
c© 2010 ABHINAV BHATELE

AUTOMATING TOPOLOGY AWARE MAPPING FOR SUPERCOMPUTERS

BY

ABHINAV BHATELE

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Doctoral Committee:

Professor Laxmikant V. Kale, Chair
Professor William D. Gropp
Professor David A. Padua
Matthew H. Reilly, Ph.D.

Abstract

Petascale machines with hundreds of thousands of cores are being built. These

machines have varying interconnect topologies and large network diameters. Com-

putation is cheap and communication on the network is becoming the bottleneck

for scaling of parallel applications. Network contention, specifically, is becoming an

increasingly important factor affecting overall performance. The broad goal of this

dissertation is performance optimization of parallel applications through reduction

of network contention.

Most parallel applications have a certain communication topology. Mapping of

tasks in a parallel application based on their communication graph, to the physical

processors on a machine can potentially lead to performance improvements. Map-

ping of the communication graph for an application on to the interconnect topology

of a machine while trying to localize communication is the research problem under

consideration.

The farther different messages travel on the network, greater is the chance of

resource sharing between messages. This can create contention on the network for

networks commonly used today. Evaluative studies in this dissertation show that on

IBM Blue Gene and Cray XT machines, message latencies can be severely affected

under contention. Realizing this fact, application developers have started paying

attention to the mapping of tasks to physical processors to minimize contention.

Placement of communicating tasks on nearby physical processors can minimize the

distance traveled by messages and reduce the chances of contention.

Performance improvements through topology aware placement for applications

ii

such as NAMD and OpenAtom are used to motivate this work. Building on these

ideas, the dissertation proposes algorithms and techniques for automatic mapping of

parallel applications to relieve the application developers of this burden. The effect

of contention on message latencies is studied in depth to guide the design of map-

ping algorithms. The hop-bytes metric is proposed for the evaluation of mapping

algorithms as a better metric than the previously used maximum dilation metric.

The main focus of this dissertation is on developing topology aware mapping algo-

rithms for parallel applications with regular and irregular communication patterns.

The automatic mapping framework is a suite of such algorithms with capabilities

to choose the best mapping for a problem with a given communication graph. The

dissertation also briefly discusses completely distributed mapping techniques which

will be imperative for machines of the future.

iii

jo s� Emrt EsED hoi gn nAyk kErbr bdn।

kru an� g}h soi b� E� rAEs s� B g� n sdn॥ 1॥

If one remembers Him, all efforts are successful. He, who is the master of the
Ganas and has the face of a handsome elephant (Lord Ganesh), the source of

wisdom and culmination of auspicious qualities, may He bless me || 1 ||

aâAnEtEmrA�D-y âAnAÒnflAkyA।

c"� z�mFEltm̂ y�n t-m{ �Fg� zv� nm,॥ 2॥

I bow to the noble Guru who has opened my eyes, blinded by the darkness of
ignorance, using a collyrium stick of knowledge || 2 ||

iv

m�rF mA , EgErjA BV�l� ko smEpt।

To my Maa, Girija Bhatele.

v

Acknowledgments

The role played by my advisor, Prof. Kale in shaping this dissertation and my

career cannot be put in a few words. I will always be in his debt and admire him

for the great person he is. My parents and family have made me the person I am

today and I cannot thank them enough for being supportive of whatever I do. I

hope that my Maa will be proud when she reads this dissertation and hopefully this

will be a tiny token of appreciation for all that she has done for me. My gurus:

teachers at school, professors at IIT Kanpur and Illinois, Brni. Sucheta Chaitanya

and Neeb Karori Baba have been a source of guidance and encouragement and I

cannot thank them enough. I would also like to thank Eric Bohm, Sameer Kumar,

Gagan Gupta and Filippo Gioachin, who worked with me on research related to my

thesis. I am also thankful to my dissertation committee for valuable suggestions and

comments. Finally, I would like to thank my colleagues at the Parallel Programming

Laboratory for their constant criticism and I apologize to them for occupying Prof.

Kale’s precious time so often. However, if you want extra meeting time, walk with

him to his car when he leaves for home in the evenings.

vi

Grants

This dissertation used allocations on several supercomputers at various NSF and

DOE centers. Without running time on these machines, this work would not be

as relevant and convincing. This research was supported in part by NSF through

TeraGrid [[1]] resources provided by NCSA and PSC through grants ASC050039N and

MCA93S028. I wish to thank Fred Mintzer and Glenn Martyna from IBM for access

and assistance in running on the Watson Blue Gene/L. This work also used running

time on the Blue Gene/P at ANL, which is supported by DOE under contract DE-

AC02-06CH11357. Time allocation on Jaguar at ORNL was also used, which is

supported by the DOE under contract DE-AC05-00OR22725. Accounts on Jaguar

were made available via the Performance Evaluation and Analysis Consortium End

Station, a DOE INCITE project.

vii

Software Credits

Latex and gnuplot have been used in preparing this dissertation and are central to

the writing of this document. Several other softwares and libraries were used in

the process of working on my dissertation and writing it. The script bargraph.pl

developed by Derek Bruening (Co-Founder and Chief Architect, VMware, Inc.) has

been used for creating nice bar graphs. Paraview, developed as a collaboration by

Kitware, Inc., Sandia, LANL and others was used for visualizing maps for Ope-

nAtom. Omnigraffle and Adobe Illustrator (from the Creative Suite) were used for

creating the mapping diagrams in this dissertation which made the text much more

understandable. Triangle [[2]], developed by Prof. Jonathan Shewchuk was used for

triangulation of meshes generated as inputs for this research. Finally, Graphviz [[3]],

developed by AT&T Research Labs was used for visualizing regular and irregular

graphs and their mappings and as a library in Chapter 10.

viii

Table of Contents

List of Tables . xii

List of Figures . xiii

List of Algorithms . xvii

List of Abbreviations . xviii

List of Symbols . xx

1 Introduction . 1
1.1 Motivation . 1
1.2 Research Goals . 4
1.3 Thesis Organization . 6

2 Related Work . 8
2.1 Recent Work . 9
2.2 Contributions of This Thesis . 10

3 Existing Topologies . 12
3.1 Fat Tree and Clos Networks . 12
3.2 Mesh and Torus Networks . 13
3.3 Other Topologies . 16

4 Understanding Network Congestion 18
4.1 WOCON: No Contention Benchmark 18
4.2 WICON: Random Contention Benchmark 23
4.3 Controlled Contention Experiments 26

4.3.1 Benchmark Stressing a Given Link 26
4.3.2 Benchmark Using Equidistant Pairs 28

5 Hop-bytes as an Evaluation Metric 32
5.1 Experiment 1 . 33
5.2 Experiment 2 . 36

ix

6 Processor Graph: Topology Manager API 40
6.1 The Topology Manager . 40
6.2 Topology Discovery on Torus Machines 41

6.2.1 IBM Blue Gene Machines . 41
6.2.2 Cray XT Machines . 42

7 Application-specific Mapping . 44
7.1 OpenAtom . 44

7.1.1 Communication Dependencies 45
7.1.2 Mapping Techniques . 47
7.1.3 Time Complexity . 50
7.1.4 Performance Improvements 51
7.1.5 Multiple Application Instances 56

7.2 NAMD . 59
7.2.1 Parallelization of NAMD . 60
7.2.2 Load Balancing Algorithms 61
7.2.3 Metrics for Evaluation . 64
7.2.4 Topology Aware Techniques 65
7.2.5 Performance Improvements 67

8 Automatic Mapping Framework 71
8.1 Communication Graph: Identifying Patterns 74

9 Mapping Regular Communication Graphs 78
9.1 Algorithms for Mapping 2D Grids to 2D Meshes 78

9.1.1 Time Complexity . 84
9.1.2 Quality of Mapping Solutions: Hop-bytes 86

9.2 Algorithms for Mapping 2D Grids to 3D Meshes 88
9.3 Algorithms for Mapping 3D Grids to 3D Meshes 91
9.4 Application Studies . 92

9.4.1 2D Stencil . 93
9.4.2 WRF Experiments . 95

10 Mapping Irregular Communication Graphs 99
10.1 Finding the Nearest Available Processor 100

10.1.1 Quadtree: An Alternative to Spiraling 102
10.1.2 Comparison between Spiraling and Quadtree 105

10.2 Strategies for General Communication Graphs 107
10.3 Inferring the Spatial Structure . 111
10.4 Strategies for Graphs with Coordinate Information 112
10.5 Comparison of Strategies for 2D Irregular Graphs 115

