MPI Scatterv function, and when the breakpoint was hit, he printed the stack

trace.

4.4 Debugging Overhead in the Virtualized

Environment

In this section, we study the debugging overhead using a synthetic Jacobi benchmark

and a real application, NAMD, running on the modified BigSim emulator with

CharmDebug support.1

Our test environment is Blue Print, a Blue Waters interim system at National

1Data in this section was collected with help from Dr. Gengbin Zheng.
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Center for Supercomputing Applications (NCSA). It is an IBM Power 5+ system.

There are 107 compute nodes actually available for running a job, and each node

has 16 cores (i.e. 1712 cores total).
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Figure 4.5: Jacobi3D execution time on 1024 emulated processors using varying
number of physical processors. The last bar is the actual runtime on 1024 processors.

We first tested a Jacobi3D program written in Charm++ on 1024 virtual pro-

cessors on a varying number of physical processors with CharmDebug enabled,

and measured the execution time per step. Figure 4.5 shows the results of the ex-

ecution time with varying number of physical processors, from 8 to 1024. The last

bar in the figure is the actual execution time of the same code on the 1024 proces-

sors with normal Charm++. We can see that by using exactly same number of

processors, Jacobi under BigSim emulator runs as fast as the actual execution in

normal Charm++, showing almost no overhead of the virtualization in BigSim.

When we use fewer physical processors to run the same Jacobi emulation on 1024

virtual processors, the total execution time increases as expected. However, the

increase in the execution time is a little less than the time proportional to the loss

of processors. For example, when using 1024 physical processors, the execution time

is 0.25s, while it takes only 23.96s when using only 8 physical processors. That is
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about 92 times slower (using 128 times fewer processors). This is largely due to the

fact that most communication becomes in-node communication when using fewer

processors.
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Figure 4.6: Jacobi3D execution time on 1M (1,048,576) emulated processors using
varying number of physical processors.

As a stress test, we ran the same Jacobi3D program on one million (1,048,576)

emulated processors, while trying to use as fewer number of physical processors

as possible. Figure 4.6 shows the execution time when running on 400, 800, and

1712 physical processors. These experiments show that it is feasible to debug an

application in a virtualized environment for very large number of target processors

using a much smaller machine.

To test how much time typical operations take from the debugger point of view,

we used a similar Jacobi3D program, this time written in MPI. Table 4.1 reports

timings for starting the MPI application, loading the list of messages queued on a

given processor, and perform a step operation (deliver a single message) on all virtual

processors. The latter two operations perform in an almost identical amount of time

in all scenarios, including the case when the application is run in the non-virtualized

environment.
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Startup (seconds) Load a message Single step,
queue (ms) all pe (ms)

8 11.60 398 131
16 11.63 399 99
32 13.34 399 213
64 13.12 400 66

128 15.86 400 41
256 14.41 399 118
512 16.45 399 67

1024 17.71 379 118
original 17.85 379 114

Table 4.1: Time taken by the CharmDebug debugger to perform typical opera-
tions, using MPI Jacobi3D application with 1024 emulated processors on varying
number of physical processors.

We also studied the BigSim overhead on a real application. NAMD [16, 26]

is a scalable parallel application for Molecular Dynamics simulations written using

the Charm++ programming model. It is used for the simulation of biomolecules

to understand their structure. In these experiments, we ran NAMD on 1024 em-

ulated processors with Apolipoprotein-A1 (ApoA1) benchmark for 100 timesteps.

We measured the total execution time of each run (including startup and I/O) using

a varying number of physical processors, from 8 to 1024. This is illustrated in Fig-

ure 4.7. Same as for Jacobi, we ran NAMD also in non-emulated mode using 1024

physical processors. The total execution time is shown in the last bar of the figure.

We can see that NAMD running on the BigSim Emulator is only marginally slower

(by 6%) compared to the normal execution on 1024 physical processors, showing

little overhead of the emulator. On 512 processors, however, NAMD running in the

emulation mode is even slightly faster than the actual run on 1024 processors. This

is due to savings in the NAMD initial computation phases: faster global synchro-

nization on fewer nodes.

Overall, this demonstrates that in terms of the time cost, debugging in a virtu-

alized environment using much smaller number of processors is possible. Although
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Figure 4.7: NAMD execution time on 1024 emulated processors using varying num-
ber of physical processors. The last bar is the actual runtime on 1024 processors.

it takes a longer time (19 times slower from 1024 to 8 processors) to run the appli-

cation, debugging on a much smaller machine under a realistic scenario is not only

easily accessible and convenient, but also simpler for setting up debugging sessions.

We further studied the memory overhead under the virtualized environment.

Using the same NAMD benchmark on 1024 virtual processors, we gathered mem-

ory usage information for each processor. Figure 4.8 shows the peak memory us-

ages across all physical processors. Again, the last bar is with the non-emulated

Charm++. Note that in emulation mode, the total memory usage is the sum of

the application’s memory usage across all emulated processors, plus the memory

used by the emulator itself. It can be seen that there is no difference in memory

usage between the emulation mode and non-emulation mode when using 1024 phys-

ical processors. When the number of processors decreases to 512, or even 256, the

memory usage remains about the same. This is because NAMD has some constant

memory consumption that dominates the memory usage (for example, read-only

global data such as molecule database, which is replicated on each node), and the

emulator itself tends to use less memory when the number of processors decreases.
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Figure 4.8: NAMD memory usage per process on 1024 physical processors vs.
NAMD on emulation mode using from 8 to 1024 physical processors.

However, when the number of physical processors keeps reducing, each physical pro-

cessor hosts a much larger number of emulated virtual processors whose memory

usage starts to dominate, therefore the total memory usage increases significantly.

Nevertheless, when the number of physical processors is down to 8, the peak mem-

ory usage reaches about 1GB, which is still very feasible on machines nowadays.

Note that this is an increase of only about 7 fold compared to the 1024 processor

case, due to the sharing of the global read-only data at the process level.

In summary, we have demonstrated that debugging under virtualized environ-

ment incurs reasonably low overhead, considering the overhead proportional to the

loss of processors. This makes it feasible to debug applications running on a large

machine using only a portion of it.

4.5 Case Study

To demonstrate the capabilities of our technique, we used a few examples of com-

plex applications, and debugged them in the virtualized environment. It is not the
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purpose of this section to describe actual bugs that were found with this technique,

but rather illustrate how the user has available all the tools that he has in a nor-

mal scenario. With those tools, the user can search for the bug as he seems fit.

Some applications have been described in Section 4.4 while considering the over-

head our technique imposes to the application under debugging. In this section, we

use another real world application as an example.

ChaNGa [18] is a production code for the simulation of cosmological evolution,

currently in its second release. It is capable of computing standard gravitational

and hydrodynamic forces using Barnes-Hut and SPH approaches respectively. This

application is natively written in Charm++, and it uses most of the language

abstractions provided by the runtime system. While most of the computation is

performed by Charm++ array elements, which are not bound to the number of

processors involved in the simulation, the application also uses Charm++ groups

and nodegroups for performance reasons. The groups have the characteristic of hav-

ing one entity per processor, thus modifying the application behavior when scaling

to larger number of processors. The complexity of this application is one reason

why we chose it over other examples.

After the user has built the Charm++ runtime system with support for BigSim

emulation and compiled the ChaNGa program over the virtualized Charm++,

he can start CharmDebug’s GUI. Figure 4.9(a) shows the dialogue box for the

application parameters. In here, the user will indicate the location of his executable,

the arguments, and the number of processors he wants to run on. The only difference

from a standard non-virtualized execution is the presence of a checkbox to enable

the virtualization. In general, the user will input the number of desired processors

in the “Number of Processors” textfield and confirm. In this case, “Number of

Processors” refers to the number of physical processors CharmDebug will allocate

on the machine. The number of processors the user wants to debug on has to
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(a) Launching scenario

(b) Attach scenario

Figure 4.9: Screenshots of CharmDebug parameter window.

be specified in the field named “Number of Virtual Processors”. These fields are

highlighted in the Figure. At this point the user can confirm the parameters, and

start the execution of the program from CharmDebug’s main view.

If the machine to be used for debugging requires jobs to be submitted through a

batch scheduler (or if the user desires to start the application himself), only the fields

regarding executable location and CCS host/port connection need to be specified.

These are highlighted in Figure 4.9(b). When the attach command is issued from

the main view, the CharmDebug plugin will automatically detect the number of

processors in the simulation, and if the execution is happening in the virtualized
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environment.

Figure 4.10: Screenshot of ChaNGa debugged on 4,096 virtual processors using 32
real processors.

Once the program has been started, and CharmDebug has connected to it, the

user can perform his desired debugging steps, oblivious of the fact that the system in

using fewer resources internally. Figure 4.10 shows the ChaNGa application loaded

onto four thousand virtual processors. Underneath, we allocated only 32 processors

from four local dual quad-core machines. In the bottom left part of the view, we can

see all the messages that are enqueued in the selected processor (processor 3,487 in

the Figure). Some messages have a breakpoint set (7th message, in orange), and one
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has actually hit the breakpoint (1st message, in red). In the same message list, we

can see that some messages have as destination “TreePiece” (a Charm++ array

element), while others have as destination “CkCacheManager”, one of the groups

mentioned earlier. One such message is further expanded in the bottom right portion

of the view (10th message).

Finally, Figure 4.11 illustrates how normal operations, such as inspection of an

object in the system, is still available to the user. In this case, we are inspecting

the “TreePiece” element number 5,213 present on (virtual) processor 2,606. Again,

this operation interacts with the runtime system and reports the same information

to the user as if the application were actually running on the whole four thousand

processors. As expected, given the architectural design, the response time was of

the order of tens to hundreds milliseconds, mostly depending on network latency

and GUI overhead.

When joining multiple processes inside the same address space, the behavior of

the system might be altered. First of all, one virtual processor could corrupt the

memory belonging to another one. A solution to this problem is the topic of the

next chapter. Another problem regards the kind of bugs that can be detected. In

particular, race conditions may become difficult to treat: by reducing the amount

of physical processors available, the communication latency might change such that

a race condition will not appear anymore. Two solutions are possible. One is to

use record-replay techniques to force the execution of a particular message ordering.

This is available in the virtualized environment, and will be described in detail

in Section 6.6. The other possibility is to force the delivery of messages in the

virtualized environment in a different order. The foundations to this approach will

be presented in Chapter 7.
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Figure 4.11: Inspection of a Jacobi object in the system.

4.6 Future Work

In this chapter, we presented an innovative technique to address the issue of de-

bugging applications on very large number of processors without consuming a large

amount of resources. This is possible by having the runtime system emulate the

existence of processors allocated to the user inside the user space. This technique

is already powerful in its current state. Nevertheless, further improvements are

possible to make its use more seamless and more widely used.

With the co-existence of multiple virtual processors inside the single address

space of a physical processor, some memory operations have been disabled. For

64



example, searching for memory leaks requires the debugger to disambiguate which

virtual processor allocated the memory. One approach would be to use the same

memory tagging mechanism described in the next chapter, and cluster memory

allocation by virtual processor. The tools inside the runtime system that perform

operation directly on allocated memory would then need to be modified to consider

only a portion of the address space.

Another future work regards MPI. As we described in Section 4.3, currently

CharmDebug focuses primarily on applications written in Charm++. While

it can debug MPI applications using the AMPI implementation of the MPI stan-

dard, we realize that for a programmer debugging his application there may be

unnecessary overhead. For the future, we are considering possible extensions to

provide a more natural debugging also for MPI programs. There are two directions

worth considering. One is the integration of MPI-related techniques directly inside

CharmDebug, making it natively display MPI-related information. The other is to

provide a wrapper API to the Charm++ runtime system so that other debuggers

that already support MPI will be able to access the information desired.

65



5 Isolating Objects

When allocating multiple processors inside a single address space, as explained in

the previous chapter, these virtual processors will share the same address space.

In particular, they could end up sharing the same global variable if the user was

not careful enough to avoid them. When accessing the global variable, the different

processors will inherently share the same data.1 In particular, if this variable is a

pointer, they will access and modify the same data structures. Note that global

variables in MPI applications are allowed, and AMPI treats them using several

mechanisms [58], but in Charm++ applications, the user should not use global

variable, and should instead place all the data inside the pertinent chare.

This problem is more general than the case of multiple virtual processors shar-

ing the same address space. For example, when an application is decomposed into

independent modules that share the same executable, it is possible to have conflicts

in how the memory is used by the different modules. In a correct decomposition,

each module stores the state necessary to perform its task in memory, and uses some

specific area to exchange information with other modules. Nevertheless, since the

virtual address space is common, all the modules have access to the entire address

space. In particular, one module can modify the state of another module, acciden-

tally or intentionally. While this cannot be prevented during a normal execution, it

breaks the abstraction that modules are independent, and makes a faulty module

1Part of the work in this chapter is reprinted, with permission, from “Memory Tag-
ging in Charm++”, in the Proceedings of the 6th Workshop on Parallel and Dis-
tributed Systems: Testing, Analysis, and Debugging (PADTAD ’08), c©ACM, 2008.
http://doi.acm.org/10.1145/1390841.1390845 [60]
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difficult to identify.

Consider the parallel program for the simulation of galaxy formation, described

in Section 2.1, composed of multiple separate modules to compute the various forces

present in the universe. All these modules will need to update the memory storing

the final forces acting on the simulated portion of space. This memory is therefore

used to exchange information. In addition, each module will also have its private

data to be used during the computation phase. This private data should be modified

exclusively by the owner module. If, for example, the gravity module accesses and

modifies the data stored for the SPH computation, we want to notify the user that

the gravity module is misbehaving, and might be faulty.

Both virtual processors discussed in the previous chapter, and the modules just

described, can be considered “objects” inside the system. Throughout this chapter,

the term object will be used to indicate either of them. By creating a tagging system

where each memory allocated block is marked with an identifier of the object that

uses it, it becomes possible to intercept modifications of such memory by other

objects. The user can be notified of these misuses and can determine if they are

valid, such as in the case of the final acceleration in the previous example, or if they

are not, and therefore identify the faulty entity. In this chapter, we shall build upon

the existing Charm++ framework to provide a mechanism to detect cross-object

memory corruption.

5.1 The Charm++ Memory Subsystem

In Charm++, the memory subsystem, i.e the implementation of the “malloc”,

“free” and other memory related functions, is included in a shared library. This al-

lows Charm++ to implement multiple versions of the memory library, and enables

the user to choose which one to use at link-time, see Figure 5.1. The default version,
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gnu.o in figure, does not have any debugging support and is meant for production

usage. This version is based on the glibc memory allocator. Another memory li-

brary, os.o, does not implement the memory functions, and lets the user link to the

default one provided by the operating system. All the others are based on the glibc

standard library, as the default implementation, but they re-implement the memory

functions (malloc, free, realloc, etc) and use the glibc ones internally.

Figure 5.1: Application linking stage. The application modules are linked together
with one Charm++ memory implementation to produce the executable.

