
A Study of Memory-Aware Scheduling in
Message Driven Parallel Programs

Isaac Dooley, Chao Mei, Jonathan Lifflander, Laxmikant V. Kale
Department of Computer Science

University of Illinois
Urbana, IL 61801

Email: {idooley2, chaomei2, jliffl2, kale}@illinois.edu

Abstract—This paper presents a simple, but powerful memory-
aware scheduling mechanism that adaptively schedules tasks
in a message driven distributed-memory parallel program. The
scheduler adapts its behavior whenever memory usage exceeds
a threshold by scheduling tasks known to reduce memory
usage. The usefulness of the scheduler and its low overhead
are demonstrated in the context of an LU matrix factorization
program. In the LU program, only a single additional line
of code is required to make use of the new general-purpose
memory-aware scheduling mechanism. Without memory-aware
scheduling, the LU program can only run with small problem
sizes, but with the new memory-aware scheduling, the program
scales to larger problem sizes.

I. INTRODUCTION

It is well known that some parallel algorithms require large
quantities of memory. Unfortunately, large parallel systems
have limited amounts of memory on each node, and hence
parallel programs must use algorithms that do not exceed the
available memory bounds.

This paper describes a general purpose memory-aware
scheduling technique that can automatically restrict the mem-
ory usage for a class of parallel algorithms that would other-
wise run out of memory in a distributed memory machine.
Because the scheduling technique is included in a general
purpose parallel runtime system, the parallel program needs
only minor changes to use the scheduler.

Often it is easier to implement a simple naı̈ve algorithm
instead of a more complicated explicitly memory-aware algo-
rithm. The productivity of a programmer will likely be higher
if a simpler memory-oblivious algorithm can be written while
allowing the runtime system’s scheduler to restrict memory
consumption.

The memory-aware scheduling scheme described in this
paper could be used for different programs. The scheduling
scheme effectively reduces the memory requirements for an
algorithm implemented in a manner that is mostly oblivious
to its own memory usage. Specifically, this paper demonstrates
the scheduler’s utility in the context of an LU dense matrix
factorization program.

All the scalable LU dense matrix factorization schemes fre-
quently used today are written using algorithms that explicitly
restrict the progress of tasks to ensure that there always is
enough memory available to make forward progress. Some
algorithms, such as the one used in the High Performance

Linpack implementation use a fixed parameter that statically
controls the lookahead depth, or number of algorithm stages
that can be executed ahead of the oldest currently executing
algorithm stage [3]. When the amount of lookahead permitted
is small, the degree of concurrency is small and the required
memory buffer overhead is small. Conversely, if the amount
of lookahead permitted is high, the degree of concurrency is
high but the required memory footprint becomes large. The
expanded memory footprint is caused when may incoming
data blocks are buffered on each processor before pairs of these
blocks can be consumed in each trailing update operation.

Other LU implementations use dynamic lookahead so they
can fully exploit as much concurrency as will fit in the
available memory [8]. Memory buffers are reserved for specific
tasks in a certain order and sending and receiving processors
coordinate the accesses to the reserved buffers to ensure that
deadlock will not occur if memory is exhausted for some
processor. Such implementations use an application specific
scheduler with a user-level threading package to allow the
program to proceed in a safe manner.

One key goal that all implementations share is to achieve
high performance. This can be achieved by performing com-
putation aggressively along the critical path so that the parallel
machine achieves high utilization. A message driven style
of programming such as Charm++ [9] allows this pattern
of computation to be expressed naturally. The case study
presented in this paper, an LU implementation, was written
in Charm++.

II. MEMORY AWARE SCHEDULING

This paper describes a memory-aware scheduler that can
constrain the memory consumption of a class of naı̈ve parallel
algorithms that are oblivious to memory consumption. The
memory usage is reduced by the scheduler as it chooses
to schedule tasks known to reduce the memory footprint
whenever available memory resources are low. This new
scheduler was created by modifying the existing scheduler
in the Charm++ Runtime System. The new scheduler can
therefore be used by any Charm++ program, and hence it
is general purpose. In essence, the scheduler is an instance
of implementing an adaptive technique to automatically ad-
just application behavior to available memory. This adaptive

technique could also be used in some other adaptive runtime
systems that are now being developed such as ParalleX [5].