10.5.1 Time Complexity . 115
10.5.2 Quality of Mapping Solutions: Hop-bytes 116

10.6 Application Studies . 118
10.6.1 ParFUM Benchmark: Simple2D 119

x

11 Virtualization Benefits . 121
11.1 Reducing Impact of Network Contention 121

11.1.1 Experimental Evidence . 123
11.2 Facilitating Topology Aware Mapping 124

11.2.1 Additional Degrees of Freedom 125
11.2.2 Instrumentation and Dynamic Load Balancing 125

12 Scalable Mapping and Load Balancing 128
12.1 Mapping of a 1D Ring . 130

12.1.1 Complexity Analysis . 132
12.2 Mapping of a 2D Stencil . 133

12.2.1 Performance Results . 134

13 Conclusion and Future Work . 137

References . 140

Appendix A . 150

Appendix B . 153

Vita . 163

xi

List of Tables

7.1 Execution time (in seconds) to obtain mapping solutions for Re-
alSpace and RealParticlePlane objects on Blue Gene/P (System: WA-
TER 256M 70Ry) . 50

7.2 Execution time per step (in seconds) of OpenAtom on Blue Gene/L
(CO mode) . 52

7.3 Execution time per step (in seconds) of OpenAtom on Blue Gene/P
(VN mode) . 53

7.4 Execution time per step (in seconds) of OpenAtom on XT3 (SN and
VN mode) . 54

7.5 Performance of NAMD (ms/step) on IBM Blue Gene/P 69
7.6 Performance of NAMD (ms/step) on Cray XT3 70
7.7 Reduction in total number of proxies on Blue Gene/P 70

8.1 Pattern identification of communication in MILC, POP and WRF . . 76

9.1 Percentage reduction in average hops per byte, communication time
and total time using topology aware mapping 98

10.1 Comparison of execution time (in ms) for spiraling and quadtree im-
plementations of findNearest . 106

10.2 Time complexity for different mapping algorithms for irregular graphs
assuming constant and logarithmic running time for findNearest . . 116

10.3 Average hops per byte for mapping of a 1, 024 node graph to meshes
of different aspect ratios . 117

11.1 Execution time (in milliseconds) of 3D Stencil on Blue Gene/L (CO
mode) for different number of chares per processor (RR: Round-robin,
TO: Topology aware) . 123

11.2 Execution time (in milliseconds) of 3D Stencil on Blue Gene/L (VN
mode) for different number of chares per processor (RR: Round-robin,
TO: Topology aware) . 124

12.1 Time complexity comparison of centralized and distributed load bal-
ancing algorithms for a 1D ring . 132

12.2 Time (in seconds) for distributed load balancing 134
12.3 Reduction in hops per byte using distributed topology aware load

balancing for 1 million objects on 4, 096 cores 135

xii

List of Figures

3.1 A three-level fat tree network . 13
3.2 A two-dimensional torus and three-dimensional mesh 14
3.3 A 4-dimensional hypercube and a Kautz graph 17

4.1 Communication patterns in the WOCON benchmark. This diagram is a
simplified one-dimensional version of the pattern in three-dimension
(3D). A master ranks sends messages to all ranks in the 3D partition. 19

4.2 Plots showing the effect of hops on message latencies in absence of
contention (for 8 × 4 × 4 and 8 × 8 × 4 sized tori on Blue Gene/P,
Benchmark: WOCON) . 21

4.3 Plots showing the effect of hops on message latencies in absence of
contention (for 8 × 8 × 8 and 8 × 8 × 16 sized tori on Blue Gene/P,
Benchmark: WOCON) . 21

4.4 Plots showing the effect of number of hops on message latencies in
absence of contention (for 256 and 512 nodes of XT3, Benchmark:
WOCON) . 22

4.5 Plots showing the effect of number of hops on message latencies in
absence of contention (for 1024 and 2048 nodes of XT3, Benchmark:
WOCON) . 22

4.6 Communication patterns in the WICON benchmark. This diagram is a
simplified one-dimensional version of the pattern in three-dimension
(3D). The random pairs are chosen from all over the 3D partition. . . 23

4.7 Plots showing the results of WICON on Blue Gene/P, XT3 and XT4 . . 25
4.8 For increasing stress on a given link, pairs are chosen along the Z

dimension. A baseline run is done with the middle pair and then
other pairs are added around the middle one. 26

4.9 Plots showing the results of stressing-a-link benchmark on IBM Blue
Gene/P, Cray XT3 and XT4 . 27

4.10 For creating pairs of processors, with the same distance between the
partners in each pair, strategies as shown in this diagram were used.
Pairs are created along the Z dimension and here we show distance=1,
2 and 3. 29

4.11 Plots showing the results of the equidistant-pairs benchmark on Blue
Gene/P, XT3 and XT4 . 30

xiii

5.1 Plots showing that average hops is an important factor guiding per-
formance. Runs were done on a 8× 8× 16 partition of BG/P 34

5.2 Plots showing that average hops is an important factor guiding per-
formance. Runs were done on a 8× 8× 16 partition of XT4 35

5.3 Communication patterns along the Z dimension in the synthetic
benchmark . 36

5.4 Plots showing that maximum dilation can also impact performance.
Runs were done on a 8× 8× 16 partition of BG/P 37

5.5 HPM Counters Data for Z links in a partition of dimensions 8×8×16
on Blue Gene/P . 38

6.1 Allocation of 256 continuous nodes on the XT3 machine at PSC . . . 43

7.1 Decomposition of the physical system into chare arrays (only impor-
tant ones shown for simplicity) in OpenAtom 46

7.2 Mapping of a few OpenAtom arrays to the 3D torus of the machine 48
7.3 Comparison of performance improvements on BG/L, BG/P and XT3

using topology aware mapping (for WATER 256M 70Ry) 55
7.4 Effect of topology aware mapping on idle time (time spent waiting

for messages) . 56
7.5 Effect of topology aware mapping on aggregate bandwidth consump-

tion per step - smaller link bandwidth utilization suggests reduction
in hops traversed by messages and hence reduction in contention . . . 57

7.6 Mapping of four OpenAtom instances on a 8× 4× 8 torus (System:
WATER 32M 70Ry). Two alternate instances are visible while the
other two have been made invisible. 58

7.7 Placement of patches, computes and proxies on a 2D mesh of processors 60
7.8 Preference table for the placement of a compute 63
7.9 Topological placement of a compute on a 3D torus/mesh of processors 66
7.10 Hop-bytes for different schemes on IBM Blue Gene/P 68
7.11 Hop-bytes for different schemes on Cray XT3 69

8.1 Schematic of the automatic mapping framework 73
8.2 Different communication patterns in two-dimensional object graphs

— a 5-point stencil, a 9-point stencil and communication with all 8
neighbors around a node . 76

8.3 Communication graph for POP (left) and WRF (right) on 256 pro-
cessors . 77

9.1 Finding regions with maximal overlap in the Maximum Overlap Heuris-
tic (MXOVLP) . 79

9.2 Expand from Corner (EXCO) Heuristic 81
9.3 Running time for the PAIRS algorithm (top) and for other mapping

heuristics for regular mapping (bottom) 85

xiv

9.4 Mapping of a 9× 8 object grid to a 12× 6 processor mesh using the
STEP algorithm . 87

9.5 Mapping of a 6 × 5 grid to a 10 × 3 mesh using MXOVLP, MXOV+AL,

EXCO, COCE, AFFN and STEP respectively 88
9.6 Mapping of a 8 × 4 grid to a 4 × 8 mesh using MXOVLP, MXOV+AL,

EXCO, COCE, AFFN and STEP respectively 89
9.7 Hop bytes compared to the lower bound for different techniques . . . 90
9.8 Stacking and Folding . 91
9.9 Weak Scaling experiment results for 2D Stencil 93
9.10 Average Hops per byte for 2D Stencil 94
9.11 Effect of percentage of communication on benefit from mapping for

2D Stencil . 96
9.12 HPCT data for actual hops per byte for WRF 97

10.1 Execution time for 16, 384 consecutive calls to the spiraling algorithm
for findNearest from the AFFN algorithm for irregular graphs 102

10.2 Representation of a 2D mesh of processors of dimensions 4 × 8 as a
quadtree . 103

10.3 Execution time for 16, 384 calls to the quadtree implementation for
findNearest for the AFFN algorithm for irregular graphs 105

10.4 Comparison of execution time for spiraling and quadtree implemen-
tations when invoked from the AFFN mapping algorithm 106

10.5 Irregular graph with 90 nodes . 109
10.6 Mapping of an irregular graph with 90 nodes using the (a) Default

mapping, (b) BFT, and (c) MHT algorithm to a 15× 6 grid 110
10.7 Using the graphviz library to infer the spatial structure of an irregular

graph with 90 nodes . 112
10.8 Mapping of an irregular graph with 90 nodes using the (a) AFFN, (b)

COCE, and (c) COCE+MHT algorithms to a grid of dimensions 15× 6 . . 114
10.9 Running time for different irregular mapping heuristics 117
10.10Hop-bytes for mapping of different irregular graphs to meshes of dif-

ferent sizes . 118
10.11Hop-bytes for mapping of different irregular graphs to meshes of dif-

ferent sizes . 119

11.1 Overlap of computation and computation increases tolerance for com-
munication delays . 122

11.2 Decomposition of the physical system into chare arrays (only impor-
tant ones shown for simplicity) in OpenAtom 126

12.1 The solution of the 1D ring load balancing problem involves finding
the right places to split the ring for dividing among the processors . . 130