To allow multiple memory libraries with different capabilities to be based on

the same underlying glibc memory allocator while avoiding the problem of re-

implementing the entire allocator, the glibc routines have been renamed prepending

them with a “mm ” prefix. Any memory library wrapping around glibc allocator

will define the functions malloc, free, etc, and internally use the “mm ” versions.

For example, the default malloc simply calls mm malloc, while another malloc im-

plementation can decide to allocate extra size for internal usage of the library itself,

or to fill the newly allocated memory with certain patterns.

Some of the existing memory implementations inside Charm++ are named in

Figure 5.1. Paranoid provides buffer overflow detection by allocating extra space
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at both sides of the user allocation and filling it with a predefined pattern. At

deallocation, these extra spaces are checked for modifications. Moreover, deallocated

regions are also filled to help detect usage of dangling pointers. Leak allows the user

to mark all allocated blocks as clean, and later performs a scan to see if new memory

blocks were allocated. This is useful in iterative programs, where the total memory

over various iterations should not increase. This assumes that the code does not

reallocate new memory at every iteration. Isomalloc allocates each block inside

different virtual memory pages. Each processor allocated memory from a unique

portion of the total virtual address space available. This allows the block to be

migrated to other processors while still maintaining it to the same virtual memory

location.

5.2 The CharmDebug Memory Library

One of the memory libraries described in the previous section is built specifically

for usage with CharmDebug. This library, for every memory block requested by

the user, allocates some additional space to store some metadata. The details of the

extra space allocated are shown in Figure 5.2, and are described throughout this

section. The layout refers to a 64-bit machine. The library returns to the user a

pointer to the white region marked user data in the figure. A variation of the library

allows the allocation of the metadata separately from the main user data, and for

it to be stored inside a hash table.

We built upon the CharmDebug existing framework to provide support for de-

bugging memory related problems. The CharmDebug memory library extends the

existing CCS requests that the CharmDebug plugin can serve by providing extra

information regarding the memory status.2 A simple operation that CharmDebug

2The list of functions provided by this extension module can be found in Appendix A.
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Figure 5.2: Layout of the extra space allocated by the CharmDebug memory
library on 64 bit machines. In shaded color the memory allocated for CharmDebug
purposes, in white the memory for the user.

can request is to view the memory of any given processor. Figure 5.3 shows how

CharmDebug visualizes the information received from the application through

CCS. The application in the figure performs a simple Jacobi computation on a

two-dimensional matrix. Each allocation is colored in one of four different colors,

according to its usage:

• memory that is occupied by a specific chare (in yellow);

• a message sent from one chare to another (in pink);

• memory allocated on the heap by the user code (in blue);

• memory allocated for the use of the Charm++ runtime system (in red).

Moreover, the CharmDebug memory library automatically collects stack trace

information at every point where the user requested memory allocation. This infor-

mation is stored at the end of the user buffer, as shown in Figure 5.2. The user can

see this information at the bottom of the memory allocation view (Figure 5.3) by

moving the mouse pointer over the allocated blocks.
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Figure 5.3: Memory view of the allocated memory for a simple hello world program.
The color correspondence is: yellow-chare, pink-message, blue-user, red-system.

Stack traces can also be combined by CharmDebug into allocation trees. An

allocation tree is a tree rooted at the routine starting the program, typically main

or a loader library routine. The children of a node are the functions that were called

by the function represented by that node. The leaves are functions which called the

malloc routine. This tree can become a forest if not all stack traces start from the

same routine. This can happen, for example, in the presence of user-level threads

with independent stacks. CharmDebug can construct an allocation tree for a

single processor or for a subset of them. Allocation trees can be used for statistical

analysis to provide insight of memory problems.

One of the operations that the CharmDebug memory library can perform is

memory leak detection. Each processor parses stack and global variable locations

for pointers to heap data. The heap memory blocks reachable by those pointers

are further parsed for more pointers. This continues until all reachable locations
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are detected. Blocks not reachable are declared leaks. The result is reported in the

same memory view described earlier (not shown here).

In the Charm++ environment, the user code always runs in the context of

some chare. These chares, as we have seen in Section 5.1, are independent of each

other, and should not interact except through messages. Therefore, another tag is

automatically associated to each memory block, to identify which chare allocated

it. This tag is shown in Figure 5.2 as chareID. Figure 5.4 shows the same Jacobi

program with the highlighting of the memory associated with a particular chare.

We shall see in the following sections how this tagging mechanism can be used to

identify certain problems.

Figure 5.4: Dimmed memory view. In brighter colors are shown the regions of
memory allocated by a specific chare, in darker colors all the others.
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5.3 Detecting Cross-Object Memory

Modifications

In a program like Jacobi, suppose chare A allocates a memory block for its local

matrix, and then passes a pointer to the last row to chare B, instead of a newly

allocated message with a copy of the last row inside. Chare B can access and modify

the matrix of chare A during its computation if they are on the same processor.

Nevertheless, Chare B is not supposed to modify chare A’s state. More generally,

different chares are not supposed to modify each other’s memory since they are

independent by definition. Based on this concept, we define each memory allocated

by a chare to belong to that chare, and only that chare will be allowed to modify

its content. The only exception is a message whose ownership will be passed from

the creator to the chare that the message is delivered to.

Pick message Process
message

Runtime System User Code

Figure 5.5: Normal execution flow of a Charm++ application.

The normal execution flow in a Charm++ program is depicted in Figure 5.5.

The runtime system picks messages from a queue (on the left), and calls user-

defined functions (on the right). This is indefinitely repeated throughout the whole

execution. Figure 5.6 shows instead the modification necessary to intercept cross-

object memory corruptions. These modifications lie on the interface between the

system and the user code. In particular, before invoking the user-defined entry
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method, the runtime system resets the memory protection according to the object

that is about to be invoked. Upon completion of the entry method, the system

checks the status of the memory, and verifies if corruption has occurred. At this

point, the system can suspend execution and notify the user, or issue a simple

warning statement and continue.

Has
corruption
occurred?

Set memory
protection

Reset memory
and check corruption

No

Yes

Pick message Process
message

Runtime System User Code

Figure 5.6: Modified execution flow of a Charm++ application for cross-chare
memory corruption detection.

Let us consider the example above, suppose we reset the protection for all al-

located memory blocks before we deliver to chare B the message containing the

pointer passed by A. Subsequently, we deliver the message to B and let it perform

its computation. Let us assume B immediately uses the pointer to modify the ma-

trix of A (if B uses the pointer in another entry method later, the same discussion

applies for that entry method). After the entry method of B terminates, we check

the memory protection. The protection for the block containing A’s matrix will fail

the check since B modified it. Since the block belongs to A, and not B, we can

raise an exception and notify the user. The protection of some blocks belonging to

B might also fail the check, but we ignore these since B was allowed to modify that

memory.

The memory protection used can vary, and different needs may lead the user to
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choose one over another. We implemented three memory protection mechanisms:

CRC, memory copy, and mprotect. These are illustrated in the following sections to-

gether with their strengths and weaknesses. Performance comparisons are presented

in Section 5.5.

5.3.1 Cyclic Redundancy Check

The first implementation of memory protection we implemented is based on Cyclic

Redundancy Check (CRC) [61], in particular CRC-32. To reset the memory pro-

tection, a CRC is computed on every allocated memory block, and stored as part

of the extra space allocated by the CharmDebug memory library, as depicted in

Figure 5.2 by the field userCRC. In addition, to protect the system metadata itself,

a CRC is also computed for the metadata portion of the memory. This value is

stored in the field named slotCRC.

Upon completion of the user entry method, all the CRCs are recomputed, and

checked against those stored inside the metadata of each memory block. A discrep-

ancy between the two values is an indication of a modification. The user is then

provided with information about the error: which chare and which entry method

are responsible for the modification, which memory block has been modified, and

to whom that memory block belongs.

This method has the advantage that it changes the memory layout the least, and

it requires a minimal amount of extra memory. All the information is contained in

16 bytes within the metadata information. On the other hand, it has the drawback

that it is very computational intensive. Computing the CRCs before and after every

entry method can add a substantial overhead. A possible solution to overcome this

limitation is explained with the performance evaluation.

One limitation is that if the faulty entry method internally spans a large amount

of code, the culprit region of code can become very large. By allowing the user
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to request extra checks to be performed even in the middle of an entry method,

the user can split the faulty code into subregions, and be notified about the region

causing the exception. Another insufficiency of this method is when the program

writes a value in memory, but the value happens to be identical to what is already

in memory. In this case the method will fail to detect the change. In addition, with

small probability, the method could also fail to detect a real change in the memory.

5.3.2 Memory Copy

The second solution we developed makes a copy of all the allocated memory. The

memory is then left to be modified as the program desires. Upon return from the

user code, the memory is compared with the saved copy, and corruption can be

detected.

This method has similar characteristics to the previous one described in terms of

corruptions that it can detect. It can detect any memory change, but not memory

writes that do not change the memory. It also has the same limitations regarding

the portion of code that is highlighted as responsible for a corruption. By using

memory copy, a high pressure is posed on the memory system. In particular, the

protection mechanism will double the memory allocated by the program. This can

be a heavy burden on applications that already use a large portion of the system’s

available memory.

5.3.3 Mprotect

The third memory protection mechanism differs slightly from the other two with

respect to its basic workflow. This new workflow is illustrated in Figure 5.7. Here,

the protection is still set when switching from the system to the user code. In

particular, all the memory not belonging to the chare processing the message is
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Set memory
protection

Corruption
detected

Pick message Process
message

Runtime System User Code

Reset memory
protection

Figure 5.7: Execution flow of a Charm++ application when mprotect is used to
detect cross-chare memory corruption.

marked as read-only. When the control returns to the system, the protection is

reset back to its original state, but no control is necessary on the memory. This

comes from the fact that when a spurious write to a block not belonging to the

executing chare, and thus marked as read-only, the signal SIGSEGV is sent to

the application. Therefore, at the instruction where the corruption happens, the

user can be immediately notified. This implies that this mechanism can resolve the

corruption to the single line of code, thus being much more precise than the previous

methods.

The main drawback of this method is that it requires every memory allocation

to be performed via a call to mmap. This is necessary since for memory not allocated

by mmap the behavior of mprotect is undefined [62]. Other than the problem of the

existence of mmap on the system, by using mmap for every allocation, the memory

layout will be substantially changed: every allocation will live on a different page.

On machines where the page size is large (on most supercomputers page size is

nowadays 4 MB), this could lead to the exhaustion of the available memory very

quickly.

A possible solution to overcome this limitation in the number of available memory
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pages is to allocate memory with mmap in large chunks, and then perform man-

ual allocations from these regions. Each virtual entity will require an independent

memory region from which to obtain its memory, otherwise individual protection of

objects would not be possible. An exception to this approach are messages which

by definition need to change ownership during the course of a program.

5.4 Detecting Buffer Overflow

Another common problem in applications is the corruption of adjacent blocks of

memory due to overrun or underrun of array accesses. In the case of virtualized

debugging, this memory could belong to a different virtual processor. A typical

debugging technique is to allocate extra memory at the two ends of the user buffer,

fill (or paint) it with a predefined pattern, and check if this has been overwritten

by the program. One problem with this method is the granularity with which to

perform the checks on the painted areas. Checking only when a block is deallocated

is not enough, as it may never be deallocated or, even if deallocated, the region of

code containing the error can contain very large portions of user code. Additional

periodic checks on all the memory blocks may reveal the problem at an earlier

stage, but it would still identify very poorly which lines of code are responsible for

a corruption.

As for the case of cross-object modifications, we can use the entry method bound-

aries to perform the buffer overflow checks. Since CharmDebug already allocates

extra space on both sides of the user allocated data, we can utilize this same por-

tion of memory to check for buffer overflow corruptions. One necessary change in

the detection scheme is that we now cannot paint that memory with a predefined

pattern, since it contains valid information. Nevertheless, the techniques previously

described include the space before and after the user data in the protected memory.
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Therefore, similarly to cross-object modification detection, if a mismatch is found

during the check of the protected memory, the fault can be attributed to the last

entry method that executed. Of course, for this type of corruption, any mismatch

found is a corruption. In particular, it does not matter if the memory modified

belongs to the modifying object or not.

It should be noted that the mprotect mechanism is less capable of detecting

this kind of bugs since it can only protect memory at the page boundary. For the

other protection mechanisms, the same limitation on what kind of problem they can

detect apply (write of an identical value to the one already in memory). As before,

the user may specify a coarser granularity of checks, in which case there will be a

set of entry methods that will be checked, or a finer granularity by adding extra

checks inside his code.

5.5 Performance Aspects

We analyzed the overhead imposed by our implementations, and compared the per-

formance of the three protection mechanisms.3 The test application was a simple

ping-pong program in which two objects were exchanging the ping message. This

program was executing on a single processor, since the overhead imposed does not

depend on the total number of processors allocated, but only on the local charac-

teristics of a processor’s memory. The objects did not perform any computation

upon receipt of a ping message, and no allocation was performed inside the entry

methods. We performed 1,000 iterations of the ping-pong exchange, and timed the

total execution. The benchmark was performed using a 2.0 GHz Intel Xeon E5405.

When executing the ping-pong program without any memory protection mech-

anism, the overhead incurred was around 2-3 µs. This time is to be attributed

3Data in this section was collected with help from Ramprasad Venkataraman.
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(a) Varying amount of total memory. Memory distributed in 4,000 allocated mem-
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Figure 5.8: Overhead to set and reset the memory protection for all the allocated
memory using the different protection mechanisms.
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to the normal scheduling overhead of Charm++. Since the purpose when using

memory protection mechanisms is to debug an application, we did not use com-

piler optimizations. The memory libraries, instead, have been compiled with full

optimization since they are not target of debugging.

Figures 5.8(a) and 5.8(b) show the overhead incurred by each method when

varying the total amount of memory allocated, or the number of memory blocks

allocated, respectively. In the first plot the memory was divided in 4,000 allocations,

while in the second plot the total amount of memory allocated was 32 MB. Each

number in the plots includes two scans of the entire memory, one to set the protection

before the entry method is called, the other to reset it after the entry method

finishes. It can be seen that mprotect is always the fastest, while CRC is always

the slowest. Naturally other parameters may play a role in choosing one over the

other, as each has strengths and weaknesses. Moreover, the first two methods have

a strong dependency on the total allocated memory (1st plot), while mprotect has

a strong dependency on the number of allocated blocks (2nd plot). This is not a

surprise given the characteristics of each method.

To compute the slowdown an application suffers when using the different meth-

ods, one has to include the average granularity of the entry methods. Let g be the

average time taken by an entry method, and o(b,m) be the overhead of a protection

mechanism in function of the number of allocated blocks, and allocated memory.