In order for the scheduler to know which tasks should be
scheduled when memory resources are limited, the system
requires only minor changes to the Charm++ program. The
programmer simply needs to add an annotation for each of the
tasks that reduce memory consumption. This section describes
the existing Charm++ scheduling system and the modifications
that result in a simple memory-aware distributed scheduler.

A. Existing Charm++ Scheduler

The existing Charm++ Runtime System uses a flexible
scheduling mechanism to execute tasks spawned locally and
tasks associated with incoming messages from other proces-
sors. In a Charm++ program, the tasks are Entry Method
Invocations on Chare Objects, Chare Groups, or Chare Node
Groups [11]. The flow of control for a Charm++ parallel
program proceeds as entry methods are invoked. These entry
methods perform computations and asynchronously invoke
other entry methods.

The existing scheduler in the Charm++ Runtime System,
which runs on each processor of a distributed or shared
memory machine, supports prioritized execution in both LIFO
and FIFO modes. Priorities or LIFO/FIFO designations can be
associated with each entry method invocation. If no priority
is specified, a default medium priority is implicitly assumed.
When an entry method is invoked, its designated queuing
scheme is stored along with any parameters to the method
inside a message. Each message is then delivered to the
destination processor or processors. Each destination processor
will enqueue the message using the queuing scheme specified
in the message’s header.

Although the primary Charm++ scheduler queue acts just
like a priority queue, it is actually composed of three data
structures: a high priority heap, a default (or zero) priority
queue, and a low priority heap. Charm++ entry method invo-
cations are stored in messages recorded in one of these three
data structures. The reason that three separate structures are
used instead of a single priority queue is that the double ended
queue used for the frequent default priority case can be slightly
faster than a more complicated heap data structure.

B. New Adaptive Charm++ Scheduler

The new adaptive scheduler is a simple variant of the
existing scheduler. The new scheduler adapts its behavior
whenever the current memory usage for the processor exceeds
a threshold. The threshold can be specified at runtime as a
command line argument.

As long as the current memory usage is below a threshold,
the scheduler acts as it normally would, processing messages
one at a time in prioritized order from the primary scheduler
queue. When the current memory usage exceeds the specified
threshold, certain types of tasks are scheduled immediately
even though they might have priorities lower than other tasks
in the queue. Specifically, tasks that potentially reduce memory

usage will be scheduled ahead of all other tasks whenever a
processor’s memory usage exceeds the threshold.

To modify the behavior of the scheduler when the memory
usage is high, a call is made to a function that modifies the
scheduler queue just prior to determining which task ought to
be executed next. The modification function simply performs
a linear scan through the three priority queue data structures,
searching for the first task known to reduce memory usage.
Once such a task is found, the task’s entry in the priority
queue is removed, and the task is re-enqueued with maximum
priority. Then the scheduler resumes its normal operations,
resulting in that task being executed next.

Of course, the scheduler needs to know which tasks are
candidates for rescheduling. The adaptive scheduler therefore
contains a list of such tasks. The list is populated with tasks
specified by the application programmer in an interface file.
All Charm++ programs contain one or more simple interface
files that specify the entry methods and other parallel con-
structs in the program. A simple translator parses the interface
file and generates C++ code that is compiled into the program
to support the specified entry methods and other constructs.
A new tag called [memcritical] has been added to the
interface file’s grammar and parser. When this new tag is added
as an annotation to any entry method, the entry method will
be included in the scheduler’s list.

III. LU CASE STUDY

To evaluate the usefulness of the memory adaptive scheduler
described in section II-B, an LU program was modified
to enable the adaptive scheduler. This section describes the
LU implementation as well as its performance characteristics
both with and without the adaptive scheduler. The resulting
memory consumption patterns for the program are analyzed
to show that the memory-aware scheduling technique does
indeed reduce memory usage in a useful manner. The section
concludes with a set of insights gained from this case study.

A. Experimental Setup

All runs of the Charm++ LU implementation are performed
on 64 nodes of an IBM Bluegene/P system at the Argonne
Leadership Computing Facility. Only one core per node is
used, because the memory utilization patterns are the focus of
this paper. Each node contains four processor cores running
at 850MHz and 2GB of memory. The peak floating point
performance of each processor core is 3.4 GFlop/s. All vi-
sualizations of processor timelines are generated from actual
application traces analyzed using the Projections performance
analysis toolkit [10].

For the performance critical numerical kernels, when using
an IBM Bluegene/P system, the Charm++ LU program uses
the dgemm and dtrsm routines from the Engineering and
Scientific Subroutine Library (ESSL).