12.2 Prefix sum in parallel to obtain partial sums of loads of all objects
up to a certain object . 131

xv

12.3 Hilbert order linearization of an object grid of dimensions 32×32 and
a processor mesh of dimensions 8× 8 134

12.4 Performance of the distributing load balancers in terms of bringing
the maximum load on any processor closer to the average 135

A.1 Mapping of a 9 × 8 grid to a 12 × 6 mesh using MXOVLP, MXOV+AL,

EXCO, COCE, AFFN (and two other variations of it), and STEP respec-
tively . 150

A.2 Mapping of a 9 × 8 grid to a 12 × 6 mesh using MXOVLP, MXOV+AL,

EXCO, COCE, AFFN (and two other variations of it), and STEP respec-
tively (vertical edges also shown) . 151

A.3 Mapping of a 14× 6 grid to a 7× 12 mesh using MXOVLP, MXOV+AL,

EXCO, COCE, AFFN and STEP respectively 152
A.4 Mapping of a 14× 6 grid to a 7× 12 mesh using MXOVLP, MXOV+AL,

EXCO, COCE, AFFN and STEP respectively (vertical edges also shown) 152

B.1 C implementation of the findNearest2D function 154
B.2 C implementations of the withinBounds2D and isAvailable helper

functions . 155
B.3 The QuadTree class: member variables and function declarations . . . 156
B.4 Implementation of the findNearest function using a quadtree 157
B.5 Representation of a 2D mesh of processors of dimensions 8× 32 as a

quadtree . 158
B.6 Irregular graph with 128 nodes . 159
B.7 Mapping of an irregular graph with 128 nodes using the (a) Default

mapping, and (b) BFT algorithm to a grid of dimensions 16× 8 159
B.8 Mapping of an irregular graph with 128 nodes using the (a) MHT, and

(b) AFFN algorithm to a grid of dimensions 16× 8 160
B.9 Mapping of an irregular graph with 128 nodes using the (a) COCE,

and (b) COCE+MHT algorithm to a grid of dimensions 16× 8 161
B.10 Comparison of execution time for spiraling and quadtree implemen-

tations when invoked from the AFFN mapping algorithm 161
B.11 Execution time for 16, 384 calls to the spiraling (top) and quadtree

(bottom) implementations for findNearest for the AFFN algorithm
for irregular graphs . 162

xvi

List of Algorithms

4.1 Code fragments showing the core of WOCON Benchmark 20

4.2 Code fragments showing the core of WICON Benchmark 24

7.1 Mapping of RealSpace objects based on the the map for GSpace objects 51

8.1 Pseudo-code for identifying regular communication graphs 75

9.1 Maximum Overlap Heuristic (MXOVLP) for 2D to 2D mapping 80

9.2 Expand from Corner (EXCO) Heuristic for 2D to 2D mapping 81

9.3 Affine Mapping (AFFN) Heuristic for 2D to 2D mapping 82

9.4 Affine Mapping (AFFN) Heuristic for 3D to 3D mapping 92

10.1 Finding the nearest available processor in 2D 101

10.2 Breadth First Traversal (BFT) Heuristic 108

10.3 Affine Mapping (AFFN) Heuristic . 113

B.1 Finding the nearest available processor in 3D 153

xvii

List of Abbreviations

1D one-dimensional

2D two-dimensional

3D three-dimensional

4D four-dimensional

AFFN Affine Mapping

ANL Argonne National Laboratory

API Application Programming Interface

ApoA1 Apolipoprotein-A1

BG/L Blue Gene/L

BG/P Blue Gene/P

Brni. Brahmacharini

CO co-processor mode

COCE Corners to Center Heuristic

CPAIMD Car-Parrinello ab-initio Molecular Dynamics

Cray Cray Incorporated, The Supercomputer Company

DMA Direct Memory Access

DOE Department of Energy

EXCO Expand from Corner Heuristic

HPCT High Performance Computing Toolkit

IBM International Business Machines Corporation

LANL Los Alamos National Laboratory

xviii

MD Molecular Dynamics

MILC MIMD Lattice Computation

MPI Message Passing Interface

MXOV+AL Maximum Overlap with Alignment Heuristic

MXOVLP Maximum Overlap Heuristic

NAMD Nanoscale Molecular Dynamics

NCSA National Center for Supercomputing Applications

NN near-neighbor mode

NP nondeterministic polynomial time

NSF National Science Foundation

ORB Orthogonal Recursive Bisection

ORNL Oak Ridge National Laboratory

PME Particle Mesh Ewald

POP Parallel Ocean Program

PSC Pittsburgh Supercomputing Center

Prof. Professor

RND random processor mode

SN single node mode

STEP Step Embedding

TACC Texas Advanced Computing Center

VLSI Very Large Scale Integration

VN virtual node mode

WICON No contention benchmark

WOCON No contention benchmark

WRF Weather Research and Forecasting Model

et al. et alii (and others)

avg average

max maximum

vs. versus

xix

List of Symbols

CMn,n communication matrix

G(,) GSpace

Gρ() RhoG

GB Gigabyte

GHz Gigahertz

HB hop-bytes

Lf length of each flit

MB Megabyte

MHz Megahertz

Ng number of planes in g-space

ns number of states

P(,,,) PairCalculator

R(,) RealSpace

Rρ(,) RhoR

Ry Rydberg

xx

1 Introduction

P etascale machines with hundreds of thousands of cores are being built. These

machines have varying interconnect topologies and large network diameters. Com-

putation is cheap and communication on the network is becoming the bottleneck

for scaling of parallel applications. Network contention, specifically, is becoming an

increasingly important factor affecting overall performance. Communication opti-

mizations to avoid network contention can lead to performance improvements for

some applications. Most parallel applications have a specific communication topol-

ogy. Mapping of tasks in a parallel application to the physical processors on a

machine, based on the communication graph can potentially lead to performance

improvements. Although this idea was considered in early days of parallel computing

(1980s), the following section will show how it has become relevant again.

1.1 Motivation

Mapping of the communication graph for an application on to the interconnect

topology of a machine while trying to localize communication is the research prob-

lem under consideration in this dissertation. Let us try to understand why mapping

is important for performance. The network topology of the largest and most scal-

able supercomputers today, is a three-dimensional (3D) torus. Some examples are

Cray’s XT family (XT4 [[4]], XT5 [[5]]) and IBM’s Blue Gene family (Blue Gene/L [[6]],

Blue Gene/P [[7]]). For big installations of such machines, the diameter of the net-

work can be large (somewhere between 20 to 60 hops for Blue Gene/P and XT5.)

1

This can have a significant effect on message latencies when multiple messages start

sharing network resources. For common networks with asymptotically inadequate

link bandwidth, chances of contention increase as messages travel farther and far-

ther. Network congestion on a link slows down all messages passing through that

link. Delays in message delivery can affect overall application performance. Thus, it

becomes necessary to consider the topology of the machine while mapping parallel

applications to job partitions.

This dissertation will demonstrate that it is not wise to assume that message la-

tencies are independent of the distance a message travels. This assumption has been

supported all these years by the advantages of virtual cut-through and wormhole

routing suggesting that the message latency is independent of the distance in ab-

sence of blocking [[8–14]]. When virtual cut-through or wormhole routing is deployed,

message latency is modeled by the equation,

Lf
B
∗D +

L

B
(1.1)

where Lf is the length of each flit, B is the link bandwidth, D is the number of

links (hops) traversed and L is the length of the message. In absence of blocking, for

sufficiently large messages (where L >> Lf), the first term is insignificant compared

to the second. But with large diameters of big supercomputers, this is no longer

true for small to medium-sized messages. Let us say that the length of the flit is 32

bytes and the total length of the message is 1024 bytes. Now, if the message has

to traverse 8 links, the first term is not negligible compared to the second one (it is

one-fourth of the second term). In a network with diameter 16, messages will travel

8 links on the average for a random communication pattern. Also, message sizes in

the range of 1 KB are found in several applications which deal with strong scaling

to tens of thousands of processors [[15,16]]. Hence, for such fine-grained applications

2

running on large supercomputers, we should not neglect the dependence of message

latencies on hops.

Even more important is the observation that Equation 1.1 models message la-

tencies in the absence of contention. In the situation where multiple messages share

the same network links, the situation becomes more complex. The bandwidth avail-

able per link per message is reduced since it is now being shared. The phenomenon

of network resource sharing leading to contention can be explained with a simple

example. Let us consider a 3D torus network of size 8 × 8 × 8. The total number

of uni-directional links on the system is 8× 8× 8× 6 = 3072. The diameter of this

network is 4+4+4 = 12 and hence, if messages travel from one random node to an-

other, they will traverse 6 hops on average. Now, if we have four processors per node

and every processor sends a message at the same time, all these messages require

512×4×6 = 12288 links in total and hence, every link will be used for four messages

on average. This leads to contention for each link and therefore increases message

latencies. Describing this scenario in terms of bandwidth requirements, in order to

operate at minimum latency, we need four times the total raw bandwidth available.