Then the slowdown S of the application is:

S =
o(b,m)

g

In particular, for coarse grain applications the slowdown is acceptable. For fine

grain applications, the slowdown can be very high. Note that this slowdown applies

when the application is left free to make progress. If the user is analyzing a portion
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of the code, and is delivering messages manually, then this overhead will generally

not be perceived by the user when delivering a single message.
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Figure 5.9: Overhead to set and reset the memory protection for 32 MB of memory
allocated in 4,000 blocks using the different protection mechanisms. Comparison
between the different CharmDebug memory libraries.

The experiments described have been conducted with the memory library com-

piled with support for mprotect, meaning each user allocation is internally trans-

formed into an mmap operation, and the metadata positioned at the beginning of

the user data. There are other three versions in which the CharmDebug memory

library can be compiled. The four versions depend on the internal conversion of

user allocations to malloc or mmap, and the positioning of the metadata—joined

with the user data or separate into a hash table. The comparison between the dif-

ferent versions of the CharmDebug library are presented in Figure 5.9 for a single

data point. Except for small variations, the performance is similar independently of

the specific CharmDebug memory library used.

From Figure 5.9, two bars are missing in correspondence with mprotect used

with malloc allocation. While the change between malloc default allocation and

mmap does not affect the performance of the protection mechanisms, it affects the

82



 0.1

 1

 10

 100

 1000

 128  512 2k 8k 32k 128k 512k 2M

T
im

e
 (

m
ic

ro
s
e
c
o

n
d
s
)

Allocated Memory (Bytes)

malloc
mmap

Figure 5.10: Cost to allocate and deallocate a memory block in Charm++ when us-
ing the two CharmDebug memory libraries based on malloc and mmap. Averaged
over 10,000 allocations.

performance of the application in other ways. In particular, allocating a memory

region with mmap can be more expensive than allocating it with a correspondent

malloc. Figure 5.10 shows the different cost of allocating a block of memory in the

two cases. When the allocated memory is large enough there is not much difference,

but for small allocations the impact is significant. This is a potential drawback for

mprotect in case of applications that perform many allocations of small data.

5.6 Related Work

There are various tools that help debugging shared accesses to a variable in a mul-

tithreaded environment. Intel Thread Checker [63] is one such tool. It can detect

both read and write unsynchronized accesses to shared variables. It uses dynamic

instrumentation to inspect each memory access performed by each thread, and re-

turns statistics on threads using the same locations. Given that it needs to intercept
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and perform extra operations at every memory access, it significantly slows down

the execution of the program. An improvement on this tool has been proposed [64]

by filtering most memory accesses that are not likely to produce data races, and

checking only those not filtered out.

Another tool is RecPlay [65], which combines record-replay and on-the-fly data

race detection to efficiently inspect concurrent programs implemented using POSIX

synchronization operations, and detect data races. The algorithm requires the pro-

gram to be run several times to obtain all the information to identify both the racing

data and the racing instructions. Even though the code is executed multiple times,

since most of the time the program runs without slowdown, the total overhead is

reduced. This algorithm has the disadvantage that it can only detect the first race

condition, and looses effectiveness if the user decides that he does not want to, or

cannot, remove the data race.

All these tools are for shared memory accesses. In the scenario described in this

thesis, where there is one single thread of execution, and the program is decomposed

into independent objects, such tools would not be useful. Other tools for sequen-

tial programs, such as Valgrind [66], are capable of detecting buffer overflow and

other memory related problems. These tools typically incur in acceptable overhead.

Again, for the scenario described here, these tools provide little support to the user.

TotalView [67] is another powerful debugging tool capable of inspecting and an-

alyzing the memory allocated by an application, and it supports parallel distributed

systems such as MPI. TotalView allows the user to collect memory views and save

them for future reference. These saved views can be compared against each other or

against the status of the live application. By saving and comparing memory states,

the user can simulate our comparison tool. Nevertheless, it is not possible to auto-

mate the collection of states and their comparison, forcing the user to undertake a

tedious stepping through the code.
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5.7 Future Work

The techniques presented in this thesis cover different possible ways to protect the

memory of an object from corruption by another object present in the same appli-

cation. Each of them has some strength and some weakness. One problem with all

the proposed techniques is their performance. When the grain size of the applica-

tion’s entry methods becomes smaller, all the techniques introduce a high overhead.

Several optimizations can be added to reduce their overhead. One was already pre-

sented during their discussion, the possibility to apply the protection only to some of

the entry methods. Clearly this works only if the user trusts certain entry methods,

but does not apply to the virtualized debugging scenario where each processor is a

potential candidate for corruption.

As the techniques were described, an entire scan of all the memory is performed

both before and after each entry method to set and reset the memory protection,

respectively. Instead, the system can be modified to perform only one scan per entry

method, and combine the protection reset of one entry method with the protection

set of the next entry method. In some situation, if multiple messages are destined

for the same entry method on the same object, both operations could be entirely

skipped, and the two entry methods could share one protection. Clearly, now the

user would have to distinguish which entry method caused the fault. In the case

of virtualized debugging, if the only use of the protection mechanism is to prevent

corruption between processors, only one protection could be applied for the entire

scheduling of one virtual processor, and reset the protection only upon switch of

virtual processor.

Regarding the mprotect protection mechanism, it is also possible to avoid the

scan of the entire memory when setting the memory protection. This can be achieved

by indexing the memory belonging to a specific object, and scan only through those
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memory blocks when changing the protection. Since the performance of mprotect is

linearly dependant on the number of blocks processed, this would be a considerable

performance improvement. Unfortunately, the other two protection mechanisms

cannot benefit from this optimization since they still need to scan the entire memory

to detect if any random location has been modified.
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6 Processor Extraction

Parallel applications tend to behave non-deterministically, especially when they

contain bugs. This means that even with the same input, the same application

may produce different results over multiple runs. This can significantly compli-

cate debugging, even in small scenarios. One common type of errors caused by

non-determinism is race conditions. These are bugs where the outcome of the com-

putation is unpredictable because it critically depends on the sequence and timing

of the communication between processors. 1

One possibility to solve this problem is to capture the non-determinism that the

application manifests, and make it repeatable. This is generally performed with a

technique called “Record-Replay” [69, 70]. This technique has a few requirements.

First of all, the information recorded must be sufficient to allow the proper replay

of the application deterministically. Secondly, the recording procedure must not

perturb the application too much. If the recording has too much overhead, it might

make the bug disappear, and render the technique useless. For example, a similar

effect happened while debugging ChaNGa [18], a cosmological simulator developed

as a joint collaboration between the University of Washington and the University

of Illinois. In this application, we discovered that certain messages were racing, and

caused the application to crash when a particular ordering was executed. Hence,

when we added print statements for debugging purposes, the problem usually dis-

1The work in this chapter is reprinted, with permission, from “Robust Non-Intrusive Record-
Replay with Processor Extraction”, in the Proceedings of the Workshop on Parallel and
Distributed Systems: Testing, Analysis, and Debugging (PADTAD - VIII) c©ACM, 2010.
http://doi.acm.org/10.1145/1866210.1866211 [68]
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appeared.

When the application is deployed in a production environment, or is bench-

marked on much larger configurations, other latent race conditions may appear.

Imagine the delays a network can introduce when routing packets through a torus

or fat-tree interconnection, especially in the presence of congestion. On a small

cluster, messages may never get out-of-order and expose a race condition. Further-

more, other bugs may appear only at large scale. For instance, the algorithm that

distributes the application’s input among the available processors may generate in-

correct results when performing fine grain decompositions. These kinds of problems

are very common in the early stages of production-level applications. They are

also much more challenging to track, as they may manifest only when thousands of

processors are involved in the computation, and disappear when fewer are used.

The programmer may try using smaller input datasets in order to reproduce the

problem on a smaller numbers of processors. Unfortunately, this is not always pos-

sible. As many scientific applications have physical phenomena driving the advance

of the computation, using smaller input datasets may hinder the approximation of

the real world. This may render the application not usable even for debugging. On

the other hand, using large datasets on a small number of processors may not be

possible due to the amount of memory required, or because the bug simply disap-

pears. For example, this happened while debugging Rocstar [59], a rocket simulation

program developed by the Center for Simulation of Advanced Rockets (CSAR) at

the University of Illinois. In this case, the problem only appeared when using more

than 480 processors, and on a fairly large input dataset.

In both the examples given, the programmer could not reduce the number of

processors and still see the bug. While record-replay helps in making the manifes-

tation deterministic and easy to follow, there is still the problem that the execution

must be followed on possibly thousands of processing units. Luckily, in most sit-
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uations, the bug appears on a specific processor in a clear way; for example with

a segmentation fault or an assertion failure. Moreover, if the non-determinacy is

captured correctly by record-replay, the bug’s effects/causes are confined to a few

processors. At this point, the programmer does not care anymore about the rest of

the system, and desires only to focus on a few processors.

What we propose is a new technique that encompasses both the advantages

of a full record scheme, which allows a single processor to be “extracted” from

the application and executed as a stand-alone, and the advantages of a minimal

record scheme, which incurs little overhead in the application without hiding the

bug. Our technique combines these two record-replay schemes into a simple, yet

powerful, three-step procedure that a user may follow to debug his application.

Furthermore, since debugging may be a long process and access to large machines

may be limited, we paid special attention to reducing the need for large parallel

machines to the minimum. We do this by using a virtualized environment supported

by a parallel emulator, which emulates the large machine using only a limited amount

of resources.

6.1 Related Work

In the field of debugging, record-replay techniques have been studied extensively.

Several articles [71, 72] provide broad overviews of how this technique has been ap-

plied to parallel and distributed debugging. Most of the literature focuses on appli-

cations written for shared memory systems, where races are represented by threads

writing the same locations in memory. Fewer articles discuss issues in a distributed

memory environment, where message passing is the cause of non-determinism.

Of the implementations of record-replay that treated distributed processing, [73]

and [69] were among the first. In particular, they record the full content of all the
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messages exchanged in the system. Currently, a modern tool integrated into the

TotalView debugger is ReplayEngine [74]. While these tools allow the full recording

of the execution and its later deterministic replay, they all incur a high overhead

during the recording phase, which might cause the problem to disappear.

The amount of data recorded during the execution of the program has always

been of concern. In [75], the minimum amount of information necessary to replay

the execution is computed at runtime, and only this information is stored to disk.

More recently, [76] has proposed to reduce the amount of data stored by grouping

processors, and storing full content only for messages between processors in different

groups. For processors within the same group, only the message ordering is stored.

Both these approaches achieve a significant reduction in disk space usage when

compared to full record techniques, but they still have a considerable overhead in

the recording phase.

Our approach differs from previous ones by imposing a negligible overhead dur-

ing the most time critical phase of the application, when the non-determinism is

captured. In this phase, any overhead is a potential for intrusion (i.e the Heisenbug

principle), and can make the bug disappear. We also succeed in minimizing the

data stored by having a second recording phase, where only processors of interest

are recorded in full detail. Even for very large executions with thousands, or poten-

tially millions, of processors involved, our scheme will record the full content of the

messages only for a few processors selected by the user.

The replay time has also been considered and analyzed in literature. In [77],

checkpoint has been combined with record-replay to allow the replayed program

to reach the failure point more quickly. In [78], the replay time has been further

analyzed to provide an upper bound: the system automatically makes a tradeoff

between checkpoint and recorded data to meet the user-specified replay time. Fur-

thermore, these checkpoints have also been used to allow backward movements in
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time, such as in [79] and [80].

6.2 The Three-step Procedure

The three-step record-replay procedure we propose is based on the following two al-

gorithms. The first algorithm is a non-intrusive record-replay technique that records

(in memory) only the minimum amount of information necessary to eliminate the

non-determinism from the application. In particular, this recording consists of the

ordering in which messages are processed by each processor. Since the amount of

information is minimal, special care needs to be taken to detect situations where

the information recorded becomes insufficient for the correct replay of the system.

A technique based on the computation of checksum of the received messages is

presented in Section 6.4.

The second algorithm is a more intrusive one, and records the full content of

each message processed by a selected set of processors. The generated output can

be big, but contains enough information to replay the recorded processor by itself

as a stand-alone. Note that given the possibly high volume of data recorded, this

recording is performed only on a subset of the processors specified by the user.

Since this algorithm is more invasive, if used alone, it has the potential to disrupt

the timing of message receipt between processors. By combining it with the first

algorithm that records only the message ordering, we can obtain reliable results.

The three-step procedure that is based on these two algorithms is depicted in

Figure 6.1. In the first step, the entire application is executed on the large target

machine, and basic information about message ordering is recorded. Optionally,

the user may decide to enable the self-correction feature provided by our technique.

Note that this step is the only one that actually requires the use of a machine with

as many processors as those required by the application.
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Figure 6.1: Flowchart of the three-step algorithm.

For the second step, the programmer first identifies a set of processors to focus

on. Good candidates are processors that crash, or processors generating incorrect

output. The entire application is then replayed using the message ordering collected

in step one, and the selected processors are recorded in detail. By using the same

message ordering as in step one, we can guarantee the determinism of the execution,

and the more intrusive recording necessary for processor extraction will not affect

the bug appearance. In step two, the user may use the same large machine used in

step one, but it does not have to, as we shall see in Section 6.6.
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In the third step, the detailed traces recorded in step two are used to replay

a selected processor using a single processor. This re-execution can happen either

on the same machine where the traces were recorded, or on a local machine. The

possibility to move to a local machine depends mainly on the compatibility between

the architectures of the parallel and local machines. On the replayed program, the

programmer can use traditional sequential debuggers like GDB [23], and follow the

problem in detail, re-executing it as many times as needed.

During the third step, the programmer may realize that some processor that has

not been recorded is now needed. For example, he may realize that an extracted

processor receives a corrupted message from a processor that was not recorded. By

repeating step two, these missing processors may be extracted too. This establishes

an iterative procedure that allows the programmer to identify an initial set of pro-

cessors of interest, and expand this set later if necessary. Note that every time the

second step is performed, the traces recorded during step one are used. Therefore,

the same ordering of messages is guaranteed, and the processors extracted in differ-

ent passes are compatible with the same manifestation of the bug under inspection.

As mentioned, of the three steps, only the first one actually requires a large

machine to be used. Step three clearly requires only one processor to be allocated

for the replay of an individual processor. As for step two, it can be performed using

fewer physical processors than those needed by the user, by executing the applica-

tion within a virtualized environment. This virtualized environment can still use

the traces from step one to guarantee the deterministic replay of the application.

Naturally, the time required by step two may increase as the application will have

fewer computational resources available. The detailed traces generated in this vir-

tualized environment can then be used in step three as before. We will discuss this

in more detail in Section 6.6.

Another important consideration regards optimizations performed by compilers.
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Generally, during debugging, the user’s application must be compiled with debug-

ging symbols, and without optimization. Debugging an optimized code can lead the

debugger to not correctly correlate the generated assembly code with the original

source code. On the other hand, optimizations can radically change the performance

of a program, and in particular its timing. Oftentimes, an application that crashes

when compiled with optimization enabled may succeed when no optimization is

used. This creates a big problem for standard record-replay techniques during the

recording phase, when timing is essential for the bug to appear. One solution would

be to support the debugging of fully optimized code. While this has been studied

in literature [81, 82, 83], the commonly used compilers and debuggers still are not

capable of correctly handling optimized code.