For performance comparisons, the well-known High Perfor-
mance Linpack Benchmark (HPL) version 2.0 was run on the
same system with identical block sizes and matrix sizes.

B. Charm++ LU Implementation

To write a dense LU algorithm, there are many imple-
mentation choices to be made. This section describes some
of the design decisions made when developing a Charm++
implementation of dense square LU matrix factorization. The
LU program was written as simply as possible, without any
explicit memory-awareness in the parallel program’s code.
This implementation does not perform pivoting. Hence some
numerical stability is lost, but the same number of floating
point operations are still performed when compared to an LU
program that implements pivoting [6].

The program uses a 2-D chare array to decompose the
2-D matrix into b × b square blocks. Each matrix block is
stored in one of the chare array elements. The mapping of
the chare array elements to processors is flexible. The default
Charm++ mapping is a block mapping, but the program can
easily specify other mappings, and for this LU program two
custom mappings were developed. Section III-C describes the
advantages and tradeoffs for these mappings.

The main communication pattern that occurs in an LU
matrix factorization is a multicast of a data block from a source
block to all subsequent blocks in the same row, and a down-
ward multicast of a data block from its source to all blocks
below it in the same column. The Charm++ language natively
supports chare array section sends, which are a mechanism for
sending a single message to a set of destination chare array
elements. The programmer can choose one of many predefined
algorithms for each section send [11]. The Charm++ LU
implementation can therefore easily represent the pattern of
communication that needs to occur. The multicast algorithm
that appears to perform well for the cases described below
uses a simple processor spanning tree of degree 4.

The main computations performed in a dense LU algorithm
are matrix-matrix multiplications that update the values in
a block. This update operation is referred to as a trailing
update. For block (i, j), the block LU algorithm performs
min (i, j) trailing updates. The closer a block is to the bottom
right corner of the overall matrix, the more computation is
performed for it. Other computationally intensive portions of
the algorithm involve local single-block LU factorizations to
be performed for blocks along the diagonal, and updates along
the topmost active row and leftmost active column.

To factorize an n × n matrix, approximately 2n3

3 floating
point operations are required. Assuming the matrix is decom-
posed into b×b square blocks, the fraction of the floating point
operations spent inside the matrix-matrix multiply operation
approaches 1 − 1

b2 as b increases [6]. Thus for large LU
factorizations, almost all floating point operations occur in the
context of matrix multiplication. Therefore, a performance of
a good LU implementation should approach the performance
achieved by the double precision matrix-matrix multiply.

C. Mapping Blocks to Processors

There are two mapping schemes implemented in the LU
program. The mapping schemes define the processor that
creates and perform operations on each chare array element

Fig. 1. A timeline view, colored by memory usage, of an LU program
run on 64 processors using a traditional Block-Cyclic Mapping for a N =
32768 sized matrix with 512×512 sized blocks. The traditional block-cyclic
mapping suffers from limited concurrency at the end (the right portion of this
plot).

and its corresponding matrix block. The first is a traditional
block-cyclic mapping. A second mapping is proposed in this
paper, as it achieves better performance than the block-cyclic
mapping scheme for certain problem sizes and numbers of
processors. The mapping schemes are static, so the blocks do
not migrate between processors. All work associated with a
block will be performed on the processor owning the block.

1) Block-Cyclic Mapping: The block-cyclic mapping
scheme is the traditional method used by many parallel LU
implementations [8]. The advantages of a block-cyclic map-
ping are its simplicity and its relatively low communication
volume. Each row or column of blocks spans only

√
p of

the p processors. Thus all of the multicasts have at most
√
p

destination processors. However, the disadvantage is that the
work is unevenly balanced near the end of the computation.
Figure 1 visualizes the entire computation for a run of the LU
program on 64 processors. In an attempt to fix the imbalance
near the end of the computation, a second mapping scheme
was developed.

2) Balanced Snake Mapping: In order to balance the
amount of work that is performed on each processor, a new
mapping scheme was developed called a balanced snake
mapping. Figure 2 helps illustrate the order in which blocks are
mapped in this scheme. The blocks are traversed in the order
shown by the arrows. This traversal order visits the blocks
in roughly decreasing order of the amount of work expected
to be performed by each block. As each block is visited, it is
assigned to the processor which has been assigned the smallest
amount of work so far. Thus the first p heaviest blocks will be
assigned in a round robin manner to the processors, and the
remaining blocks will be assigned in a manner that attempts
to balance the load across the processors. The assignment
function also forces subsequent blocks in traversal order to
be on different processors.