However, this is not the case and thus the delivered bandwidth is one-fourth of the

peak.

Another assumption made by application developers today is that supercomput-

ers like Cray XT4/XT5 do not suffer from bandwidth congestion because of their

fast interconnect and high bandwidth and thus would not benefit from topology

mapping. It is often assumed that contention is inconsequential on such machines

and hence, application developers should not have to worry about network latencies

and topology aware optimizations. This is evident from the fact that job scheduling

on Cray XT machines is not topology aware (unlike Blue Gene/L or Blue Gene/P,

where users are allocated complete tori for their jobs). Also, there is no easy mech-

anism to obtain topology information on XT machines and for the same reason, the

3

MPI Cart functions are not implemented efficiently. This dissertation will show that

contention also affects machines with high link bandwidths and that there is a need

for topology aware job schedulers on such machines.

1.2 Research Goals

The first part of this dissertation uses simple MPI benchmarks for an extensive study

of message latencies and their dependence on distance (hops) on several machines

in the Cray XT family and IBM Blue Gene family. As we shall see in Chapter 4, in

absence of contention, message latencies depend on hops for small and medium-sized

messages. In presence of contention, this dependence becomes more striking, espe-

cially for large-sized messages. Different experiments which create random as well

as controlled contention on the network are conducted on these machines. Message

latencies can increase by a factor of 16 depending on the communication patterns

and the amount of congestion created. Hence, it is important to consider the topol-

ogy of the machine, especially for 3D torus/mesh interconnects, to obtain the best

performance. As we shall see, this holds true for both IBM and Cray machines.

This study will enhance our understanding of the reasons for contention for network

resources and will benefit the development of topology aware mapping algorithms.

Topology discovery of the machine at runtime is necessary for mapping on to the

processor topology. We have developed a Topology Manager API which provides

information about the job partitions to the application at runtime. Using this API,

we demonstrate that topology aware mapping can significantly improve performance

and scaling of communication bound applications (Chapter 7). The metric we em-

ploy to assess the success of topology aware schemes is hop-bytes. Hop-bytes are

the weighted sum of the number of hops between the source and destination for all

messages, with the weights being the message size. This metric gives an indication

4

of the total communication traffic on the network due to an application. Reducing

the total hop-bytes reduces link sharing and contention, thereby keeping message

latencies close to the ideal.

An important part of the dissertation is a framework for automatic mapping of a

wide class of parallel applications with regular and irregular communication graphs.

From pattern recognition of communication graphs to using different heuristics in

different situations for mapping solutions, everything is handled by the framework.

Parallel applications can get performance improvements using mapping solutions

from this framework without any changes to the code base. This framework will

save much effort on the part of application developers to generate mappings for their

individual applications.

The mapping problem can be reduced to the graph-embedding problem, which

is NP-hard. Hence, the focus is on developing a suite of heuristics, each dealing

with a different scenario, which together can handle most parallel applications and

their communication requirements. The automatic mapping framework is capable

of selecting the best mapping for an algorithm based on the hop-bytes metric. We

present performance results for both Charm++ [[17,18]] and MPI [[19–21]], applica-

tions using the automatic mapping framework.

The Charm++ framework and applications are indispensable to this disserta-

tion as research tools and testing scenarios. Hence, we also discuss the role played by

virtualization in mitigating contention and facilitating topology aware mapping. In

the future, machines with millions of cores will require million and possibly billion-

way parallelism and our mapping algorithms should be able to handle such scales.

In an effort towards making mapping techniques scalable to very large machines, the

dissertation also presents some initial work on strategies for completely distributed

load balancing.

5

1.3 Thesis Organization

The thesis is organized as follows: Chapter 2 discusses previous work in this field.

There was much work in the 1980s on topology aware mapping and then research

died down. There has been recent work in the past five years ignited by the develop-

ment of Blue Gene/L, a 3D torus supercomputer. Contributions of this dissertation

and differences with past and recent work are also discussed. We then survey the ex-

isting interconnect topologies ranging from fat-trees to Kautz graphs in Chapter 3.

This chapter also presents architectural details of the machines used for experiments

in this thesis.

Chapter 4 presents an evaluative study on understanding network congestion on

IBM and Cray machines. Interesting results showing messaging delays caused by

link sharing are presented. The rest of the dissertation presents mapping algorithms

and techniques and performance results from case studies on scientific applications

as well as synthetic benchmarks. Before we start on this long journey, Chapter 5

introduces hop-bytes as the evaluation metric for mapping algorithms. We argue

that hop-bytes is a more useful metric for offline evaluation of mapping algorithms

than the previously used maximum dilation metric.

Topology information about the machines is an important pre-requisite for map-

ping algorithms and the process of topology discovery on IBM and Cray machines is

discussed in Chapter 6. Chapter 7 sets the foundation for the remaining chapters by

demonstrating performance improvements through mapping for “production” sci-

entific applications – OpenAtom [[16]] and NAMD [[15, 22]]. OpenAtom obtains

performance improvements of up to 40% in some cases. NAMD is more latency

tolerant and hence the improvements are only seen for very large runs.

Chapters 8 through 10 discuss the automatic mapping framework, an important

contribution of this thesis. The pattern matching techniques to identify regular

6

graphs and various mapping algorithms, which are a part of the suite are explained

and evaluated. Performance results are demonstrated on a two-dimensional sten-

cil benchmark, simple2D (a ParFUM [[23]] benchmark) and WRF [[24, 25]] among

other applications. The advantages of virtualization through overdecomposition,

for mitigating contention are presented in Chapter 11. In the spirit of adapting

the algorithms developed in the dissertation towards exascale machines, Chapter 12

discusses scalable techniques for mapping and load balancing by parallelizing the

decision process. This dissertation has revealed new directions for research which

are discussed in the concluding chapter.

7

2 Related Work

T he problem of topology aware mapping has been studied extensively and proved

to be NP-hard [[26–28]]. Pioneering work in this area was done by Bokhari in 1981,

where he used pairwise exchanges between nodes to arrive at good solutions [[26]].

Subsequent research in the 80s can be divided into two categories – physical op-

timization techniques and heuristic approaches. Physical optimization techniques

involve simulated annealing [[29, 30]], graph contraction [[31, 32]] and genetic algo-

rithms [[33]].

The technique of pairwise exchanges used in [[26, 27, 29]] can take a long time to

arrive at good mapping solutions. Bokhari’s algorithm of pairwise exchanges coupled

with probabilistic jumps takes O(N3) time where N is the number of nodes in the

graph. Physical optimization techniques also take a long time to derive the mapping

and hence, cannot be used for a time-efficient mapping during runtime. They are

almost never used in practice. Heuristic techniques such as pairwise exchanges [[27]]

and recursive mincut biparitioning [[34]] are theoretical studies with no results on

real machines. Also, most of these techniques (heuristic techniques especially) were

developed specifically for hypercubes, shuffle-exchange networks or array processors.

The networks which we encounter today are primarily fat-trees and tori.

With the advent of wormhole routing and faster networks, research in this area

died. In the recent years, emergence of very large parallel machines has led to the

necessity of topology mapping again. The next section discusses the recent work

related to mapping.

8

2.1 Recent Work

Most work from the 80s cannot be used in the present context because of unscalable

techniques and different topologies from the ones being used today. As mentioned

earlier, increasing effect of the number of hops on message latencies has fueled such

studies again. The Cray T3D and T3E supercomputers were the first to raise such

issues in the late 90s and the problem of congestion and benefit from mapping were

re-evaluated [[35–37]]. Newer line of supercomputers from Cray with faster intercon-

nects, such as the XT3 and XT4, appeared to have relieved the application writers

of such problems. But as this thesis will demonstrate, this is not true. Although

researchers at Pittsburgh Supercomputing Center (PSC) have demonstrated the

benefit of topology aware job scheduling schemes on their Cray XT3 [[38]], we believe

there has been no published research reporting network contention or quantifying it

for the Cray XT family.

Contrary to Cray, IBM systems like Blue Gene/L and Blue Gene/P acknowledge

the dependence of message latencies on distance and encourage application develop-

ers to use topology of these machines to their advantage [[39–41]]. On Blue Gene/L,

there is a 89 nanoseconds per hop latency attributed to the torus logic and wire

delays. This fact has been used both by system developers [[42, 43]] and application

developers to improve performance on Blue Gene/L [[44–49]]. Bhanot et al. [[46]] have

developed a framework for optimizing task layout on BG/L. Since it uses simulated

annealing, it is quite slow and the solution is developed offline. Embedding of tasks

onto nodes using simple graph embedding schemes (for rings, meshes et cetera) has

been discussed in [[45,47]]. These can be used in MPI topology functions. This work

is not as useful when multiple objects have to be mapped to each physical processor

(as in Charm++). Several application writers have also realized the importance

of topology mapping on Blue Gene machines and have used it to their benefit for

9

speeding up their codes [[43, 49, 50]]. This dissertation shows similar successes for

some Charm++ applications [[51,52]].