In our approach, since the information recorded in step one is independent of

the particular compilation and depends only on the algorithm used, the user is

allowed to switch between an optimized and a non-optimized code. In particular,

he can use the optimized version in step one where timing is critical, and a non-

optimized version in steps two and three. Since our message order recording scheme

has a minimal impact on the application performance, as we shall see in Section 6.7,

using an optimized version greatly reduces the possibility of the bug disappearing.

When the application has to run for many hours before the bug appears, main-

taining all the logs in memory during step one becomes impossible. To solve this

problem, we have two solutions. One involves the application manually flushing the

logs to disk at appropriate times, when the disk I/O does not disrupt the timing.

As many scientific applications are iterative, and contain explicit barriers between

iterations, adding one phase to flush the logs synchronously does not add significant

overhead. Alternatively, the application can make use of the checkpoint/restart

scheme available in Charm++ [84] to automatically checkpoint and restart from a

point in time closer to the problem. In this way, the total amount of log data each
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processor has to hold in memory is kept small.

6.3 Ordering Messages

Although the idea is general enough to apply to any other message-passing sys-

tem, we implemented the proposed record-replay techniques in the context of the

Charm++ runtime system. In addition, our idea is trivially applicable to MPI

applications by using the AMPI [15] implementation of the MPI standard.

In Charm++, the order in which entry methods are invoked, and threads are

scheduled, is determined by a processor-level scheduler, and by the priority of each

message (which can be set by the sender).

The processor-level scheduler, also called Converse scheduler, implements an

infinite loop that examines different message queues in the system, and determines

the order of execution. These queues are: (a) a network queue, which contains

messages coming from other processors via network; (b) a node level queue that

contains messages from other processors on the same SMP node; and (c) a local

queue, which contains messages that objects on a processor send to other objects on

the same processor. The messages from these three queues are combined together,

and then messages are scheduled according to their priority.

Messages may arrive from the network in any order, and they are placed in the

network queue in the order they arrive. Messages sent from the local processor

will be picked up by the Converse scheduler sooner or later depending on the

presence of messages in the network queue. As a result, race conditions between

messages may occur, and this can lead to hard-to-find application bugs. Therefore,

in order to capture the parallel behavior of an application for debugging purposes,

it is important to record the message ordering.

A simple deterministic record and replay scheme in Charm++ has been avail-
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able for several years [13]. This scheme is based on the assumption of piecewise

deterministic execution [85]:

Let obj be an object in the system with associated state s1, and msg

a message sent to obj. Suppose the processing of msg by obj causes the

state of obj to transition from s1 to s2, and a set of messages M to be

sent. Then, if we deliver the same message msg to the object obj in state

s1, the object will always transition to state s2, and will always send the

set of message M.

Under this assumption, the only source of non-determinism in the application is

the order in which messages are processed. Therefore, by recording a tuple contain-

ing the sending processor and a per-processor unique sequence number, the system

can be replayed deterministically by re-ordering messages according to the recorded

sequence. In addition to this tuple, the original scheme also saved the size of the

message as a simple check to make sure the messages processed are indeed the same

between executions.

6.4 Robustness and Accuracy

The scheme for recording the message ordering in Charm++ applications can be

used in the first step of our proposed three-step procedure. However, it has several

problems regarding robustness and accuracy. One limitation is the assumption

made about piecewise deterministic behavior. Although in general this condition

should hold, some applications may not entail such determinism. For example, the

application may use timers. Imagine the scenario where an entry method receives a

message and, depending on the elapsed time since last invocation, performs different

operations, possibly sending different messages. In this scenario, a different timing
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in the network, maybe due to a sudden congestion, can modify the behavior of the

application, even if the same ordering of messages is maintained.

Capturing system-level calls, like timers, may solve the problem for the given

example. By following this path, many other system calls, along with their return

values, need to be included in the recorded traces. Particularly voluminous may be

those reading from files. The complexity and amount of data to be stored would

rapidly increase in this scenario. This would lead to an increase of the overhead

incurred by the recording scheme, making it more likely to disrupt the precarious

timing which leads to the manifestation of the bug. Therefore, to maintain the

overhead to the minimum, we do not record these additional information, and limit

the applicability of our technique to piecewise deterministic applications. Fortu-

nately, the vast majority of applications do oblige to the piecewise deterministic

assumption, and for these applications, the simple message ordering is sufficient.

The key now is to understand when the piecewise deterministic assumption is

satisfied by the application, and to detect when it is not satisfied. The original

scheme tried to do this by using only the message size. Unfortunately, most ap-

plications tend to have many messages with the same size, yet completely different

content. In order to guarantee the piecewise determinism, in addition to the mes-

sage ordering, we would like to include also the content of the messages. By having

available the full content of the messages, it would be trivial to determine if all the

messages processed during the replayed execution are identical to those processed

during the recorded execution.

Before continuing, a word of caution is in order. Even by extending the recording

to assure that communicated messages have the same content, we cannot prevent

a processor from having internal non-determinism completely. For example, the

processor may still make a decision based on the current time, and modify its local

state differently in different executions. However, since by definition all outgoing
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messages are the same between two executions, and the only way to influence another

processor is through explicit message passing, the local non-determinism cannot

propagate to other processors. Therefore, while searching for a bug, the causal

relationship between processors does not change.

Clearly, having the receiving processor store (in step one) the whole content

of each message received would defeat the purpose of our 3-step procedure which

aims at a non-intrusive mechanism during the first step. Instead, we compute the

checksum of the received messages, and store only this information into the recorded

traces. The amount of data added by the checksum is only a few bytes per message,

therefore adding little overhead, as we shall see in Section 6.7. Of course, our

technique can only capture a difference in the message content with high probability.

If the content of a message in two different execution is such that the computed

checksum is identical, then our method will fail to detect the change. Nevertheless,

since this check is performed for every message processed, the probability that the

non-determinism will remain latent as the application progresses is extremely low.

We implemented two commonly used checksums. Both of them produce a 32-bit

integer value. The first is a simple XOR of the message data, reading four bytes at

a time. This checksum is fast to compute, but has the disadvantage that it is easy

for a message to contain differences not detected. The other is a more sophisticated

Cyclic Redundancy Check (CRC32) checksum. This is a more computationally

intensive algorithm, but can capture difference in the transmitted data with higher

confidence. The programmer, during step one, can choose which of the algorithms to

use. He can also choose to altogether skip this checksum computation to minimize

the overhead.

In order for the checksum computation to yield correct results, it is important

that the message content of each message be identical between the two executions.

One problem is posed by the presence of garbage inside a message. Consider a
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data structure like that in Figure 6.2. In this case, the compiler has padded the

data to maintain correct alignment of the data structures, in this case of the double

type. When allocating this data structure, the padded memory region, which is

shown in the light color, is not initialized, and may contain any random garbage.

To overcome this, we developed a solution that makes use of the memory allocation

sub-system present in Charm++, and make sure every newly allocated memory is

always initialized to a known pattern.

double

int short

double

int

double

double

Figure 6.2: Example of data structure padded by the compiler.

In the memory sub-system implemented in the Charm++ runtime system, there

is an interface to easily re-implement memory related functions, such as malloc and

free, and place them into a dynamically loadable library. There are three types

of re-implementation. One uses the glibc memory arena internally, and wraps it

with the new function definitions. The other two are based on a direct usage of

the memory allocator provided by the operating system. This is done either by dy-

namically loading the specific function pointers using dlopen, or by using the hooks

present in the operating system in the case of the GNU implementation. For our

purposes, we extended an implementation created specifically for debugging. This

implementation can use all the methods described above to link to the underlying

memory system, making it very portable. In this extension, we could easily add a

call to memset before returning the allocated memory to the user. Note that the

memory can be pre-filled with any known pattern.
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Another problem that we encountered while using the original record-replay

scheme in Charm++ was the lack of ordering of threaded entry methods. As

mentioned in Section 5.1, Charm++ programs may declare an entry method as

“threaded”, thus creating a user-level thread for the execution of each invocation

of the entry method. Since thread operations, such as suspend and resume, are

treated at the lower level of the runtime, the record-replay module was not aware

of them. This produced a lack of recorded information for which threaded entry

methods could be executed, and resumed, without a specific ordering with respect

to the other entry methods. This clearly was a problem. To solve it, we placed a

hook in Converse’s threaded library and exposed the occurrence of thread events

to the record-replay module. This allowed these events to be properly logged.

Finally, we also considered the interaction of the record-replay scheme with load

balancers. When a load balancer is present in Charm++, it will instrument the

execution time of the application’s entry methods, and migrate the objects accord-

ingly to balance the load. Internally, timers are extensively used to record the

execution times. This creates a problem given the lack of recording for this event

in our scheme. However, what is important in this case is the decision taken, not

the particular input data that was used to achieve such decision. Therefore, we

decided to store to disk only the decision taken by the load balancer, ignoring all

the collected timers. This also helps maintaining the log sizes small, since the time

measurements can be very numerous. These decision messages, that are recorded

during step one in a separate file from the message ordering log, and then loaded

during replay in phase two. It is useful to note that, during the load balancing

operation, the application is usually paused and awaiting for the decision to be ex-

ecuted before resuming operation. Therefore, it is generally not a problem to alter

the timing during a load balancing phase.

With the enhancements described above, the new record-replay scheme has be-
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come a much more robust and accurate solution for record and replay. We under-

stand that other problems may arise in the future, both from the introduction of

new features in Charm++ and from old features not properly treated. Should new

issues arise, we plan to expand the recording scheme accordingly, as we have done

for threaded entry methods.

6.5 Processor Extraction

In step two, once the information we want to record is identified—all the messages

received by a processor—the extraction is relatively simple. All we have to do is to

record the content of the messages processed by the user-selected processors into a

file, so that in step three a modified Charm++ runtime system can replay the ex-

ecution of any selected processor as a stand-alone. When replaying a processor, the

Charm++ runtime system loads messages from the corresponding trace file instead

of receiving them from the network, and since the processor is replayed without a

network, all outgoing messages are discarded. More important is considering the

implications involved with re-executing the application.

As we mentioned at the end of Section 6.2, we can always change the exe-

cutable used between steps one and two, provided the application performs the

same operations—for example by changing the optimization level. On the other

hand, the information recorded in step two contains information that may be spe-

cific to a particular executable, and may change if the application is recompiled.

For example, in ChaNGa, several function pointers are sent through messages be-

tween processors. During normal execution, this is acceptable since the executable

is the same for all processors. Nevertheless, recompiling the code means changing

the placement of these function pointers, and thus invalidating the data contained

in the messages. For ChaNGa, therefore, the same executable must be used in
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steps two and three. For other applications, like Jacobi, where the content of the

sent messages will not change even if the application is recompiled, the optimized

version of the code may still be used in step two.

Another problem appears if the two executable are compiled for different versions

of Charm++. Changing architecture would be desirable if the architectures of the

parallel machine and of the local machine differ (say one used LAPI, the other

pure ethernet). Unfortunately, this is not possible at the moment. In Charm++,

a different architecture signifies a different header added to each message. These

headers are not only different in content, but also in size. Furthermore, the content

of the message stored will follow the endian-ness convention of the machine where

the data was recorded, and translating messages to a different architecture is not

simple.

6.6 Further Reducing the Need for Large

Machines

In our proposed three-step procedure for recording and replaying a buggy applica-

tion deterministically, the second step may be performed inside a virtualized envi-

ronment. As we mentioned in Section 6.2, this is very useful to reduce the number

of physical processors needed, and to reduce the contention on the availability of a

large machine.

This is particularly important when the bug appears only on large processor

counts. In this case, executing multiple times the buggy application on a large

parallel machine to extract different sets of processors may introduce long delays

in the debugging process. This can easily happen when submitting jobs to a batch

schedulers on heavily used machines. By using a virtualized environment, instead,

we can perform the processors extraction operation using a much smaller machine,
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and increase productivity. To demonstrate the feasibility of this approach, we used

the BigSim Emulator [24].

6.6.1 Detailed Record-Replay in BigSim Emulator

For performance prediction reasons, the BigSim Emulator supports a detailed record

and replay scheme that stores the full content of messages to disk. This is similar to

the one used in the processor extraction described earlier, but under the virtualized

environment. When emulating an application, the user may specify a subset of

processors that he wants to record in detail. During the emulation, on each of these

emulated (or target) processors, the scheduler stores a copy of the message to its

own trace file before it executes the entry function associated to that message.

We incorporated the BigSim Emulator’s record-replay capability into the pro-

posed three-step procedure as an alternative to reduce the need for large machines

in the second step. This new three-step scheme thus becomes: (1) execute an appli-

cation on a big machine, and record the message ordering; (2) replay the application

on a machine emulated under the virtualized environment and record the detailed

traces; (3) replay the execution of a selected target processor sequentially. Note

that if step two was performed within the emulated environment, step three must

also be performed in the same environment. This comes from the fact that BigSim

Emulator is considered by the application as another communication layer, and at

the moment we cannot change this layer between step two and three. Nevertheless,

we are considering extending the possibility to perform step three in a different

scenario (say outside BigSim, or ethernet vs. LAPI).

In this new scheme, the emulator needs to be able to read the trace logs gen-

erated in the first step from the non-emulated execution on a full machine, and

replay the application in the emulator using a small machine. One challenge was

to match the two executions of the application on these two totally different envi-
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ronments. Specifically, when the trace log tells that the next expected message is

(srcpe, msgID), where srcpe is the source processor ID, and msgID is the message

ID of that message, the message IDs must be identical on the two environments.

This is easy to guarantee as long as the emulator emulates the Charm++ run-

time faithfully and both systems assign msgID to each message using a sequence

number local to its sender processor. However, this becomes rather complicated

when user-level threads are involved in an application. This is because emulated

processors themselves are implemented as the same user-level threads. Therefore,

tracing the suspend/resume events of user-level threads will mistakenly record the

events of the emulator threads, creating mismatch of the thread event IDs between

two executions. One way to handle this is to recognize two different categories of

threads in the emulator – those created by the emulator system, and those created

by the application, and ensure that only the events of threads that are created

by the application are tracked. To do this, we used Converse user-level thread

API which allows a user to insert hooks to the thread scheduling events such as at

the time of suspend and resume. When the emulator creates user-level threads for

the application, it sets up special record-replay hooks for these threads that track

thread suspend and resume in the same way as how it is done in the non-emulated

Charm++. When it creates internal user-level threads, it does not set these hooks.

In Section 6.7.2, we will demonstrate how the BigSim Emulator is useful in

reducing the number of processors using a real world application.

6.7 Performance

We evaluated the overhead of the proposed record-replay scheme for all three steps

of the procedure. We used synthetic benchmarks, as well as two real applications.