It is expected that the number of processors spanning each
row of blocks is larger than

√
p. In the case of 64 processors,

Mapping starts here

...

N

N-1

N-2

...

3

2

1

Fig. 2. The traversal order for the balanced snake mapping.

with a matrix partitioned into 64 × 64 blocks, there are
on average 43 unique processors spanning each column of
the matrix and 49 unique processors spanning each row of
the matrix. So in this case, the average number of unique
processors on each row and column is much higher than√
p =

√
64 = 8. Thus the multicast of a block along a row

or column will involve more processors than the traditional
block-cyclic scheme, and the multicasts will therefore incur a
higher overhead. For large numbers of processors, the block-
cyclic mapping performs better than this newly proposed
balanced snake mapping.

3) Comparison of the Two Mapping Schemes: Although
the balanced snake mapping does a much better job of
evenly distributing the workload, the increased overhead for
communication results in small delays between many of the
matrix-matrix multiplications when compared to the block-
cyclic mapping. Figure 1 shows that the block-cyclic mapping
exhibits a load imbalance near the end of the computation,
while the balanced snake mapping for the same problem
exhibits a much better load balanced, as seen in figure 3.
When the N = 32768 problem with 512 × 512 block sizes
is run on 64 processor cores the balanced snake mapping
performs better, achieving 138 GFlop/s, whereas the block-
cyclic mapping yields 131 GFlop/s. A theoretical analysis of
the computation and communication properties of the block-
cyclic mapping and some other matrix decomposition schemes
are provided elsewhere [7].

4) Automatically Determining The Optimal Mapping
Scheme: Although it is clear that the block cyclic scheme
has benefits for large numbers of processors, and the balanced
snake mapping exhibits a better load balance for small matrix
sizes, the decision of which scheme to use for a specific

Fig. 3. Plot of memory usage on each processor over time, both without
and with adaptive scheduling using a 1000MB threshold.

problem size and machine depends upon the performance char-
acteristics of the machine as well as the problem size. Thus
it is advantageous for the choice to be made automatically.
This section describes one such method for choosing between
the mapping schemes at runtime. It is possible to automate
the choice between the two mapping schemes. The automatic
decision can utilize the fact that the block-cyclic mapping
scheme produces larger amounts of idle time for some of the
processors toward the end of the factorization.

To automatically determine which scheme to use, the LU
program is adapted to use the measurement based steering
framework provided by the Charm++ runtime system [11].
The program provides to the steering framework a tunable
knob and some information about the effects of the knob.
In this case the program specifies that one mapping scheme
can possibly reduce the amount of idle time wasted by the
processors. The steering framework will therefore be able
to turn the application provided knob when a large amount
of idle time is detected. Figure 4 shows a performance
visualization of an execution of the program performing 10
consecutive LU factorizations. The initial LU factorizations
result in a large amount of idle time because the matrix
blocks are not well distributed across the processors. Hence
after a period of observation for the first 3 factorizations, the
steering framework decides to turn the application provided
knob that switches from the block-cyclic mapping scheme to

Fig. 4. Visualization of a program performing 10 LU factorizations. After the
third LU factorization, the measurement based automatic steering framework
instructs the program to use the snake-mapping instead of the block-cyclic
mapping. This adaptation reduces the amount of idle time found in the
subsequent 7 factorizations.

the balanced-snake scheme. The subsequent LU factorizations
complete more quickly, although a larger amount of overhead
time is present. The increased overhead time is caused by
the increased multicast communication volume inherent in the
mapping scheme.

D. Priority Based Dynamic Lookahead

One general goal when writing parallel programs is to
expose as much concurrency as possible to provide for the
greatest opportunities to fully exploit the available processors
and obtain high application performance. In common parallel
LU algorithms, there are important tasks along the critical path
of the computation, namely the block LU factorizations and
the following topmost active row and leftmost active column
block updates. Scheduling such tasks as early as possible
results in greater exposed concurrency earlier in the program.
The other tasks, namely block trailing updates, can sometimes
be delayed relative to the other tasks. If the trailing updates
are executed with high priority, the program will not expose
enough concurrency to keep all processors busy because the
other critical path tasks are delayed in time. Alternatively, if
the trailing updates are executed with low priority, then the
critical path tasks will execute sooner, causing an avalanche
of enqueued block trailing updates across all processors. The
enqueued block trailing updates necessitate the buffering of
two incoming data blocks. These blocks will occupy space
in memory, and an increase in delayed trailing updates will
directly relate to increase in memory usage.