Research on topology aware mapping also exists in the fields of mathematics and

circuit design. Techniques that embed rectangular 2D grids into square 2D grids

were proposed to optimize VLSI circuits and significant results were obtained [[53–

55]]. Techniques from mathematics and circuit design are not always applicable to

parallel computing. For example, mapping research motivated by reducing the total

area of circuit layouts tried to minimize the length of longest wire [[53]]. As we

shall show in a later chapter, longest edge dilation might not be the best metric for

parallel machines. Also in case of VLSI circuit design, number of nodes in the host

graph can be larger than that in the guest graph. This is not true in case of parallel

programs where the number of processes in the application is equal to the number

of physical processors in the allocated partition.

2.2 Contributions of This Thesis

This dissertation is among the first to discuss the effects of contention on Cray

and IBM machines and to compare across multiple architectures. Opposing popu-

lar belief that Cray machines do not stand to benefit from topology mapping, this

dissertation proves otherwise and provides detailed methods and results for perfor-

mance improvements from topology mapping on them [[51]]. Another contribution

of this dissertation is an API for topology discovery which works on both Cray and

IBM machines.

We believe that the set of MPI benchmarks we have developed for quantifying

message latencies would be useful for the HPC community to assess latencies on a

supercomputer and to determine the message sizes for which number of hops makes

a significant difference. The effective bandwidth benchmark in the HPC Challenge

10

benchmark suite measures the total bandwidth available on a system but does not

analyze the effects of distance or contention on message latencies [[56]]. Results from

MPI benchmarks re-establish the importance of mapping for the current supercom-

puters.

Our experience in developing mapping algorithms for production codes and in-

sights discussed in this dissertation will be useful to individual application writers

trying to scale their codes to large supercomputers. We believe that the automatic

mapping framework is applicable to a wide variety of communication scenarios and

will relieve the application writers from the burden of finding good mapping solu-

tions for their codes. Application developers can use this framework for mapping of

their applications without any changes to their code base. Unlike most of the previ-

ous work, this dissertation handles both cardinality and topological variations in the

graphs. The framework provides scalable and fast, runtime solutions. Therefore, it

will be useful to a large body of applications running on large parallel machines.

There has not been much research on mapping of unstructured mesh applications

for performance optimizations [[57, 58]] and this dissertation takes up at that task.

The dissertation also discusses scalable techniques for distributed load balancing in

an effort to move away from centralized mapping decision algorithms.

11

3 Existing Topologies

S everal different topologies are in use today in the largest supercomputers on the

Top500 list. Most common among them are fat trees (Infiniband and Federation)

and three-dimensional tori and meshes (Cray XT and IBM Blue Gene family). The

following sections describe these commonly used topologies.

3.1 Fat Tree and Clos Networks

A fat tree network has a tree structure with processing nodes at the leaves and

switches at the intermediate nodes [[59]]. As we go up the tree from the leaves, the

available bandwidth on the links increases, making the links “fatter”. Figure 3.1

depicts a simple three level binary fat tree. Infiniband networks are examples of fat

trees and so are Federation interconnects from IBM. The Roadrunner machine built

by IBM for Los Alamos National Laboratory (LANL) has a fat tree interconnect

(Voltaire Infiniband). The Ranger SUN-constellation cluster at Texas Advanced

Computing Center (TACC) also has an Infiniband network. As per the Top500 [[60]]

list of November 2009, 36% of the 500 fastest supercomputers use an Infiniband

network.

In practice, when building fat tree networks, it is common to have more than

one switch at the top-level. As an example, Ranger has a 3-level Infiniband fat tree

with two switches at the top level. Each switch can accommodate 3456 nodes. But

there are only 3936 nodes in the machine which are evenly distributed between the

two switches. Also, to save costs, typically links are oversubscribed and hence, in

12

Figure 3.1: A three-level fat tree network

practice, we do not see “true” fat tree networks. The Abe cluster at NCSA has a two

level Infiniband network and the links are 2:1 oversubscribed. Another interesting

artifact of Abe is that it has eight top level “core” switches. Oversubscribing links

and having multiple fast cores on each node often leads to network congestion on

these machines. Static routing, decided at boot time for the whole machine, adds

to these effects.

3.2 Mesh and Torus Networks

This section discusses topologies with asymptotically inadequate link bandwidths.

They also fall under the category of direct networks, since nodes are directly con-

nected to one another through links.

n-dimensional mesh In an n-dimensional mesh network, each processor is con-

nected to two other processors in each physical dimension. This gives a total of 2n

connections for each processor. The most common case is n = 3 which is called a 3D

mesh. For a 3D mesh, if the size of the mesh in each dimension is N , the diameter

13

of the mesh is 3× (N − 1). Figure 3.2 (left) shows a three-dimensional (3D) mesh

network.

n-dimensional torus An n-dimensional torus is a mesh with the processors on the

end of each dimension connected together. This reduces the diameter of the network

by half. The diameter of a X × Y × Z torus is (X + Y + Z)/2. Figure 3.2 (right)

shows a 2D torus network.

Figure 3.2: A two-dimensional torus and three-dimensional mesh

Torus topologies are not asymptotically scalable because the raw available band-

width increases as a function of the number of nodes (P), whereas the required

bandwidth (assuming communicating processors are randomly chosen) increases as

a function of P 4/3. In contrast, on fully-provisioned fat-trees, the available band-

width keeps pace with required bandwidth - the diameter is logP and the number

of links is proportional to P logP .

Even though torus topologies are not asymptotically scalable, because of simplic-

ity of design and other practical considerations, torus networks are a popular choice

for modern day supercomputers. Five of the ten fastest machines on the Top500

list use a 3D torus interconnect. This dissertation focuses on such networks and

14

we now describe the supercomputers which were used in this dissertation: two from

the IBM Blue Gene family and two from the Cray XT family. The interconnect for

both families is a three-dimensional torus but they have different processor speeds

and network characteristics.

IBM Blue Gene/L: This is the first class of machine in the Blue Gene series. Each

node of a Blue Gene/L (BG/L) machine has two 700 MHz PowerPC 440 cores. 512

nodes form a midplane which is a torus of dimensions 8 × 8 × 8. Each torus link

has a uni-directional bandwidth of 175 MB/s [[39,61]]. We used the installation at T

J Watson research center which we refer to as the “Watson BG/L”. This machine

has a total of 20, 480 nodes.

IBM Blue Gene/P: Blue Gene/P (BG/P) is similar to its predecessor, Blue

Gene/L but each node has four 850 MHz PowerPC 450 cores. The nodes are con-

nected by 3D torus links with a uni-directional bandwidth of 425 MB/s [[7]]. The

nodes use a DMA engine to offload communication on the torus network, leaving

the cores free for computation. Like BG/L, a midplane composed of 512 nodes

forms a torus of size 8× 8× 8 in all directions. Smaller allocations than a midplane

are a torus in some dimensions and mesh in others. Larger allocations than a mid-

plane are complete tori. The installations of Blue Gene/P at Argonne National Lab

(ANL), Surveyor and Intrepid were used for runs in this dissertation. They contain

1, 024 and 40, 960 nodes respectively.

Cray XT3: Each node on a XT3 has two 2.6 GHz AMD Opteron processors and

the nodes are connected by a custom SeaStar interconnect. The processors are

connected to the SeaStar chip through a Hyper Transport (HT) link. The unidirec-

tional bandwidth of the HT link is ∼ 1.6 GB/s whereas that of the network links

is 3.8 GB/s [[4]]. We used the XT3 installation (BigBen) at Pittsburgh Supercom-

15

puting Center (PSC). This installation has 2068 compute nodes arranged in a 3D

torus of dimensions 11× 12× 16. Since the job scheduler on XT3 does not allocate

cuboidal partitions, nodes allocated for a particular job may not be contiguous. For

results reported in this dissertation, the whole machine was reserved and then nodes

were allocated (with help from PSC staff) to get completely cuboidal shapes. The

largest partition used was 8× 8× 16 which is 1024 nodes or 2048 cores and smaller

sub-partitions were made from this one. The 1024 node partition has torus links

in one dimension (which is of size 16) and mesh links in the other two. For any

allocation smaller than 1024 nodes, we have a mesh in all dimensions. BigBen was

decommissioned on March 31st, 2010.

Cray XT4/5: For XT4 and XT5 runs, Jaguar at Oak Ridge National Laboratory

(ORNL) was used which has 7, 832 XT4 and 18, 688 XT5 compute cores. The

XT4 nodes contain a quad-core AMD Opteron (Budapest) processor running at 2.1

GHz whereas the XT5 nodes have dual hex-core AMD Opteron (Istanbul) processors

running at 2.6 GHz. Similar to XT3, the XT4 nodes are connected by a 3D SeaStar2

torus network with a unidirectional link bandwidth of 3.8 GB/s. The bandwidth

of the HT transport link in this case is twice that of the XT3 – around 3.2 GB/s.