104



6.7.1 Synthetic Benchmarks

Our first test environment was Abe cluster, at the National Center for Supercom-

puting Applications (NCSA). This is a cluster of 1200 Dell PowerEdge 1955 server

computers, each configured with two quad-core Intel Xeon processors, 8 gigabytes

of memory, and infiniBand interconnect.

We tested a synthetic benchmark program called kNeighbor, and evaluated the

overhead imposed by recording message orderings with and without checksums.

KNeighbor creates a certain number of objects distributed on the parallel machine,

and arranged in a 1-dimensional array. In each iteration, each object sends 2∗K+1

messages to its nearest K neighbors on each side, plus a message to itself. When

an object receives 2 ∗K + 1 messages, it performs a given amount of computation,

and proceeds to the next iteration. In the following experiments, we used k = 2,

and the total number of iterations was 100.
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Figure 6.3: Recording overhead per message using the three schemes. Computed
using kNeighbor test (NCSA Abe cluster).

First, we measured the average overhead per message during the recording phase

in step one, varying the message size from 256 bytes to one megabyte. The results
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are shown in Figure 6.3. As expected, we can see that the overhead of the simple

scheme remains about the same regardless of the message size. This is because, for

each message, a constant amount of data is stored. When either XOR checksum or

CRC checksum is calculated for each message, the overhead per message increases

proportionally to the increase in message sizes. This is because the runtime needs to

traverse the whole message in order to compute the checksum. When checksums are

computed, for very small messages, specifically 256 bytes, we observe only less than

three microsecond overhead per message. However, when message size increases to

one megabytes, both checksum methods incur a much higher overhead per message.

Next, we evaluated how this overhead affects the total execution of the program.

To measure the total execution time, we ran the test program on a single proces-

sor. The total number of messages generated during each execution is about 5600.

Again, we tested with a varying message size. Figure 6.4(a) shows the results of the

comparison when the workload is very small. We can see that when the message size

is small, 256 bytes, the total execution time is only 1.36 seconds for 100 iterations.

When message size increases, the total execution time increases proportionally. This

is due to the fact that the program has to process the message, and traverse all the

data in it. We see that doing simple recording, without checksum, the execution

time is not affected, even for large messages. Even with XOR checksum enabled,

there is not much overhead. When switching to the more expensive CRC-based

checksum, we can observe a significant overhead for large messages. However, for

message sizes below 4KB, the overhead is still minimal.

When we increased the workload in Figure 6.4(b) (by 3 fold), and Figure 6.4(c)

(by 6 fold), we observe a similar behavior. However, the results exhibit a decreas-

ing overall affect of the CRC checksum computation, mainly due to the increasing

computation-to-communication ratio. Similar results were also obtained on a dif-

ferent machine, called BluePrint, as shown in Figure 6.4(d). BluePrint is a Blue
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(b) workload 140, Abe
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Figure 6.4: Comparison of kNeighbor total execution time with and without record-
ing schemes (the total time includes file I/O at the end of execution).
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Waters [27] interim system also at the National Center for Supercomputing Appli-

cations (NCSA). It is a 2000-core IBM Power 5+ system.

These experiments show that simple recording scheme performs very well with

almost no overhead to the execution time. XOR-based checksum is a cheap solution

to improve the robustness of our scheme, and it incurs very little overhead. The

more expensive CRC checksum computation indeed adds a significant overhead for

very large messages. However, since most applications do not send large messages

often, and if they do they generally perform a large computation thereafter, we

believe this is not a problem for real-world applications.
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Figure 6.5: Total replay time in step two for kNeighbor (NCSA BluePrint 256
processors).

To study the performance of the second step, we ran the kNeighbor benchmark

on 256 processors of BluePrint. The results are illustrated in Figure 6.5. In each

cluster in the figure, the first bar from the left is the total execution time without

any overhead; the second bar represents the execution time when replaying on the

same machine using the traces from step one; while the third bar represents the

execution time of the benchmark both replaying the previously recorded message
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ordering, and recording the detailed information for one processor. We see that

replaying on the full machine generally is slightly slower than the normal execution

time for message sizes smaller than 64K bytes. However, for very large messages,

the replay time tends to increase more drastically.

The number of processors recorded in detail during step two may affect the replay

time due to file I/O. Figure 6.6 illustrates the effect on the total execution time of

kNeighbor when varying the number of recorded processors during step two on 256

processors. We can see that for messages smaller than 1KB, the effect of recording

full traces is minimal. As expected, when the message size increases, the overhead

of recording message contents for more processors increases significantly due to the

file system becoming a bottleneck. However, as we explained, this does not affect

the correctness of the replay, since the message ordering is already guaranteed. In

practice, we believe that a user does not need to extract all processors, and only a

small subset of processors is usually enough to understand the nature of a bug.
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processors).
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6.7.2 Scientific Applications

In addition to synthetic benchmarks, we used two production-level scientific appli-

cations to show the performance impact of our approach. The two applications are

ChaNGa and NAMD.

ChaNGa

ChaNGa [18] is a cosmological application used for the simulations of the evolution

of the universe. It handles forces generated by both gravitational and hydrodynamic

interaction. The benchmark we used is a snapshot of a multi-resolution simulation

of a dwarf galaxy forming in a 28.5Mpc3 volume of the universe, with 30% dark

matter and 70% dark energy. The dataset size is nearly five million particles, with

most of the particles clustered in the center of the simulated volume. In our tests,

we ran the application for three timesteps.

  0

  10

  20

  30

  40

  50

  60

  70

128 256 512 1024

T
o
ta

l 
E

x
ec

u
ti

o
n
 T

im
e 

(s
)

Number of Processors

120

basic non−opt
basic opt
recording w/o checksum
recording with xor checksum
recording with crc

Figure 6.7: Recording overhead for ChaNGa application using the three schemes (on
NCSA BluePrint cluster). The tests were performed with optimized code, except
for the first bar in black.

Figure 6.7 shows the performance of ChaNGa in step one, using a varying num-
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ber of processors, on the NCSA BluePrint cluster. Each execution was repeated five

times, and the average and standard deviation are plotted. As mentioned earlier,

we could run the optimized code for step one of our 3-step procedure. As a compar-

ison, the black bar (to the left) represents the execution time with a non-optimized

version. The optimized code is more than twice as fast as the non-optimized one,

and the interleaving of messages potentially very different. It can be seen that even

on a highly optimized code the impact of the recording schemes is so small that it

disappears when compared to the normal time fluctuation of ChaNGa, even when

computing checksums. This re-emphasizes the negligible perturbation caused by

our recording scheme.
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Figure 6.8: Overhead during replay in steps two and three for ChaNGa application
(on NCSA BluePrint cluster).

Subsequently, with the recorded data from step one, we proceeded to test steps

two and three. These are plotted in Figure 6.8. Again, each execution was repeated

five times. In this case, we had to use the non-optimized version to be able to follow

the code in a sequential debugger. Compared to the execution without record-replay

enabled, the forced replay of the message ordering caused an overhead between 25%
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and 65%. This overhead is still very small considered to the potential that the

scheme yields in terms of allowing a deterministic debugging.

Step three is represented on the fourth bar of each cluster in Figure 6.8. As

different processors may have a different workload (we didn’t apply load balanc-

ing), the variation in the execution time between different processors is very large.

Surprisingly, the execution time of a single processor was greater than the time to

execute the whole application. We suspect this might depend on the system pre-

loading too many messages from the traces, and we plan to further investigate the

reasons. Nevertheless, even with the current performance, the replay time is within

a factor of two from the basic execution.

In addition to the overhead caused during the execution of the application, we

also measured the amount of information that is stored to disk during the vari-

ous phases. Table 6.1 reports this information in megabytes. As it can be seen,

the amount of information recorded per processor is quite small—less than one

megabyte—and can be easily maintained completely in memory until the applica-

tion shuts down. Therefore, flushing to disk is generally avoided during the first

step. During the second step, we can see that the amount of data recorded is much

larger. Nevertheless, this does not create a problem since usually only few processors

are recorded in detail.

Number of processors 128 256 512 1024
Record per-proc. 0.87 0.67 0.54 0.44

total 112 173 279 453
Record+checksum per-proc. 1.49 1.14 0.92 0.75

total 190 292 473 765
Detailed record per-proc. 111 79 59 47

Table 6.1: Amount of data stored to disk using different recording schemes for
ChaNGa. All data in megabytes.
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NAMD on BigSim Emulator

In this section, we demonstrate the utility of using BigSim to perform proces-

sor extraction using the 3-step procedure. The application we chose for this is

NAMD [16, 26]. NAMD is a scalable parallel application for Molecular Dynam-

ics simulations written using the Charm++ programming model. It is used for

the simulation of biomolecules, and to understand their function. The following

experiments were done on the NCSA BluePrint system.

First, we benchmarked step one by running NAMD on 1024 processors using the

Apolipoprotein-A1 (ApoA1) benchmark for 100 timesteps, and repeating using all

the recording schemes. The results are shown in Table 6.2. The “normal” column

is the time when running without recording for comparison. Note that the total

number of messages processed during the entire execution is about 20,000.

Mode Normal Record Rec.+XOR Rec.+CRC
NAMD Time 24.08 25.33 24.55 24.55
with I/O - 27.99 26.85 25.82

Table 6.2: NAMD execution time in seconds with different recording schemes in
step one, running on 1024 processors of NCSA BluePrint. The last row is the total
time with file I/O.

We see that there is virtually no overhead to the NAMD actual execution while

recording the message ordering, even when checksums are computed. This is because

in NAMD the average message size is relatively small, around 1KB to 2KB. For

20,000 messages total, even the most expensive scheme using CRC checksum only

cost about 0.27 second. Therefore, we believe that by using our recording schemes,

the NAMD application behavior is not affected significantly. Furthermore, due

to cache effects, the actual overhead of computing checksum may be even less,

if the entry function triggered by the receipt of the message has to traverse the

message data immediately. Similar to ChaNGa, the NAMD traces recorded for

each processor are less than one megabyte in size. The process of flushing the traces
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to disk takes about 2 seconds, which increases the total execution time, as shown in

the second row of the table. The file I/O time is constrained by the bandwidth of

the file system, and may be stressed by simultaneous writing, in this case by 1024

processors. However, since this is done only at the very end of the execution, it does

not affect the ordering of the messages during execution.
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For the second step, we ran it under the BigSim Emulator, and we replayed

NAMD using the message logs obtained from the first step. We instructed the em-

ulator to emulate the same 1024 processors by using only a portion of the entire

machine. While replaying, we also chose 16 emulated processors for detailed record-

ing of message content. We measured NAMD total execution time running on the

emulator using varying number of physical processors. The results are shown in

Figure 6.9. When 1024 physical processors are used to emulate the 1024-processor

machine, we see that replaying NAMD on the emulator is about as fast as when

replaying it on the real 1024 processor BluePrint machine, showing little overhead

of the emulator. Moreover, on 512 processors, NAMD replaying in the emulation
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mode is even slightly faster than the actual replaying run on 1024 processors. This

is due to the saving in the startup: faster global synchronization on fewer nodes.

BgReplay> Emulation replay finished at 25.304625

due to end of log.

BgReplay> Replayed 12288 local records and 7891 remote

records, trace log is of 14539488 bytes.
(a) Processor 0

BgReplay> Emulation replay finished at 5.690778

due to end of log.

BgReplay> Replayed 19714 local records and 10822 remote

records, trace log is of 24904148 bytes.
(b) Processor 960

Figure 6.10: Screen outputs from replaying two different processors under the em-
ulator.

This demonstrates that in terms of the time-cost, it is feasible to replay an

application in a virtualized environment under the emulator using fewer processors.

Although it takes much longer (17 times slowdown) to replay NAMD under the

emulator when using only 8 physical processors, being able to replay an application

on a much smaller machine, and generate detailed trace logs, greatly reduces the

need for large machine during interactive debugging.

In the third step, the detailed NAMD trace logs recorded in the second step

were used to replay a selected processor using a single processor. Figure 6.10 shows

the last few lines of screen output of replaying processors number 0 and 960 on

the emulator respectively. For this benchmark, each detailed trace log was about

one to two megabytes, as shown in the output. The replay time of processor 0

on the emulator finished in about 23.8 seconds, which matches the total execution

time of 24 seconds when running NAMD in normal parallel execution. The replay

time of processor 960, however, took much less time (only 5.5 seconds). This is

because during NAMD start-up, most of the work is done by processor 0, and the

other processors are mostly idle. Since this is a short simulation that has only 100
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timesteps, most time was spent in the start up. On 1024 processors, the start-up

time is measured around 19 seconds.

In summary, this example of NAMD on the BigSim emulator demonstrates that

it is feasible to use an emulator in the second step as an alternative way of replaying

an application using the message ordering logs obtained from the previous step, and

producing detailed trace logs to be used in the third step. This approach incurs

reasonably low overhead, and the overhead itself can be considered proportional to

the reduced number of physical processors used for emulation.

6.8 Case Study

To assess the usability of our technique, we used the ChaNGa application, and

searched for the bug we mentioned at the beginning of this chapter. This bug

has already been fixed using standard techniques, such as print statements, and

a tedious process given that the bug often disappeared after code modifications.

We re-introduced it in the application temporarily. We ran the application using

a relatively small dataset (a simulation of a LCDM concordance cosmology large

volume with 483 particles and 300 Mpc on a side). The bug did not appear on eight

processors, but started to appear on sixteen processors or more. The manifestation

was intermittent, sometimes right at the beginning, sometimes after a few timesteps

of the application. Also, the processor in which an assertion failed kept changing

from execution to execution.

According to our 3-step procedure, we first executed the application with the

message ordering recorded. We used CRC checksum as robustness protection. In

the execution we recorded, processor seven triggered the assertion. At this point we

re-executed the application in replay mode, and recorded the faulty processor. We

also repeated the execution in replay mode a few times to confirm that processor
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seven was always the culprit. With the detailed trace of processor seven, we executed

ChaNGa sequentially under CharmDebug, and followed the problem. To track

the bug we had to repeat the sequential execution a couple of times, each time

setting a few different breakpoints. Compared to the way the original bug was

hunted, this new procedure allowed for the parallel problem to be transposed into

a sequential one, without compromising the timing of the application, and without

allowing the problem itself to disappear.

../charmrun +p16 ../ChaNGa cube300.param +record +recplay-crc

../charmrun +p16 ../ChaNGa cube300.param +replay \
+recplay-crc +record-detail 7

gdb ../ChaNGa

>> run cube300.param +replay-detail 7/16

Figure 6.11: 3-step procedure used for debugging ChaNGa.

To perform the processor extraction, and subsequent analysis of the extracted

processors, the user can either use the command line interface to run directly his

application or use CharmDebuggraphical tool. The command line interface is

especially useful when jobs have to be submitted through a batch scheduler. This,

of course, can be true for the first two steps of our procedure. The commands we used

in our example case study are reported in Figure 6.11. The last command included

is the launching of the GDB debugger, which is an alternative to CharmDebug in

following the faulty processor during step three.