When writing an LU program, there are a few options
regarding how much lookahead to support. High degrees of
lookahead cause more trailing updates to be delayed, increas-
ing memory usage. Low degrees of lookahead ensure that

trailing updates cannot be buffered for too long, and hence
the memory usage will not be as high.

The simplest LU implementations ignore the issue of looka-
head and allow the program to proceed without regard to how
far ahead one processor can compute relative to tasks buffered
on itself or other processors [4]. Such an unlimited lookahead
scheme is not scalable because memory usage can grow as
the problem size is scaled up. At some point the program
cannot run because memory is exhausted and the program
will deadlock. Other algorithms, such as the one used in the
High Performance Linpack implementation include a static
parameter specifying the allowed degree of lookahead [3].
Other implementations support dynamic lookahead, but restrict
some tasks so that deadlock will not occur when memory is
exhausted [8].

Dynamic lookahead is important because better perfor-
mance can be achieved due to the greater amount of available
concurrency than is found in a static lookahead algorithm.
Hence dynamic lookahead is typically preferred over static
lookahead [8]. However, existing dynamic lookahead schemes
require applications to include specific code that explicitly co-
ordinates between sending and receiving processors to ensure
memory is not exhausted.

The Charm++ LU implementation described in this paper
is written to provide unlimited lookahead, with no code
attempting to reduce concurrency. Priorities are assigned to
tasks with higher priorities for block LU operations occurring
in the upper-leftmost active blocks and lower priorities for
the trailing updates, with priorities decreasing for each type
of event from top left to bottom right. The priority scheme
should provide as much concurrency as is available at any
point in time.

This section shows that although the LU program itself
is written with unlimited lookahead and hence a high level
of available concurrency, a general purpose memory-aware
scheduling technique provides a sufficient mechanism to re-
duce the memory consumption of the simple LU program. This
scheduling technique will dynamically vary the lookahead in
the case of LU, but could also be used to control the memory
usage patterns of other Charm++ programs.

E. Enabling Memory-Aware Scheduling

To enable the new memory-aware Charm++ scheduler, the
user is only required to modify the Charm++ interface file
(.ci file) for the program by adding one annotation to each
entry method that could be used for reducing memory usage.
The reason this current implementation uses annotations is that
the user has knowledge of the program behavior, particularly
which entry methods will decrease memory usage. In the LU
implementation, the trailing update entry method is the sole
method that is annotated for possible rescheduling when the
memory threshold is reached.

Figure 3 visualizes the memory usage over time for two
runs of the LU program. The first run does not use the
memory adaptive scheduler, while the second one does. The
figure demonstrates that the memory utilization is reduced

 200 No Threshold400 600 800 1000 1200

142

124

126

128

130

132

134

136

138

140

Memory Threshold (Mb)

GF
lo

ps

Best performance (for this size):
139.02 GFlops

Memory Threshold vs. GFlops
for 32k by 32k Matrix on 64 PEs

Fig. 7. Performance of LU program for various memory thresholds. The
problem is a factorization of an N = 32768 sized matrix with 512 × 512
sized blocks run on 64 processor cores of BG/P.

once the memory adaptive scheduling is enabled for the
trailing updates. Because for this case, the memory usage
approaches the physical memory on a BG/P node, this is the
largest problem size, N=32K, that can be run on 64 nodes of
BG/P with the traditional Charm++ scheduler. The maximum
memory usage is 1873MB without memory-aware scheduling,
and 1122MB with memory adaptive scheduling.

F. Analysis of Resulting LU memory patterns

To analyze the effects of the memory-aware scheduler,
the LU program was run with varying thresholds. Figure
5 displays the memory utilization over time with varying
thresholds, for an N = 32768 sized matrix with 512 × 512
sized blocks. The horizontal red line displays the correspond-
ing memory threshold for each run. This figure shows that
adapting the scheduler queue does constrain the memory that
is used on each processor. It appears that 300MB was the
minimum effective threshold for this problem size, which is
evidenced in figure 5 where the actual memory usage for all
the processors is mostly above memory threshold. In the runs
where the threshold is higher (600MB and 1200MB), the range
of memory footprints for all processors mostly straddles the
threshold. In all three cases where a threshold is applied, the
memory usage is reduced from the original version where no
adaptation was performed in the scheduler.