The XT5 nodes are connected by a SeaStar2+ network with a link bandwidth of

4.8 GB/s. Again, for smaller allocations than the whole machine, we do not get

a complete torus. Contiguous 3D partitions were allocated by a special feature

implemented by the administrators (feature=cube) for the qsub job scheduler.

3.3 Other Topologies

Finally, we discuss some dense topologies which are asymptotically scalable i.e. the

total system bandwidth scales proportionally as we increase the number of nodes in

the network.

16

n-dimensional hypercube A hypercube is an n-dimensional analog of a square.

An n-dimensional hypercube is also called an n-cube. In a n-dimensional hypercube

each of 2n processors are connected to n other processors. A four-dimensional hy-

percube can be seen in Figure 3.3 (left). A (n + 1)-dimensional hypercube can be

constructed by connecting the corresponding processors in a n-dimensional hyper-

cube.

Figure 3.3: A 4-dimensional hypercube and a Kautz graph

Kautz network A Kautz network (primarily used in the SiCortex machines so

far [[62, 63]]) uses a Kautz graph for connecting the processors. A Kautz graph is

a directed graph with number of vertices V = (M + 1)MN for a degree M and

dimension N + 1. Such a Kautz graph has the smallest diameter of any possible

directed graph with V vertices and degree M . In the machines built by SiCortex,

each node has three outgoing links and three incoming links for three other nodes.

Figure 3.3 (right) shows a Kautz graph with M = 2 and N = 1.

17

4 Understanding Network
Congestion

Interconnect topologies and their effect on message latencies in message-passing

distributed supercomputers was an important factor determining communication

performance in the 1980s. In the 90s, wormhole routing and small diameters of par-

allel machines reduced the dependence of message latencies on the distance traveled.

This chapter will demonstrate that for certain topologies, contention for links by

multiple messages can significantly increase message latencies.

Several MPI benchmarks were developed to evaluate the effect of hops (links)

traversed by messages, on their latencies. The benchmarks demonstrate that when

multiple messages compete for network resources, link occupancy or contention can

increase message latencies by up to a factor of 16 times on some architectures.

Findings in this chapter suggest that application developers should now consider

interconnect topologies when mapping tasks to processors in order to obtain the

best performance on large parallel machines.

We first describe a benchmark which is run in absence of contention in order to

obtain the best case performance. Then we discuss results from benchmarks which

create random and controlled contention on the network.

4.1 WOCON: No Contention Benchmark

This benchmark records message latencies for varying number of hops in absence of

contention. One particular node is chosen from the allocated partition to control the

execution. We will call this node the master node or master rank. It sends B-byte

18

messages to every other node in the partition, and expects same-sized messages in

return (Figure 4.1). The messages to each node are sent sequentially, one message at

a time (pseudo-code in Algorithm 4.1). For machines with multiple cores per node,

this benchmark places only one MPI task per node to avoid intra-node messaging

effects. The size of the message, B is varied and for each value of B, the average

time for sending a message to every other node is recorded. Since the distance from

the master node to other nodes varies, we should see different message latencies

depending on the distance.

Master
Rank

Figure 4.1: Communication patterns in the WOCON benchmark. This diagram is a
simplified one-dimensional version of the pattern in three-dimension (3D). A master
ranks sends messages to all ranks in the 3D partition.

Wormhole routing suggests that message latencies are independent of distance

in the absence of contention, for sufficiently large message sizes. The benchmark

WOCON was used to quantify the effect of the number of hops on small-sized mes-

sages. Figures 4.2 and 4.3 present the results obtained from running WOCON on four

allocations of BG/P, ranging in size from 128 to 1024 nodes (torus sizes 8 × 4 × 4

to 8× 8× 16). There are two patterns on the plot: 1. For each message size on the

x-axis, the circles represent the time for a message send from the master rank to

different nodes on the allocated partition. Note that the vertical bars are actually a

cluster of circles, one each for a message send to a different node; 2. Each point on

the line represents the percentage difference between the minimum and maximum

19

Algorithm 4.1 Code fragments showing the core of WOCON Benchmark
if myrank == MASTER RANK then

for i := 1 to numprocs do
if i ≤ MASTER RANK then

sendTime = MPI Wtime()
for j := 1 to num msgs do

MPI Send(send buf , msg size, MPI CHAR, i, 1, ...)
MPI Recv(recv buf , msg size, MPI CHAR, i, 1, ...)

end for
recvTime = MPI Wtime()
time[i] = (recvTime − sendTime)/(num msgs ∗ 2);

end if
end for

else
for i := 1 to num msgs do

MPI Recv(recv buf , msg size, MPI CHAR, MASTER RANK, 1, ...)
MPI Send(send buf , msg size, MPI CHAR, MASTER RANK, 1, ...)

end for
end if

time for message send for a particular message size.

Message latencies should vary depending on the distance of the target rank from

the master rank for very short messages. As expected, we see a regular pattern

for the distribution of circles for a specific message size in the four plots (Fig-

ures 4.2, 4.3). For small and medium-sized messages, message latencies are spread

over a range, the range decreasing with increasing message sizes. This is what one

would expect from the wormhole routing model. To have a clearer perception of

the range in which message latencies lie, the percentage difference between the min-

imum and maximum latencies was calculated with respect to the minimum latency

for each message size. These values have been plotted as a function of the message

size. The difference between the maximum and minimum values (shown by the line)

decreases with increasing message size for all the plots. We see a kink in the lines

and a corresponding jump in the message latencies at 2 KB messages. This can be

explained by the use of different routing protocols on BG/P for different message

sizes [[41]]. For message sizes greater than 1200 bytes, the MPI rendezvous protocol

20

 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048
 4096

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

30

La
te

nc
y

(u
s)

%
 D

iff
er

en
ce

Message Size (Bytes)

Latency vs. Message Size: Without Contention (8 x 4 x 4)

Message Latency
% difference

 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048
 4096

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

30

La
te

nc
y

(u
s)

%
 D

iff
er

en
ce

Message Size (Bytes)

Latency vs. Message Size: Without Contention (8 x 8 x 4)

Message Latency
% difference

Figure 4.2: Plots showing the effect of hops on message latencies in absence of
contention (for 8 × 4 × 4 and 8 × 8 × 4 sized tori on Blue Gene/P, Benchmark:
WOCON)

 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048
 4096

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

30

La
te

nc
y

(u
s)

%
 D

iff
er

en
ce

Message Size (Bytes)

Latency vs. Message Size: Without Contention (8 x 8 x 8)

Message Latency
% difference

 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048
 4096

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

30

La
te

nc
y

(u
s)

%
 D

iff
er

en
ce

Message Size (Bytes)

Latency vs. Message Size: Without Contention (8 x 8 x 16)

Message Latency
% difference

Figure 4.3: Plots showing the effect of hops on message latencies in absence of
contention (for 8 × 8 × 8 and 8 × 8 × 16 sized tori on Blue Gene/P, Benchmark:
WOCON)

is used where an initial handshake is done before the actual message is sent.

The important observation is that the difference is in the range of 10 to 30%

for message sizes up to 8 KB (in the 1024 nodes plot, Figure 4.3). Most fine-

grained applications use messages which fall in this range and hence it is not wise

to always assume that message latencies do not depend on hops for most practical

message sizes. Strong scaling of problems to very large number of processors also

puts message sizes in this range. Another observation is that, for a fixed message

size, the difference between minimum and maximum latencies increases with the

increase in diameter of the partition. 128 and 256 node partitions are not complete

21

 4

 8

 16

 32

 64

 128

 256

 512

 1024

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

La
te

nc
y

(u
s)

%
 D

iff
er

en
ce

Message Size (Bytes)

Latency vs. Message Size: Without Contention (256 nodes)

Message Latency
% difference

 4

 8

 16

 32

 64

 128

 256

 512

 1024

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

La
te

nc
y

(u
s)

%
 D

iff
er

en
ce

Message Size (Bytes)

Latency vs. Message Size: Without Contention (512 nodes)

Message Latency
% difference

Figure 4.4: Plots showing the effect of number of hops on message latencies in
absence of contention (for 256 and 512 nodes of XT3, Benchmark: WOCON)

 4

 8

 16

 32

 64

 128

 256

 512

 1024

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

La
te

nc
y

(u
s)

%
 D

iff
er

en
ce

Message Size (Bytes)

Latency vs. Message Size: Without Contention (1024 nodes)

Message Latency
% difference

 4

 8

 16

 32

 64

 128

 256

 512

 1024

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

La
te

nc
y

(u
s)

%
 D

iff
er

en
ce

Message Size (Bytes)

Latency vs. Message Size: Without Contention (2048 nodes)

Message Latency
% difference

Figure 4.5: Plots showing the effect of number of hops on message latencies in
absence of contention (for 1024 and 2048 nodes of XT3, Benchmark: WOCON)

tori in all dimensions and hence their diameter is the same as that of the 512 node

partition – 12. The diameter of the 1024 node partition is 16 and hence a steep

increase in the percentage difference for the small and medium messages (as an

example the % difference for a 64 byte message increases from 19 to 27 as we go

from the third plot to fourth). As we increase the size of the partition from 1K

to 64K nodes, the diameter would increase from 16 to 64 and we can imagine the

impact that will have on message latencies.