The alternative with CharmDebug is presented in Figures 6.12 and 6.13. The

first one is a screenshot of the window where the input parameters can be set. In this

view, the user can select which record-replay step he would like to perform on the

left side, and which protection mechanism he would like to use (if any) on the right.

The view shows the setup for the execution of the third step of our example case

study. Figure 6.13 shows instead the program being executed under the controlled

environment in step three. Here, the user can proceed in his debugging analysis
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Figure 6.12: CharmDebug window to set the record-replay parameters. This view
shows an execution of the third step of the procedure.

Figure 6.13: CharmDebug’s main view during the debugging of an application on
the third step of the procedure. Only one processor is available.
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using the selected processor (in our case 7). This processor is the only one available,

as shown by the circled drop-down box. The user can also inspect the application

status as he normally would (on the lower part of the view).

6.9 Future Work

In this chapter we described a new procedure to extract processors from a parallel

application, and replay any of them on a local cluster. This allows a programmer to

debug his application using a local workstation, or a small cluster, even when the

application being debugged misbehaves only on very large configurations. It allows

to decouple the long and slow debugging process involving the user understanding

the problem in his application from the need to have a large machine allocation

available during that whole period of time.

There are several research directions that are possible for the future. One of

them regards the possibility to use different executables during different steps. As

mentioned in Section 6.5, if step two has been executed using a specific communi-

cation layer or parallel machine, the user may be bound to that architecture also

in phase three. Some work has been done in order to be able to translate messages

from one architecture to another [86]. Integrating this capability into the record-

replay scheme will allow developers to further decouple the use of a parallel machine

to their specific needs during debugging.

Another direction is to detect other information that our current scheme is lack-

ing, and include that into the recorded traces. For example, when creating single

chares in Charm++, the system may not be fully deterministic, and decide to

inserted the new chare into an underloaded processor. When replaying the sys-

tem, these chares will have to be inserted into the same processors as the original

execution in order to preserve the correct execution of the program.
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7 Provisional Message Delivery

As illustrated in the previous chapter, by recording the message ordering during

execution, and replaying it at will thereafter, a programmer can reproduce an appli-

cation’s bug identically until the cause is found. This procedure has a drawback: it

requires a first execution, in which the bug manifests itself, to be captured. Some-

times the bug appears at every execution, only on different processors each time; for

this kind of problems standard record-replay techniques work fine. Other times, the

bug may appear sporadically and recording the bug may be a challenging task in

itself. For example, imagine a situation where processor A sends two messages: α to

processor C, and β to processor B; B, upon receiving β, sends message γ to C; and

the application misbehaves only when γ is processed before α. If α is sent before

β, α will generally arrive at C before γ, and execute first. Nevertheless, α could be

lost and require retransmission on the network, making γ execute first. This kind of

scenario is difficult to capture, as it may occur only once every thousands of execu-

tions. Increasing the size of the machine may trigger the problem more frequently,

for example α and β could take different paths in the underlying hardware network.

Nevertheless, the problem remains: how many times does the user have to repeat

the experiment before obtaining a trace with the bug? If the crash happens late

in a program’s execution, how many resources will be consumed in the recording

process?

Another problem that may hinder the recording of the bug is if the recording

itself corrupts the timings of the communications. While we have taken special

care to be as unintrusive as possible, it cannot be taken for granted that the bug
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will appear. For some applications, moreover, the minimal recording necessary to

capture the bug may not be the simple message ordering, but it may include other

data, like timers or other system calls. Again, how long is the user willing to try

and see if the bug can be captured during a recorded execution?

Record-replay techniques guarantee that messages are processed during replay

in the same order in which they were processed during the recording phase. The

opposite is also possible: forcing messages to be delivered out-of-order. This may

expose the bug very early in the application, and may not require large machines

to be allocated to discover the problem. For instance, in the example above, where

messages α and β were racing, one could try imposing the delivery of β before α

even though α is in the queue before β. This operation can be done as easily on a

small machine as on a big one, thus relaxing the need for large machines to obtain

a suitable trace for the record-replay technique. We shall see later in Section 7.7

why this randomization of messages in the queue cannot be trivially performed

automatically.

When looking at the messages enqueued on a given processor, there are two ways

to determine what to process next. One is having the user try certain combinations.

These combinations of messages could be random, or due to his understanding of

the program, or a hunch he might have. The other, more automatic, would be

to have the system explore the possible delivery orderings, and report to the user

when different orderings generate different solutions. In this thesis, we shall lay the

foundations to allow the testing of possible different execution paths, but consider

only paths specified by the user. Towards the end of the chapter we shall expand

on automatic search, and further challenges that it poses.
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7.1 Provisionally Delivering Messages

When considering how the user should be allowed to interact with the system to

test his hypothesis, several decisions can be made. In particular, these involve how

the system will perform the delivery operation, and how it will allow the rollback if

the user decides to undo the delivery operation. We call these delivery operations

“provisional” for their property of being not fully committed into the application,

and the possibility to annul them. Before entering into the details of the system, let

us start with the user’s perspective.

In a typical debugging scenario, the user will select a message from a proces-

sor’s queue, and issue the delivery command. This can be performed by using the

CharmDebug’s GUI with a simple mouse click. The options available depend on

the state of the system and the message selected. Figure 7.1 shows the different

options available. When a processor is not in provisional mode (Figure 7.1(a)), the

user can either permanently deliver a specific message or initiate the provisional

delivery with the selected message. Once inside this mode, messages still in the

queue can only be delivered provisionally (Figure 7.1(b)). For messages that have

been provisionally delivered (Figure 7.1(c)), two options are available: 1) rollback

the system until the selected message has not been delivered, or 2) commit the

message permanently on the processor. The user can distinguish between messages

already delivered provisionally and messages still in the queue graphically: messages

(a) Processor not in provi-
sional delivery, a message can
either be delivered perma-
nently, or provisional mode
can be initiated.

(b) Processor in provisional
delivery and a non-delivered
message is selected, message
can only be delivered provi-
sionally.

(c) Processor in provisional de-
livery and a provisionally deliv-
ered message is selected, multi-
ple options are available to ei-
ther commit or rollback.

Figure 7.1: Options available for different system status and message selected.
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Figure 7.2: Screenshot of the message queue. Some messages have been delivered
provisionally (in purple on top), while others are still in the regular queue.

already delivered provisionally are shown in purple at the beginning of the queue

(Figure 7.2).

Suppose the user has decided to provisionally deliver messages from the queue

in the following order: α, β, γ, δ, ε. After provisionally executing this sequence,

and examining the resultant state, the user may select the third message (γ), and

using one of the options shown at that time, decide to roll back the system and

remain in provisional mode with messages α and β, and have messages γ, δ, and

ε returned to the normal (undelivered) queue. Alternatively, he can permanently
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deliver message γ and all its predecessors (therefore messages α, β, and γ in order).

Messages δ and ε will be left as provisionally delivered. It is important to notice

that when committing message γ we cannot ignore messages α and β since they

were provisionally delivered before message γ. If we ignored them, the system may

behave differently, as the order in which messages are processed would have changed.

In particular, it could terminate abnormally. The same discussion applies also for

messages δ and ε when rolling back. For the rollback case, once the system has

voided the changes provoked by the processing of the three messages, an option

could be given to the user to provisionally re-deliver messages δ and ε.

With this execution flow in mind, the system must meet certain conditions to

be useful. First of all, it ought to survive crashes when in provisional mode. During

normal execution, when a failure appears (such as an assertion failure or a termi-

nation signal), the system freezes the faulty processor for inspection by the user.

While the status of the crashed processor is still retrievable, the program cannot

continue execution beyond the crashing point. This is because the computation

executed might have left the processor in an unclean state. Therefore the user can

only restart the application after he finishes inspecting it. In the case of a message

provisionally delivered causing a fault in the application, the user must still have the

capability to roll back the application to the point in time before the crash, when

the faulty message had not been delivered. From this rolled back state, the user

must be able to continue execution normally, maybe specifying a different message

to be delivered.

Another condition to be met by the system is that it should be usable interac-

tively. The user may want to try different options quickly, and see if the system

produces the expected output. If the system has a long response time, the debugging

may become impractical.
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7.2 Exploring Solutions

We considered several possible alternatives to deliver messages provisionally before

committing to a specific implementation. First we considered the possibility to

restart the application from the beginning at every rollback. This approach has

the advantage of requiring the least amount of changes to the runtime system, and

only have the debugger control the termination and restart of the execution. It

also provides a clean environment not corrupted from the delivery of the messages

provisionally.

This approach has several critical problems, the major being its performance.

By restarting the application at every rollback, the whole initialization process has

to be performed over and over again, and it can take a significant amount of time.

Moreover, the application might already be at an advanced stage in the execution,

possibly requiring a very long time to re-execute. Another obstacle is the difficulty

to restart the application. Job schedulers deployed on parallel machines may decide

to terminate the processor allocation when the application ends, therefore making

it impossible to restart a new execution without waiting in the queue for a new

allocation. Moreover, if the user desires to provisionally deliver messages on more

than one processor, in order to roll back a single processor, the whole system will

have to suffer a full rollback, and every processor that is still in provisional mode

ought to re-deliver the messages provisionally. Record-replay techniques are also

needed to guarantee the delivery of the messages in the same order up to the point

where the user has started the provisional delivery.

To prevent having to restart the application from the beginning, a different

approach could be used with support from fault tolerance protocols. The debugger

could issue a global checkpoint command when initiating a provisional delivery, and

simulate a processor fault when it needs to roll back. The fault tolerance scheme
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will internally roll back the application to the point in time when the checkpoint

was taken. The time to roll back now depends on the time that the fault tolerance

mechanism will take to restart the application from the checkpoint. The basic

technique of storing the checkpoint to disk and restart the application by loading

the image from disk has similar disadvantages as a full restart: it may still have to

wait in the job scheduler’s queue, and it will force the rollback of all the processors

in the system. It will only avoid the complication of record-replay techniques to

guarantee message ordering.

The other two fault tolerance schemes present in Charm++ can provide better

support to cover the problems mentioned above. Double in-memory checkpoint [84]

can tolerate the rollback without having to restart the application from disk, and

therefore avoiding potential problems with job schedulers. Message logging [87] can

further avoid the rollback of all the processors when only one needs to terminate the

provisional mode. Nevertheless, in the current implementation, the processor that

is rolled back due to a fault, real or simulated, is supposed to be a newly started

process which has to join the set of the already running processes composing the rest

of the application. For example, the underlying network communication system will

have to be updated to reflect the change of process. In LAPI or MPI, communicators

will most likely have to be re-instantiated; in UDP, port numbers will need to be

re-synchronized.

One disadvantage of all fault tolerance schemes is that they often require some

modification in the application to support it, and will result in a non-fully transpar-

ent approach. For example, in Charm++, the user will have to explicitly provide

Pack/Unpack routines capable of migrating all the objects to and from storage.

These routines are generally not needed without fault tolerance. Even when these

routines are present, they might not allow the checkpoint to happen at any given

point in time, as they may be optimized for performance by restricting the point in
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time where a checkpoint can be taken. With all the different approaches currently

available, there is still the problem of guaranteeing that the state of the applica-

tion after the restart is identical to that before the checkpoint was taken. Memory

layout can be significantly different, and the application’s control flow may also be

modified. These differences may hinder the determinism of the execution and void

the whole provisional delivery scheme.

The last approach that was considered, and was later decided upon, uses fork

system calls to spawn a new subordinate process to carry on the provisional deliv-

ery without touching all the intricate connections already established between the

application’s processors. The parent process of the fork operation always contains

the saved state of the application, and by reverting the control back to it, the ap-

plication can be easily rolled back. This scheme involves neither disk I/O nor job

schedulers. Moreover, the capability of operating systems to perform copy-on-write

of the virtual address space during the fork operation allows for fast switch between

provisional delivery mode and normal mode. This approach also offers the advan-

tage that, upon rollback, the state of the application is exactly as it was at the

moment the application entered provisional delivery mode, including the memory

layout. This makes it easier to track bugs that depend on the relative memory

location between distinctly allocated memory blocks.

One aspect that is not covered by the process forking approach is that input

and output operations are not masked by the runtime system. This implies that

if the execution of a particular entry method prints a string to standard output,

and the user later rolls back the execution of that entry method, the printed string

will not be deleted from the output stream, and a new execution of the method

will print the string again. The same is valid for operations on open files or other

system calls. In particular, stored data could be corrupted. Solutions can be built to

avoid this problem, for example by intercepting certain system calls, and providing
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a provisional execution environment where also input/output is treated correctly.

Nevertheless, for the purposes of this thesis, these issues will not be considered

further, and are treated as future work.

This solution using process forking, as well as the others, builds upon the piece-

wise deterministic assumption described in Section 6.3. If the outcome of a com-

putation changes depending on conditions other than the state of the system and

the content of the message processed, provisionally delivering a message at a certain

point in time would yield a different result each time. This would make testing

executions paths harder since the user will have to consider the possibility that

re-delivering a message could produce a different result each time. Fortunately, ap-

plications tend be behave piecewise deterministically, therefore not hindering the

applicability of the methods illustrated. For applications not in this category, more

robust solutions can be sought as an extension of this work.

7.3 Implementation

Each processor in the application is treated independently from all others, and the

user is allowed to independently decide to deliver a message provisionally on any

of them. The automata describing the behavior of a given processor is presented

in Figure 7.3. When in normal mode, the user can decide to deliver a message

immediately, and remain in normal mode, or provisionally, and transition to the

provisional mode. In both cases, the entry method associated with the delivered

message is invoked on the target processor. When in provisional mode, the user can

either deliver more messages provisionally, or rollback and undeliver some messages.

If a rollback is performed, the processor transitions to normal mode only if all the

messages that have been provisionally delivered on the processor are undelivered,

otherwise it remains in provisional mode.
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Figure 7.3: Description of the behavior of a processor when provisionally delivering
messages.

As discussed earlier, we decided to adopt a solution based on the fork system

call. When the system is in normal mode, messages from other processors and CCS

requests are enqueued in the local processor’s queue, the latter are also processed

immediately by the system scheduler. This is illustrated in Figure 7.4 for process

Pe X. When instead the system enters provisional mode, a new process is forked,

and the message is delivered in the child process. When the user decides to rollback

the application, the child is destroyed and the parent resumes execution. We shall

consider multiple message delivery in the following section.

                   Pe X   

CCS Request

CCS Reply

Queue

In
co

m
in

g
M

es
sa

ge

Figure 7.4: Control flow of a processor in normal mode. When a CCS request
arrives, the processor handles it and replies to the sender.
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In theory, the provisional message could be delivered either in the parent or in

the child process. Nevertheless, delivering it in the parent process has several draw-

backs. If the parent were to deliver the provisional message, then its memory state

would be modified, and only the child would be able to continue execution after

rollback. Unfortunately, if the parent terminates, then the entire application may

be terminated by the job scheduler which will perceive one of the application’s pro-

cesses ending execution. Instead, terminating the child process has no consequence.