G. Analysis of Performance

When running with the N=32768 matrix problem size and
512× 512 block size, the Charm++ LU implementation using
the balanced snake mapping performs at 138 GFlop/s (63% of
peak for 64 cores). The same implementation using a block-
cyclic mapping performs at 131 GFlop/s (60% of peak for
64 cores). Both of these configurations perform better than
the standard HPL benchmark [3]. Figure 8 shows the result-
ing performance of 93 different configurations for the HPL
benchmark. All of these configurations use the same N=32768
matrix problem size and 512 × 512 block size, but the other
configurable parameters are varied. The broadcast method,

100 1 2 3 4 5 6 7 8 9

120

0

20

40

60

80

100

Depth of Lookahead

GF
lo

ps

Fig. 8. HPL performance on 64 processors for 93 different configurations
for a N = 32768 sized matrix with a 512× 512 block size.

processor grid arrangement, depth of lookahead, panels in
recursion, and recursive stopping criterion were all varied. The
configurations were tested in two phases as illustrated in the
figure. In the first phase, we varied some parameters to find
a good lookahead value as illustrated by the line that shows
the HPL performance changes in terms of GFlop/s with the
change of depth of lookahead. It is clear that among all the
depth of lookahead, the depth of 2 gives the best performance
in this case. Then, in the second testing phase, we varied other
aforementioned configurations with the fixed lookahead depth
of 2. The maximal observed performance for HPL among these
93 different configurations is only 111 GFlop/s (51% of peak
for 64 cores). The performance of the single-threaded ESSL
dgemm, which provides an upper bound on the performance
of any LU implementation, is 159 GFlop/s (73% of peak for
64 cores).

H. Costs of Modifying the Scheduler Queue

The overhead cost of adapting the scheduler queue for the
LU factorization program is small. To measure the overhead,
timer calls were added to measure the time spent in the
code that adapts the scheduler queue. Included in this code
is the function that determines the current memory usage and
compares it to the threshold. When the LU program is run
with an N = 32768 sized matrix and a 512 × 512 block
size, the average total amount of time spent in the scheduler
modification code on each of the 64 processors was 0.0239
seconds while the whole LU factorization takes 168.4 seconds.
This corresponds to a negligible overhead of 0.014%.

I. Insights Gained From This LU Implementation

The naı̈vely written LU program exhibits a simple memory
usage pattern: memory usage changes slowly, and is relatively
uniform across processors at each point in time. The memory
usage generally grows to a single maximum value on each
processor and then shrinks back down to the minimum re-
quired to store the matrix. The memory patterns are different
however when a memory-aware adaptive scheduler is used, or
when lookahead is restricted by other means. Hence, using
memory adaptive scheduling on each processor can constrain
the memory usage in a useful manner.

1800 20 40 60 80 100 120 140 160

2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)

Ra
ng

e
of

 m
em

or
y

us
ag

e
(G

B)

Memory Usage with
No Threshold

1800 20 40 60 80 100 120 140 160

2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)

Ra
ng

e
of

 m
em

or
y

us
ag

e
(G

B)

Maximum memory usage
over threshold: 162MB

Memory Usage with
1200MB Threshold

1800 20 40 60 80 100 120 140 160

2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)

Ra
ng

e
of

 m
em

or
y

us
ag

e
(G

B)

Maximum memory usage
over threshold: 122MB

Memory Usage with
600MB Threshold

1800 20 40 60 80 100 120 140 160

2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)
Ra

ng
e

of
 m

em
or

y
us

ag
e

(G
B)

Maximum memory usage
over threshold: 122MB

Memory Usage with
300MB Threshold

Fig. 5. Ranges of maximal memory utilization across all processors over time for different thresholds. The adapting scheduler causes the memory usage to
remain close to the threshold for this LU factorization.

The performance of the LU program over a range of
memory thresholds shows two performance regimes. The first
exhibits decreasing performance when lower thresholds are
used, while the second regime is a large plateau of sufficiently
large thresholds. Figure 7 shows that these two performance
regimes meet at some point, namely the knee in the plotted
curve knee in the curve.

A simple straightforward implementation of LU in the
Charm++ language can achieve reasonable performance,
while remaining flexible and not requiring complicated
application-specific schedulers or static limitations on looka-
head. Charm++ makes it easy to specify the mapping of blocks
to processors and to specify the priorities of each task. When
developing the LU program, we found that a non-standard
mapping outperformed the traditional block cyclic mapping.