Figures 4.4 and 4.5 shows similar plots for BigBen, the Cray XT3 machine. The

XT3 plots were obtained from runs on contiguous allocations of 256 to 1, 024 nodes

of BigBen. Since runs were performed under similar conditions on XT3 as on BG/P,

22

we would expect similar results. As expected, dependence on hops is significant for

message sizes up to 8 KB as seen by the lines on the plots. The only difference from

the BG/P numbers is that message latencies on XT3 are significantly greater than

the observed latencies on BG/P for very small messages.

4.2 WICON: Random Contention Benchmark

The second benchmark is used to quantify message latencies in presence of con-

tention which is a regime not handled by the basic model of wormhole routing

discussed earlier. It should be noted that unlike WOCON, this benchmark places one

MPI task on each core to create as much contention as possible. All MPI tasks

are grouped into pairs and the smaller rank in the pair sends messages of size B

bytes to its partner and awaits a reply. All pairs do this communication simultane-

ously (Figure 4.6). The average time for the message sends is recorded for different

message sizes (see Algorithm 4.2).

Figure 4.6: Communication patterns in the WICON benchmark. This diagram is
a simplified one-dimensional version of the pattern in three-dimension (3D). The
random pairs are chosen from all over the 3D partition.

To quantify the effect of hops on message latencies this benchmark is run in two

modes:

• Near Neighbor Mode (NN): The ranks which form a pair only differ by one.

This ensures that everyone is sending messages only 1 hop away (in a torus).

23

• Random Processor Mode (RND): The pairs are chosen randomly and thus

they are separated by a random number of links.

Algorithm 4.2 Code fragments showing the core of WICON Benchmark
pe = partner[myrank];
if myrank < pe then

sendTime = MPI Wtime()
for i := 1 to num msgs do

MPI Send(send buf , msg size, MPI CHAR, pe, 1, ...)
end for
for i := 1 to num msgs do

MPI Recv(recv buf , msg size, MPI CHAR, pe, 1, ...)
end for
recvTime = (MPI Wtime() −sendTime)/num msgs

else
sendTime = MPI Wtime()
for i := 1 to num msgs do

MPI Recv(recv buf , msg size, MPI CHAR, pe, 1, ...)
end for
for i := 1 to num msgs do

MPI Send(send buf , msg size, MPI CHAR, pe, 1, ...)
end for
recvTime = (MPI Wtime() −sendTime)/num msgs

end if

Figure 4.7 shows the results of running WICON in the NN and RND modes on

Blue Gene/P, XT3 and XT4. The first plot shows the results of WICON on 4, 096

cores of BG/P. It is clear that the random-processor (RND) latencies are more than

the near-neighbor (NN) latencies (by a factor of 1.75 for large messages.) This is

expected based on the assertion that the number of hops have a significant impact

on the message latencies in the presence of contention, which increases with larger

messages because of a proportional increase in packets on the network.

Similar experiments were repeated on XT3 and XT4 to understand the effects of

contention on Cray XT machines. The second plot in Figure 4.7 presents the results

for WICON benchmark on 2, 048 cores of XT3 and the third plot for 4, 096 cores of

XT4. We see a significant difference between the NN and RND lines (a factor of

2.25 at 1 MB messages for XT3 which is greater than that on BG/P.) This is not

24

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size (Bytes)

Latency vs. Msg Size: With Contention (4K cores, BG/P)

RND: Avg
NN: Avg

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size (Bytes)

Latency vs. Msg Size: With Contention (2K cores, XT3)

RND: Avg
NN: Avg

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size (Bytes)

Latency vs. Msg Size: With Contention (4K cores, XT4)

RND: Avg
NN: Avg

Figure 4.7: Plots showing the results of WICON on Blue Gene/P, XT3 and XT4

25

unexpected and a quantum chemistry code has shown huge benefits (up to 40%)

from topology aware mapping on XT3 [[64]].

4.3 Controlled Contention Experiments

The benchmark in the previous section injects random contention on the network.

To quantify the effects of contention under controlled conditions, WICON was modified

to conduct controlled experiments. The next two subsections list the results of

running these experiments where we inject congestion along one dimension of the

torus.

4.3.1 Benchmark Stressing a Given Link

In the first experiment, we try to see the effect on message latencies when a particular

link is progressively used to send more and more messages. From all ranks in the Z

dimension with a specific X and Y coordinate, we choose the pair of ranks in the

middle and measure the message latency between the nodes in the pair. Then we

keep adding pairs around this pair in the Z dimension and measure the impact of

added congestion, on the link in the center. (Figure 4.8).

Main Ranks

Figure 4.8: For increasing stress on a given link, pairs are chosen along the Z
dimension. A baseline run is done with the middle pair and then other pairs are
added around the middle one.

Figure 4.9 shows the results from running this benchmark on BG/P, XT3 and

26

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size (Bytes)

Latency vs Msg Size: With increasing contention (8 x 8 x 16)

8 pairs
7 pairs
6 pairs
5 pairs
4 pairs
3 pairs
2 pairs
1 pair

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size (Bytes)

Latency vs Msg Size: With increasing contention (8 x 8 x 16)

8 pairs
7 pairs
6 pairs
5 pairs
4 pairs
3 pairs
2 pairs
1 pair

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size (Bytes)

Latency vs Msg Size: With increasing contention (8 x 8 x 16)

8 pairs
7 pairs
6 pairs
5 pairs
4 pairs
3 pairs
2 pairs
1 pair

Figure 4.9: Plots showing the results of stressing-a-link benchmark on IBM Blue
Gene/P, Cray XT3 and XT4

27

XT4 for different message sizes. On BG/P (top plot), we see that as message size

increases, we see increased message latencies with more and more pairs. Additional

pairs around the main ranks create contention on the middle links, hence, slowing

down their messages. The difference between the message latencies for the 1 pair of

nodes versus all 8 pairs of nodes sending messages is about 2 times (similar to what

we observed for the WICON benchmark.)

The other two plots show the results from running the same benchmark on a

1024 node contiguous partition of XT3 and XT4 respectively. Surprisingly, leaving

aside the small perturbation for small messages, we see no impact of stressing a

particular link with messages on XT3/XT4. This might be due to better algorithms

for congestion control in the SeaStar routers or the interconnect or in the MPI

implementation.

4.3.2 Benchmark Using Equidistant Pairs

In this experiment, we try to introduce the same amount of contention on all links of

the network (that is each link has the same number of messages passing through it)

and try to see its effects. Similar to the WICON benchmark, all ranks are divided into

pairs but now the pairs are chosen such that they are a fixed number of hops, say

n, away from each other. All pairs send messages simultaneously and the average

time for message sends of different sizes for varying hops is recorded. Pairs are

chosen only along one dimension of the torus, in this case, the Z dimension (see

communication pattern in Figure 4.10).

Figure 4.11 shows the results of running this benchmark on BG/P, XT3 and

XT4. On each plot there are several lines, one each for a specific pairing where the

communicating ranks are n hops away. The tests were done on a torus of dimensions

8 × 8 × 16. Since messages are sent along Z, maximum number of hops possible

is 8 and hence there are 8 lines on the plot. The Blue Gene/P plot (top) shows

28

Figure 4.10: For creating pairs of processors, with the same distance between the
partners in each pair, strategies as shown in this diagram were used. Pairs are
created along the Z dimension and here we show distance=1, 2 and 3.

that the message latencies for large messages for the 1 hop and 8 hops case can

differ by a factor of 16! As all messages travel more hops, links are shared by more

and more messages increasing the contention on the network and decreasing the

available effective bandwidth. This is what applications have to deal with during

communication. This huge difference between message latencies indicates that it is

very important to keep communicating tasks close by and minimize contention on

the network. This is especially true for communication bound applications.

The second plot shows the results from the same benchmark on XT3. In this

case, the difference between latencies for large messages is around 2 times. This

deviation from the results on BG/P needs further analysis. One possible reason

for this might be contention for the Hyper Transport (HT) link which connects the

nodes to the SeaStar router instead of the network links. Another reason might

be higher bandwidth and better capability of XT3 to handle random contention.