Furthermore, having the child process continue execution and use the communica-

tion infrastructure is a more fragile solution since in some implementations only the

parent may be allowed to use the communication device.
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(a) Response to a CCS external message.
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(b) Response to an internal message from an-
other processor in the application.

Figure 7.5: Control flow of a processor when in provisional mode.

Figure 7.5 illustrates the control flow of processor Pe X in provisional mode

when either a CCS request or an internal message arrives. In all scenarios, it can

be seen that the parent process is always in charge of the communication with the

external world, and the child process only communicates internally with its parent.

This is to prevent potential corruption of the network state if the child were to use it
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directly. The communication between the two processes happens mainly through an

anonymous pipe. The most common scenario is in Figure 7.5(a) since CCS requests

are likely to arrive from the CharmDebug GUI as a consequence of an action from

the user. In this case, the request is forwarded to the child for handling, and then

the reply is forwarded back to the client. Note that only the child process is capable

of correctly handling the request for Pe X since its memory reflects the delivery of

the message. For example, if the provisionally delivered message changed a local

variable V ar from 5 to 3, then the parent would answer 5 to a request for V ar,

while the child will answer with the correct value 3.

When a regular message (α) arrives from another processor in the application, as

shown in Figure 7.5(b), this message is both enqueued in the parent’s local queue, as

well as forwarded to the child where it will be enqueued in the local queue as well.

For correctness, the message α must be enqueued in both processes. It must be

enqueued in the parent process since it still has to appear in the processor’s queue

after rollback, when the child is gone. If it was not recorded by the parent, once

the child terminates execution, α would be lost. It has to be received by the child

process otherwise the CharmDebug GUI would not display it: remember that the

list of messages enqueued on a processor is gathered through a CCS request that,

as just described, is handled by the child process during provisional mode.

It may appear that regular messages cannot arrive on a processor while it is

in provisional mode. However, regular messages can be received by a processor in

provisional mode for at least two reasons. 1) Some other processor in the system

has not suspended execution, and is still processing messages normally and sending

out messages as a result. 2) The system is entirely suspended, but the user issued

an immediate delivery command on a processor, and a message was generated as a

consequence.

While handling a provisionally delivered message α, the child process may pos-
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sibly generate some message β. If this message β were permitted to leave processor

X and reach its destination Y , then there would be a causal dependency from pro-

cessor X to processor Y on the order in which messages have been delivered on

processor X. If the destination processor handles β, and then the user decides to

rollback the delivery of α on X, the execution of β on Y must also be rolled back

since β has not been created by X anymore. This implies that processor Y must

be able to rollback and undeliver β. In our implementation, we solve this problem

by not allowing any message to cross the boundary of a processor until the entry

method which generated the message has been committed by the user. Thus any

message generated as a consequence of a provisional delivery is discarded.

One could envision an extension to our system where messages like β are al-

lowed to leave the boundary of a processor, and can be delivered provisionally on

the destination processor. Naturally the dependency introduced has to be tracked

and treated accordingly. If the source message α is undelivered, then an undeliver

command must also be issued on message β. Conversely, if β is permanently commit-

ted, also message α (and all its predecessors) ought to be permanently committed.

This dependency can clearly be chained several times, thus producing potentially

complicated dependency graphs.

7.3.1 Delivery of Multiple Messages

Until now we have discussed how we can deliver a single message provisionally, with-

out considering what happens when multiple messages are delivered provisionally.

We shall now extend our system to include multiple subsequent messages provision-

ally delivered. In this scenario, we want the capability to roll back the application

to any point in time between message deliveries. As the system becomes more com-

plicated, we shall introduce another communication mechanism between the forked

processes: shared memory.
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Throughout this section, we will extensively use an example scenario to simplify

the descriptions. Given a processor X represented by the system process P and at an

initial state S0, we provisionally deliver messages α, β, γ, and δ in this order. Later,

we undeliver message γ (and δ as a consequence). Subsequently, we again deliver

δ, thus having α, β, δ provisionally delivered. Finally, we permanently commit the

delivery of α (thus leaving β and δ as provisionally delivered). Figure 7.6(a) shows

the messages in the queue as well as the messages provisionally delivered after each

operation.
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Figure 7.6: Timeline of the execution on a processor when provisionally delivering
messages: several messages delivered provisionally, and a rollback.
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When delivering a first message provisionally, the system will fork a sub-process

which will handle the message, while the parent process is used to later resume

execution after rollback. When a second message is delivered provisionally, there

are two options available: handle the second message directly in the child process,

or fork another process to handle the second message. These two options are shown

in Figure 7.6.

Given the fact that they both provide the same capability, and only their per-

formance may be different, we implemented only one of the two methods, leaving

the implementation of the other as future work. In particular, we implemented the

method that uses a single child to deliver all the messages provisionally delivered.

7.3.2 Single Forked Process

Figure 7.6(b) shows the execution flow of the application for the example given

earlier. At the first provisionally delivered message, a child process (C) is forked.

From this point on all the CCS requests are handled exclusively by C. When the

following three requests for provisional delivery arrive at the child process, they are

treated as immediate delivery, and process C delivers messages β, γ, and δ to the

respective recipient objects.

When the request to undeliver γ arrives, process C terminates execution, in-

dicating that a rollback should be performed. The parent process P is notified

of the termination of the child via the closing of the pipe which connects the two

processes. At this point, P needs to fork another child process C ′ to return in

provisional mode. The number of messages that the newly forked C ′ has to deliver

(two in this case), and their order, is written by process C on the shared memory

segment before terminating execution. This segment is established when the first

message α is provisionally delivered. This implies that process P can distinguish

between the case “Undeliver All” and “Undeliver Some” (of Figure 7.3) by looking
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at the number written in the shared memory segment: if the number is greater than

zero the system will remain in provisional mode.

The following request to deliver message δ is again interpreted as an immediate

delivery by the child process. Finally, when the request to permanently commit

message α arrives, it is again interpreted by process C ′ which will terminate exe-

cution. As before, C ′ writes the number of messages that have to be re-delivered

provisionally on the shared memory segment before terminating. This number is

always identical to the number of messages that are provisionally delivered (three in

our example). Moreover, this time C ′ also writes the number of messages that the

parent process has to execute before forking process C ′′. In our example one (only

α). Process P will look at these two numbers, deliver one message immediately (α),

decrement the number of messages to provisionally deliver accordingly, and finally

fork the new child C ′′ to handle the provisional delivery of the other two messages

(β and δ).

Note that the combination of these two numbers covers any possible operation

the user may want, from full rollback {0, 0}, to full commit {n, 0} (where n is the

number of messages provisionally delivered), plus anything in the middle {n− k, k}

(∀k : 0 < k < n). Also note that the shared memory segment is only used to store

permanent data that both parent and child need to see. It is not used to trigger

events in the other process; for this purpose only the bidirectional pipe is used. In

other words, none of the processes probes the share memory for value changes.

7.3.3 Multiple Forked Processes

Another alternative to manage multiple provisional delivery of messages is to fork

a new child for every message that is provisionally delivered. This is shown in

Figure 7.6(c). Each of the four messages α, β, γ, and δ generates a new process that

we will denote Cα, Cβ, Cγ, and Cδ. Between each couple of parent-child processes
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there is a communication channel. A single shared memory segment is also shared

among all processes. Clearly, the performance of this new scheme when delivering

multiple messages is poorer than the previous method since a new fork operation

has to take place. Even with the copy-on-write cloning of the virtual address space,

this can be a substantial penalty.

Note that when a CCS request arrives from a client, it will be seen and served

only by the innermost child process. If the requested operation involves only the

local state of the processor, such as the collection of the message queue, no extra

communication is needed. Otherwise, if the operation involves more than the inner-

most child process, for example in the case of a rollback, the innermost process will

inform the other processes via the bidirectional pipes.

Any CCS request that arrives on a processor is initially received by the topmost

ancestor P since it is responsible for receiving all the messages from the external

world. From P , the request needs to be transmitted to the bottommost descendant.

If the message has to travel through all the intermediate forked processes, this

operation per se would be very expensive. Instead, we envision an additional pipe

connecting the topmost ancestor P with the bottommost descendant. Since all the

forked processes are the bottommost descendant at some point in time, this pipe

needs to be connected to all the children in turn. Luckily, this is simplified by

the semantic of forks. Since the pipe established between P and a child process

is maintained open across the fork operation, a new child automatically inherits

this direct connection to process P . A potential problem is that all the processes

will have simultaneous access to this pipe. Nevertheless, if only the bottommost

process is allowed to use it, then only one process will be using it at any time and

no contention will arise.

When the request to undeliver γ arrives, process Cγ will terminate execution

and write the total number of messages to undeliver on the shared memory seg-
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ment. This number is equivalent to the number of processes that need to terminate

execution. Following the pipe connecting each process to its parent, process Cδ will

receive the undeliver command and terminate itself. When the command reaches

Cβ, this process will not terminate, and instead continue execution normally as the

bottommost descendant. In particular, it will reply to the awaiting client debugger.

Subsequently, a new process C ′
δ will be created when the request to deliver δ reaches

process Cβ.

It is interesting to note that this approach with multiple processes does not

require re-delivery of messages when performing a rollback, but only the destruction

of processes. This can lead to a cleaner interface to the user than the previous

method of using a single child. This comes from the fact that by re-delivering the

same message multiple times during rollbacks might have side effects that could be

difficult to hide from the user. For example, if an entry method prints a string, and

this entry method is re-executed during rollback, the system will print once again

that string, possibly confusing the user.

Finally, when the command to permanently commit α arrives, process C ′
γ will

inform the original process P that α has to be permanently delivered. In general,

the number and order of messages to permanently deliver will be written in the

shared memory segment. P will then proceed to deliver the desired messages. At

this point, no other operation would be required for the correctness of the method.

However, leaving processes like Cα alive can potentially lead to a rapid increase in

the number of processes used. These processes can clobber the operating system

resources and create problems. Thus, some method of garbage collecting them is

necessary. This can be done lazily every time a commit command is issued. After

C ′
γ writes the number of messages to permanently deliver and sends a message to

P , it can also send another message up the pipe connecting it to its parent Cβ. This

message can then travel up the pipes connecting each process with its parent until
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it reaches the processes which are not needed anymore (Cα in this case). Cα can

then terminate itself while leaving the other processes alive. Note that Cβ will also

need to modify its parent pipe to point directly to the topmost ancestor instead of

Cα, thus completing the bypass of Cα.

7.4 Performance Evaluation

Each of the two methods for delivering multiple messages provisionally has some

advantage and some disadvantage. Some of these were already highlighted while

explaining the two methods. In this section, we shall focus on the performance of the

described method. We gathered experimental data for the single process fork, and

we infer some performance information for the other method with multiple processes.

The configuration we used is a dual quad-core 2.0 GHz Intel Xeon workstation. Both

the client CharmDebug and the parallel Charm++ application were running

locally. We measured the time both on the server side as well as at the client side.

This second measurement includes the pre- and post-processing performed by the

Java GUI. Table 7.1 shows the performance for various operations performed by

delivering and undelivering messages provisionally.

Server side µs Client time µs
First provisional message 375 ± 294 2,061 ± 90
Following provisional messages 48 ± 20 1,519 ± 32
End provisional 240 ± 65 1,583 ± 26
Undeliver (+5 redeliver) 681 ± 161 2,100 ± 43
Commit 1 (+4 redeliver) 594 ± 102 2,169 ± 31

Table 7.1: Performance of single forked process during various provisional delivery
operations with relative standard deviations. Measurements in microseconds.

The main consideration is that all the latencies are very small, on the order of

a couple of milliseconds perceived by the client. This means that a user issuing a

command to deliver a message, or to roll back the application, will be perceived
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as an instantaneous operation. It is important to notice that this time, and the

relatively large difference between the server time and the client time, is mainly due

to the sequence of operations performed by the CharmDebug debugger. After

executing the desired user command, it reloads the state of the application and the

list of messages present in the queue, thus adding two more requests to the server.

This is necessary since the delivery of a message might have generated a change in

the system that ought to be displayed to the user.

On a more detailed analysis, it can be seen that when delivering messages provi-

sionally, the first one suffers a much bigger overhead than the following ones. This

is due to the fork operation necessary to create the child process when entering

provisional mode. The subsequent messages are delivered without the need of this

operation, thus they are much faster. To exit provisional mode and return to normal

mode, the time is slightly lower than in the other direction, but still significantly

higher than a single message delivery. To undeliver only some messages, or to com-

mit some messages permanently, the time doubles. This is due to the need to destroy

a process and recreate a new one. Note that this time can increase significantly if the

number of messages to re-deliver provisionally is large, or if these messages require

a long execution time.

An analytical comparison can be made between the two provision delivery meth-

ods. The first message is going to take similar time for both systems, while the

following messages are going to be much more expensive when using multiple pro-

cesses. Further, let n be the total number of messages provisionally delivered up

to the current time, and let k be the number of messages we are undelivering. By

forking one new process for every message provisionally delivered, the rollback speed

is independent of n, and depends only on k. On the other hand, by using one sin-

gle child process, the speed depends on the number of messages that we are not

undelivering, in our example (n − k), and how much time these messages take to
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execute. Clearly, none of the two methods is faster under all conditions, and there

will be a crossing point for certain values of n and k. When committing k messages

permanently, a similar discussion applies, this time with the single process depen-

dent on n and the multiple processes dependent on k. An analytical model for the

time taken by each operation is presented in Table 7.2. Given the large variances

obtained in the experimental setup, we leave this model in symbolic notation.

Single process Multiple processes
First provisional message c+m c+m
Following provisional messages m c+m
End provisional d d · n
Undeliver k messages d+ c+m · (n− k) d · k
Commit k messages d+ c+m · n (m+ d) · k

Table 7.2: Analytical comparison of the two provisional delivery methods for multi-
ple subsequent deliveries. n is the total number of messages provisionally delivered,
k the number of messages being undelivered/committed; c, d, m the time for creation
of a process, destruction of a process, and delivery of a message, respectively.

7.5 Case Study

In this section we present a simple case study where the ability to quickly deliver

messages and test the outcome of the operation can lead the user to a quick solution

to the bug. The example we chose is parallel prefix. This is a standard computation

where, given an array with n elements, at the end of the computation the array

will be like follows: ai =
i∑

k=1

ak. The operational flow in parallel is described in

Figure 7.7. At each step i of the algorithm, processor p sends its current value to

processor p+ 2i.

If a barrier is placed at every step of the algorithm, no problem is present.