Finally, the new adaptive scheduling technique enables
larger LU factorizations to be performed, even ones that pre-
viously would have failed by depleting all available memory.
Figure 6 shows a timeline visualization of one such larger
factorization of an N = 51200 matrix size.

IV. AUTOMATICALLY FINDING AN OPTIMAL MEMORY
THRESHOLD

Although the scheduling scheme presented earlier in this
paper can reduce memory consumption for a certain class
of programs, the memory aware scheduling scheme does not
provide hard upper limits on the amount of memory used by a
program. Thus a reasonable threshold needs to be chosen for
a run of the program. The simplest scheme would be to set

the threshold to a fixed fraction of the system’s memory. A
safer, and better solution is to automatically find the threshold
that yields the best performance. This section describes an
automatic scheme that slowly increases the threshold while
observing memory consumption measurements across all pro-
cessors.

The proposed scheme is simple. The memory threshold is
initially set to a safe low value, but it is automatically increased
when previously observed memory usage measurements are
low enough. After the threshold has been increased to a level
where further increases are likely to exceed the desirable
limits, the tuning framework [11] scans through its recorded
history to find the best known configuration. The best known
configuration can then be used for all future factorizations.
This automatic tuning system can find a configuration provid-
ing good performance while restraining the actual memory
consumption even when it exceeds the specified threshold.
Figure 9 displays the actual memory usage over successive
LU factorizations for a program using the automatic threshold
determination scheme described in this section.

V. RELATED WORK

One implementation of LU uses virtualized descriptors
for the blocks allowing an arbitrary mapping to processors,
specifically to enable work stealing and adaptation to newly
available processors in a grid context [4]. That implementation
achieves 21% of peak on 128 Xeon processors connected via
Gigabit Ethernet with matrix width of N = 46, 080. That
implementation is similar in many ways to the asynchronous

Fig. 6. A timeline view of an execution of LU on 64 processors for a larger matrix N=51,200 using the adaptive scheduler. This same program dies when it
runs out of memory when not using the adaptive scheduler. Each row in the figure corresponds to one of the processors, with colors indicating memory usage.
Black tick marks on the top of each row indicate a point where a trailing update is immediately executed because the memory usage is over the specified
threshold.

Fig. 9. Actual memory usage for each of 44 processors while the LU program performs 30 successive factorizations. The memory threshold is increased by
an automatic tuning mechanism whenever memory usage measurements from previous factorizations are still low.

implementation in this paper. It does not perform pivoting,
and it uses asynchronous unlimited lookahead and virtualized
locations of the blocks. It however only uses a ring multicast
strategy. Their implementation suffers from the memory con-
straints described in this paper, and it is specifically noted that
the implementation cannot run the N=46,080 problem for the
infinite lookahead priority configuration.

Memory-aware scheduling has also been used in other con-
texts. The constructive algorithm [13] considers data and mem-
ory constraints in addition to other constraints for scheduling
tasks in real-time systems. The scheme described in [12]
collects memory performance related data online and then
feeds those to an analytical model of cache and memory
behavior, trying to minimize the overall miss-rate in schedul-
ing a collection of processes time-sharing or space-sharing
a cache. In contrast, our memory-aware scheduling limits the
amount of memory usage for a running parallel application on
clusters, which indirectly controls the amount of concurrency
(the lookahead depth in the LU case) during the execution.

The hybrid scheduling [1] scheme, applied in the parallel
solution of linear systems, first estimates the memory usage
besides the workload on a static optimistic scenario during the
analysis phase, and then such estimations are used during the
factorization phase to constrain the dynamic decisions to better
balance the workload. In comparison, our scheme does not
perform any static analysis but instead depends on the dynamic
memory footprint for adaptive decisions and trades off the
amount of concurrency for reducing the maximum memory

usage.
Other techniques for scheduling exist such as work-stealing,

which is the mechanism that is used by the Cilk scheduler
[2]. With this theoretical model, the authors are able to prove
bounds on the amount of memory needed by each processor.
However, this type of technique is not relevant to our LU
implementation, because there is no dynamic load imbalance
within a single LU factorization, if all processors are identical.
The data decomposition in LU necessitates that all the work
be assigned to processors in advance. Moving sections of
the array around as computation progresses will be counter-
productive. There is almost always work available, and it is
uniformly distributed, so opportunities for “stealing” do not
exist, except in situations where the number of processors
changes over time.

In addition, the work stealing memory consumption models
apply to shared memory machines; these formulations model
a global space of memory and prove bounds on that space.
However, our implementation must work in a distributed
memory setting where data is duplicated and messages are
copied and passed between nodes. This type of system coupled
with the characteristics of this problem, requires a different
approach, which we provide.

VI. CONCLUSION

In this paper, we introduced a new method for constraining
memory usage dynamically over the lifetime of an application.
We showed that this method can be utilized by a programmer
who simply annotates methods that reduce memory usage.

Furthermore, the utility of this new scheduling mechanism was
demonstrated by showing that an LU factorization algorithm
can be scaled beyond the N = 32768 problem size, without
any other modifications to the program. Typically, there is
a tradeoff between implementing dynamic lookahead, which
introduces many problems and increases the complexity of
the program significantly, and using static lookahead, which
constrains the concurrency. We showed that the best of these
extremes can be realized in Charm++ using a simple LU
factorization program, which implicitly allows for infinite
lookahead but is constrained by our memory-aware scheduler
so it can scale to large problem sizes.

The technique in this paper obviates the need for application
developers to perform any potentially painstaking analysis
of an application’s memory patterns. The generic adaptive
runtime technique presented in the paper requires the user
to only provide a single annotation, indicating which entry
methods reduce memory usage. In the future, we may explore
the possibility of automatically selecting tasks to be resched-
uled to eliminate the use of these simple annotations by the
programmer.

REFERENCES

[1] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid
scheduling for the parallel solution of linear systems. Parallel Comput.,
32(2):136–156, 2006.

[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An Efficient Multithreaded Runtime System.
In Proc. 5th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP’95, pages 207–216, Santa Barbara,
California, July 1995. MIT.

[3] J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK benchmark:
past, present and future. Concurrency and Computation: Practice and
Experience, Jan 2003.

[4] T. Endo, K. Kaneda, K. Taura, and A. Yonezawa. High performance
LU factorization for non-dedicated clusters. In Proceedings of the 4th
International Symposium on Cluster Computing and the Grid (CCGrid
04), pages 678–685, 2004.

[5] G. R. Gao, T. L. Sterling, R. Stevens, M. Hereld, and W. Zhu. Parallex:
A study of a new parallel computation model. In IPDPS, pages 1–6,
2007.

[6] G. H. Golub and C. F. Van Loan. Matrix Computations (Johns Hopkins
Studies in Mathematical Sciences). The Johns Hopkins University Press,
October 1996.

[7] B. Hendrickson and E. Womble. The torus–wrap mapping for dense
matrix calculations on massively parallel computers. Siam J Sci Stat
Comp, Jan 1994.

[8] P. Husbands and K. Yelick. Multi-threading and one-sided communica-
tion in parallel LU factorization. In SC ’07: Proceedings of the 2007
ACM/IEEE conference on Supercomputing, pages 1–10, New York, NY,
USA, 2007. ACM.

[9] L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth, and G. Zheng.
Programming Petascale Applications with Charm++ and AMPI. In
D. Bader, editor, Petascale Computing: Algorithms and Applications,
pages 421–441. Chapman & Hall / CRC Press, 2008.

[10] L. V. Kale, G. Zheng, C. W. Lee, and S. Kumar. Scaling applications
to massively parallel machines using projections performance analysis
tool. In Future Generation Computer Systems Special Issue on: Large-
Scale System Performance Modeling and Analysis, volume 22, pages
347–358, February 2006.

[11] Parallel Programming Laboratory, Department of Computer Science,
University of Illinois, Urbana, IL. The Charm++ Programming Lan-
guage Manual, (Version 6.1.3), 2010.

[12] G. E. Suh, S. Devadas, and L. Rudolph. A new memory monitoring
scheme for memory-aware scheduling and partitioning. In HPCA ’02:
Proceedings of the 8th International Symposium on High-Performance

Computer Architecture, page 117, Washington, DC, USA, 2002. IEEE
Computer Society.

[13] R. Szymanek and K. Kuchcinski. A constructive algorithm for memory-
aware task assignment and scheduling. In CODES ’01: Proceedings
of the ninth international symposium on Hardware/software codesign,
pages 147–152, New York, NY, USA, 2001. ACM.