However, to increase the performance, this barrier can be relaxed, and computation

can be allowed to overlap. A naive remove of the barrier will nevertheless result

in race conditions (buffering is necessary for a correct implementation). Assume
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Figure 7.7: Parallel algorithm for prefix computation.

that element p0 is proceeding fast, and it sends out messages marked m01, m02 and

m04 in rapid succession. Assume further that element p2 is late and the message

m24 is delayed. What can happen is that element p4 receives the message from p0

before receiving the message from p2. At this point, p4 will incorrectly update its

local value, and the algorithm will generate a wrong solution. Buffering incoming

messages if they arrive too early is a common solution to this problem.

Let us review how a programmer can debug his application using CharmDebug

and the provisional message delivery system. After the application has been started,

the user can see several messages in the queue to pass the local value to the next

element. One of these messages for a later phase is highlighted in Figure 7.8. The

user can then decide to provisionally deliver this message. He can then switch to

inspect the destination object of that message (element 4 in our case), and notice

that its local value has been updated to an incorrect value (i.e not valid according to

the parallel prefix algorithm). Alternatively, he can inspect the new messages that

appear in the local queue (generated by the provisional delivery of the message),
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Figure 7.8: Screenshot of CharmDebug while debugging the parallel prefix appli-
cation. Multiple messages are enqueued from different steps.

and notice that again the wrong value is sent out. If one single message delivered

provisionally is not enough, the user can deliver more messages. He can also rollback

the system, and try a completely different order.

A similar problem occurred in ChaNGa cosmological simulator. This has al-

ready been described in the previous chapter. A series of messages were racing, and

some ordering among the messages was generating a stall in the application. By

using the provisional delivery mechanism, we could easily look at the messages in

the queue and try the delivery of some of them. The outcome of the execution would

142



be an additional help to the programmer to understand why and how the messages

were racing. This problem was the initial trigger to develop this provisional delivery

mechanism.

7.6 Related Work

In addition to providing a mechanism to record and replay an application deter-

ministically, some tools also provide the capability to modify the order in which

messages are handled, and thus test different execution paths. In [88], the authors

consider the possibility to detect races between messages by grouping them into

“waves”. The algorithm proposed assumes that the set of messages generated by a

program does not change if some messages are delivered in a different order. The

paper also evaluates how to find all possible messages that can be delivered at any

point in time in a systematic way. More recently, extensions on how to identify

possible races between messages by efficiently scanning the search space have been

presented for distributed systems [89] and for MPI applications [90]. An interesting

extension to the generation of possible orderings of message delivery, and how to

explore the generated space without maintaining all possible executions active, is

presented in [91].

A tool to allow the user to select messages to be delivered in different order

is MAD [92]. In this case, the tool allows any message to be exchanged when a

wildcard receive is issued by the MPI program. The system, upon the user decision,

will re-execute the entire application with the modified message ordering.

A similar implementation, using the fork system call, is available through the

GDB debugger [23] for sequential programs. When debugging his sequential pro-

gram, a user can issue the checkpoint command, and have the program store a copy

of itself in a cloned process. This procedure could be applied to one of the processes
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that is part of a parallel application. However, the effects of the execution of the

cloned process will be immediately visible on the other processors composing the

parallel application. This would prevent rollback, and render the operation useless.

7.7 Future Work

The procedure described in this chapter allows a programmer to take an application,

and decide which messages are to be delivered, and in which order, overwriting the

default Charm++ queue. This mechanism could also be used by automatic tools

that would perform an unsupervised search of all (or certain) orderings of messages.

These tools would then notify the user when a discrepancy is detected on the final

states generated by two different message orderings. For this automatic mechanism

to work, we can identify two challenges that need to be overcome.

The first challenge relates to identifying whether two final states, generated by

two different message orderings, are identical or not. Note that simply comparing the

state of the memory is not enough. For example, a linked list could contain elements

in different order, but if this does not affect the algorithm, then the two states should

be considered equivalent. Floating point values may also be bit-wise different, but

still represent correct final states. One possible solution to this problem is to have

the programmer insert a specification if two states of the same Charm++ object

are equivalent. This could be in the form of an explicit equal operator, or with the

use of specialized Pack/Unpack routines.

The second challenge to consider is which message orderings are valid. Let us

first define a buggy application as an application where, for a particular input,

the output result can be incorrect. From this definition comes the corollary that

an application does not contain a bug if, for any possible valid input, the output

produced is always correct. This translates this second challenge as preventing the
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system from giving false positives.

At first glance one may say that any permutation of messages present in the

queue is a valid ordering. This can be true for programming models like MPI, where

upon a wildcard receive, all messages that can match that receive are to be assumed

equally valid. However, in Charm++ this is not true. Consider, for example, the

situation where an object sends itself (or to a local group) two messages, A and B.

If A is sent before B, then in Charm++ message A will always be processed before

message B, given how the local queue behaves.1 If the messages had priorities,

these would need to be considered as well. In the same example, if A has a lower

priority than B, and the two messages are sent from within the same entry method,

then in Charm++ message B will always be delivered first. Therefore, given the

definition above, an ordering that exposes a bug when the messages are processed

in an order which never happens in a normal execution is a false positive. Finding

exactly which orderings are valid and which are not is a challenging task, especially

when considering the transitivity property in message orderings.

1The processing order of local message in a Charm++ application is valid at the time this paper
is written. Future releases of Charm++ may alter the scheduler’s behavior, and programmers
should refer to the Charm++ manual for assumptions that can be made about the scheduler.
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8 Conclusions

In this thesis, we have addressed the issue of debugging parallel applications, in

particular when a large number of processors is required to reproduce a problem.

We presented a novel approach that leverages a tight integration with the runtime

system underlying the parallel application to allow the debugger to scale to as many

processors as the parallel runtime system does. In this scenario, we have illustrated

how unsupervised execution can be applied to relieve the user from controlling the

entire set of processors allocated, and concentrate only on those of interest.

While the application is running, both the runtime system and the user can

specify conditions that should raise a notification. For the runtime system, this

includes both signals sent to the applications, and more sophisticated memory-

related checks. In particular, we developed a memory infrastructure where different

objects co-existing inside a common address space and sharing the memory can be

protected from each other. Three protection mechanism to detect when a cross-

object corruption happens were presented, and their strengths and weaknesses were

studied.

The user can also insert conditions that will trigger the notification system.

The traditional method of compiling assertions inside the code is supported in a

scalable manner. In addition, a new method is proposed to dynamically insert cor-

rectness checks into the running parallel application without restarting it. This is

done through a generic interface that allows Python scripts to be inserted into a

running application, and an inspection framework to deal with the lack of reflec-

tiveness in the C/C++ language. This interface is also a contribution of this thesis,

146



and it is generic enough to allow uses other than debugging; some examples are

computational steering and data analysis.

Another contribution of this thesis is the consideration of the challenge of al-

locating a large number of processors for long debugging sessions. Programmers

already encounter many difficulties to debug their applications at scale, and the

issues are likely to increase as machines grow larger. In spite of that, little or no

work has been done prior to this thesis. To alleviate this problem and facilitate

programmers to debug their application at scale, in this thesis we presented three

approaches. The first solution exploits object-level virtualization to emulate a large

machine using a smaller one, and enables the user to debug his application as if it

were running on the real large machine. The second solution is called “processor ex-

traction”, and it combines two record-replay techniques into a three-step procedure.

The first being a non-intrusive light-weight solution to record only the application

non-determinism, the second being a more comprehensive record scheme that allows

a processor to be replayed in disjunction with the rest of the parallel application.

This procedure allows both the reduction of the disruption in the manifestation of

the application’s problem, and the reduction of the storage needed to re-execute

processors in isolation. The last solution we proposed to reduce the need for large

machines is to allow the user to test what effects are generated when messages are

delivered in a particular order. To enable a fast response time from the system,

we developed a mechanism to deliver a message “provisionally”, and rollback the

application without restarting it. The effects of the provisional delivery are erased

upon rollback.

Finally, throughout this thesis we have used the Charm++ runtime system as

the implementation platform of our techniques and ideas. As a consequence, one

contribution of this thesis is the environment available to Charm++ developers to

help them debug their applications. While this thesis focused primarily on large scale
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problems, the existing debugging environment has been greatly improved also for

parallel applications using only few processors. All the implementation described are

available with source code as part of the Charm++ and CharmDebug systems.
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Appendix A: Debugging API

In this appendix, we review the operations that are available to the user through the

CharmDebug interface, and how these can be extended by additional modules. All

these queries are performed via the generic Converse Client Server (CCS) protocol.

A.1 Queries to a Charm++ Application

The queries that a debugger (like CharmDebug) can issue to a running Charm++

application are listed below. Each query is represented by an alpha-numeric string

that will be matched by the runtime system to determine the operation to be per-

formed. The list can be divided into two categories.

Queries in the first category have direct access to the communication layer,

and are implemented at the lowest level. If they can be performed in parallel,

an appropriate reduction mechanism must be registered at startup. Moreover, the

output returned to the user does not have a predefined format, and is specific to

each query. Queries in this category are mostly commands to the application, and

they generally return a simple confirmation as a reply. They can also return complex

data structures if necessary. The naming convention consists of the word “debug”

at the beginning, followed by the name of the module in charge of the operation,

followed by the operation performed.

“debug/converse/freeze” Suspend the execution on the given processors. Mes-

sages in the queue will not be processed further.

“debug/converse/status” Gather the status of the process (i.e suspended, run-
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ning, etc).

“debug/converse/arch” Gather information about the architecture on which the

application is running.

“debug/charm/bp/set” Set a breakpoint on the entry method specified as a

parameter on the given processor set.

“debug/charm/bp/remove” Remove the breakpoint on the entry method spec-

ified as a parameter on the given processor set.

“debug/charm/bp/removeall” Remove all breakpoints from the requested pro-

cessor set.

“debug/charm/continue” Issue a continue command. The scheduler returns to

process messages normally.

“debug/charm/next” Deliver a single message in the queue on the given proces-

sors. The message processed is the next in the queue.

“debug/converse/startgdb” Start a sequential debugger attached to the given

processors.

“debug/converse/quit” Terminate the parallel program.

“debug/charm/deliver” Deliver a specific message in the queue, overwriting the

natural order. The message index is passed as input to the query.

“debug/provisional/deliver” As “debug/charm/deliver”, only that the message

is delivered provisionally, with possibility of rollback.

“debug/provisional/rollback” Undeliver a certain number of messages that had

been delivered provisionally. Possibly return to normal mode if all the provi-

sional messages are undelivered.
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“debug/provisional/commit” Commit permanently a certain number of mes-

sages that had been delivered provisionally. Possibly return to normal mode

if all the provisional messages are committed.

Queries in the second category have a specific output format, and they return

lists of objects. These use Pack/UnPack (PUP) routines typical of Charm++

applications to construct the reply. Internally, the system PUP::er class encodes the

reply. A facility class is available on the client debugger to help decode the data.

The naming convention is similar to the other category, the only difference being

the lack of the “debug” prefix.

“converse/lists” All the retrievable items (returns this list itself).

“charm/chares” All the chare types available in the application.

“charm/entries” All the entry methods for all the chare types.

“charm/messages” All the message types.

“charm/mains” The mainchares instantiated.

“charm/objectNames” The chare groups/nodegroups instantiated.

“charm/arrayElements” The array elements mapped on a specific processor.

“converse/localqueue” The messages enqueued on a specific processor.

“charm/readonly” The readonly variables declared by the application.

“charm/readonlyMsg” The readonly messages declared by the application.

“charm/messageStack” The list of messages that are being delivered (for nested

entry methods).
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A.2 Extending Query Set

To implement a debugging functionality not present in the Charm++ core, a user

can link an external module into the application, and register in this module exten-

sions to the debugging capabilities. Both sets of queries (pre-formatted and non)

can be extended. The charmdebug memory module (available by default as one of

the possible memory allocators) extends this interface, and it provides the following

queries.

Queries without a pre-formatted reply. To extend this set, the developer has

to provide a new “CCS” handler for the newly provided function, and register it

to the CCS framework. If the operation can be performed on multiple processors

simultaneously, a reduction function must be registered with the operation. The

memory charmdebug module provides:

“debug/memory/stat” Gather statistics about the allocated memory.

“debug/memory/allocationTree” Gather a tree-based view of the allocated

memory (based on the stack trace at the allocation instant).

“debug/memory/leak” Perform a search for memory leaks (a parameter specifies

which method should be used).

“debug/memory/mark” Mark/unmark all the currently allocated memory as

non-leak.

Pre-formatted queries. To extend this set, the developer has to register the new

tag with the CpdList framework, and either extend the C++ class CpdListAccessor

or its equivalent C extension. The memory charmdebug module provides:

“memory/list” A list of all the memory allocated on a given processor.
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“memory/data” The content of a given allocated memory block as a byte buffer.

A.3 Notification Events

When something of interest happens on a particular processor, the parallel runtime

system can notify the attached debugger of the event occurred, and possibly sus-

pend execution. In the Charm++/CharmDebug system, this is implemented

via a function named CpdNotify. To send a notification, the application calls this

function with a notification code (listed below) and its related parameters as ar-

guments. On the debugger side, the notification is received via a callback mech-

anism. Following the standard semantic used in Java programming, components

(both CharmDebug GUI or any add-on) can register itself as a NotifyListener.

Upon receipt of a notification, the corresponding method on each registered Noti-

fyListener is invoked. The list of notifications currently available follows.

SIGNAL A signal was sent to a processor.

ABORT The application failed an assertion or has explicitly called abort().

FREEZE A processor has suspended message processing.

BREAKPOINT A processor hit a breakpoint.

CORRUPTION The memory has been corrupted.
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Appendix B: Python/Charm++
Interaction API

In this appendix, we enumerate the functions that are provided to Python scripts

inserted into a running application.

Inside the Python interpreter, before the user code is executed, the “ck” module

is pre-loaded. The functions currently available in the “ck” module are:

printclient Print a string on the client (pulled via PythonPrint queries).

printstr Print a string on the server.

mype Return the index of the processor where the script is executing.

numpes Return the total number of processors the application is using.

myindex Return the index of the chare array element connected with the script.

This value has the same dimensionality as the chare array connected. “none”

is returned if the attached chare is not part of an array.

read Return the content of a specific variable. This function calls the “read”

method of the associated chare type. The arguments passed into this func-

tion must match those expected by the read method of the chare type. The

returned type can be any complex data structure, and its content is specified

by the chare type’s read method.

write Overwrite a specified variable with the provided value. This function calls

the “write” method of the associated chare type. The arguments passed into

this function must match those expected by the write method of the chare

type.
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When writing Python code through the CharmDebug interface. The “charm”

module is also pre-loaded with some predefined methods available. These methods

help to inspect the application data structures, and they are:

getMessage Return a handle to the message currently being delivered.

getStatic Return the content of a specified readonly variable.

getArray Return a new handle for the specified element of the array data structure

pointed by the specified handle.

getValue Return the content of a named variable inside the specified object handle.

getCast Reinterpret the handle as a different type. This is important for C++

classes with multiple inheritance were the handle can change when casting a

type to another type.
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