29

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size (Bytes)

Effect of distance on latencies (Torus - 8 x 8 x 16)

8 hops
7 hops
6 hops
5 hops
4 hops
3 hops
2 hops
1 hop

 4

 16

 64

 256

 1024

 4096

 16384

4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size (Bytes)

Effect of distance on latencies (Torus - 8 x 8 x 16)

7 hops
6 hops
5 hops
4 hops
3 hops
2 hops
1 hop

 8
 16
 32
 64

 128
 256
 512

 1024
 2048
 4096
 8192

4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size (Bytes)

Effect of distance on latencies (Torus - 8 x 8 x 16)

8 hops
7 hops
6 hops
5 hops
4 hops
3 hops
2 hops
1 hop

Figure 4.11: Plots showing the results of the equidistant-pairs benchmark on Blue
Gene/P, XT3 and XT4

30

However, on XT4 (bottom plot), the difference between 1-hop and 8-hops latencies

is 3 times which can be attributed to having more cores on each node.

In summary, results from the benchmarks above support our claim that intercon-

nect topology can impact application performance. Hence it is important to consider

the topology, map communicating neighbors closer and minimize contention on the

network.

31

5 Hop-bytes as an Evaluation Metric

T he volume of inter-processor communication can be characterized by the hop-

bytes metric which is the weighted sum of message sizes where the weights are

the number of hops (links) traveled by the respective messages. Hop-bytes can be

calculated by the equation,

HB =
n∑
i=1

di × bi (5.1)

where di is the number of links traversed by message i and bi is the message size in

bytes for message i and the summation is over all messages sent.

Hop-bytes is an indication of the average communication load on each link on the

network. This assumes that the application generates nearly uniform traffic over all

links in the partition. The metric does not give an indication of hot-spots generated

on specific links on the network but is an easily derivable metric and correlates well

with actual application performance.

In VLSI circuit design and early parallel computing work, emphasis was placed

on another metric called maximum dilation which is defined as,

d(e) = max{di|ei ∈ E} (5.2)

where di is the dilation of the edge ei. Dilation for an edge ei is the number of

hops between the end-points of the edge in the host graph. This metric aims at

minimizing the longest length of the wire in a circuit. We claim that reducing the

largest number of links traveled by any message is not as critical as reducing the

average hops across all messages.

32

5.1 Experiment 1

An MPI benchmark was created to justify the claim that hop-bytes is a more suitable

metric than maximum dilation. In the basic configuration of this benchmark, every

pair talks with its six neighbors (two in each dimension) to create some background

communication. We then add one of these patterns: 1. Each rank sends two

messages, one to a neighbor three hops away and another to a neighbor six hops

away (avg: 1.88 max: 6 line on the plots), or 2. Each rank sends a message to a

neighbor nine hops away (avg: 1.88 max: 9 line on the plots.) The avg: 1 max: 1

line due to six near-neighbor messages is plotted as a baseline.

While the difference in the maximum hops between the two cases is three, the to-

tal hop bytes is the same and hence, we expect to see similar performance. Figure 5.1

shows the results obtained from running this benchmark. We ran the benchmark

on ANL’s Blue Gene/P (BG/P) on 1, 024 nodes which form a 8 × 8 × 16 torus.

Message size is varied from 4 bytes to 1 MB and multiple trials are done for each

point on the plot. Time for the entire communication pattern to finish is recorded

between barriers. For small messages, the max: 9 case does better than max: 6

case because only one message is sent in the first one whereas two are sent in the

second case (alluding to per-message overheads). For large messages, we see that

the lines coincide confirming our predictions that hop-bytes is a more important

metric than dilation. Similar results are seen when running this benchmark on Cray

XT4 (Figure 5.2).

However, it is important to remember that even hop-bytes is an approximate

indication of the contention created by an application since it does not capture the

specific loads on each link. It is a measure of the bytes the network has to deliver

for an application to run to completion. So, information about specific hot-spots on

the network is not expressible through this metric.

33

 8

 16

 32

 64

4 8 16 32 64 128 256 512 1K

La
te

nc
y

(u
s)

Message Size (Bytes)

Latency vs. Message Size: 8 x 8 x 16 nodes

avg: 1.88 max: 9
avg: 1.88 max: 6

avg: 1 max:1

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

La
te

nc
y

(u
s)

Message Size (Bytes)

Latency vs. Message Size: 8 x 8 x 16 nodes

avg: 1.88 max: 9
avg: 1.88 max: 6

avg: 1 max:1

Figure 5.1: Plots showing that average hops is an important factor guiding perfor-
mance. Runs were done on a 8× 8× 16 partition of BG/P

34

 64

 128

 256

4 8 16 32 64 128 256 512 1K

La
te

nc
y

(u
s)

Message Size (Bytes)

Latency vs. Message Size: 8 x 8 x 16 nodes

avg: 1.88 max: 9
avg: 1.88 max: 6

avg: 1 max:1

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

La
te

nc
y

(u
s)

Message Size (Bytes)

Latency vs. Message Size: 8 x 8 x 16 nodes

avg: 1.88 max: 9
avg: 1.88 max: 6

avg: 1 max:1

Figure 5.2: Plots showing that average hops is an important factor guiding perfor-
mance. Runs were done on a 8× 8× 16 partition of XT4

35

5.2 Experiment 2

Yet another MPI benchmark was written to demonstrate that hop-bytes is a good

metric overall but we should still consider other factors such as routing protocols and

hot-spots. In this benchmark, each MPI rank is paired with a partner and all pairs

send messages simultaneously. Both partners in a pair call MPI Irecv, MPI Send

and then MPI Wait. The pairs always have the same Z coordinate on the torus.

The benchmark is run in different modes depending on how the ranks are grouped

into pairs:

Figure 5.3: Communication patterns along the Z dimension in the synthetic bench-
mark

• avg: 1 max: 1 : Every rank is paired with one which is exactly one link away

from it along the Z direction.

• avg: 2 max: 2 : Every rank is paired with one which is exactly two links away

from it along the Z direction.

• avg: 2 max: 8 : Most ranks are paired with a partner which is one link away

but one pair is such that the distance between the partners is 8 links or hops.

The average hops is 2.

Figure 5.3 shows the pairing of 16 nodes along the Z dimension. Figure 5.4 shows

the results from running the benchmark on 1, 024 nodes of BG/P. There are several

36

 2

 4

 8

 16

4 8 16 32 64 128 256 512 1K

La
te

nc
y

(u
s)

Message Size (Bytes)

Latency vs. Message Size: 8 x 8 x 16 nodes

avg: 2 max: 8
avg: 2 max: 2
avg: 1 max: 1

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

La
te

nc
y

(u
s)

Message Size (Bytes)

Latency vs. Message Size: 8 x 8 x 16 nodes

avg: 2 max: 8
avg: 2 max: 2
avg: 1 max: 1

Figure 5.4: Plots showing that maximum dilation can also impact performance.
Runs were done on a 8× 8× 16 partition of BG/P

37

observations to be made from these plots. Small messages (less than 128 bytes) are

not affected severely because there is negligible contention. For messages greater

than 256 bytes, a clear trend is that as the average number of hops increases, the

time increases significantly (note, the difference between avg: 1 and avg: 2 lines and

that the y-axis has a logarithmic scale). So average hop-bytes is a good indicator of

the contention created on the network.

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

+Z_Link −Z_Link

N
u

m
b

er
 o

f
3

2
 b

y
te

 c
h

u
n

k
s

Link statistics on Blue Gene/P

avg:1 max:1
avg:2 max:2
avg:2 max:8

Figure 5.5: HPM Counters Data for Z links in a partition of dimensions 8× 8× 16
on Blue Gene/P

Furthermore, when the maximum hops is different between two cases (avg: 2),

the performance worsens further. For a further diagnosis of this situation, we used

the IBM Performance Monitor library [[65]] to obtain information about the num-

ber of bytes passing through each node. Figure 5.5 shows the data obtained from

BGP TORUS ZP 32BCHUNKS and BGP TORUS ZM 32BCHUNKS which gives the number of

32 byte chunks passing through the +Z and −Z links of each node. Since there is

no communication in the X and Y direction, counters for those are zero. For these

profiling runs, only 1, 024-byte messages were used.

38

The figure shows that when the maximum hops is 8, more packets are sent along

the +Z links than the −Z links which leads to a degradation in performance. This

exercise shows that subtle routing choices can affect contention and lead to perfor-

mance degradation. Since the maximum hops are not captured by the hop-bytes

metric, it is sometimes relevant to consider that as a factor affecting performance.

That said, since hop-bytes is still a good indicator of the communication traffic on

the network, we will use it as a basis for evaluation of mapping algorithms in the

subsequent chapters.

39

6 Processor Graph: Topology
Manager API

Mapping of communication graphs onto the processor graph requires informa-

tion about the machine topology at runtime. The application should be able to

query the runtime to get information like the dimensions of the allocated processor

partition, mapping of ranks to physical nodes et cetera. However, the mapping inter-

face should be simple and should hide machine-specific details from the application.

We have developed a Topology Manager API which provides a uniform interface to

the application developer for determining topology information. With the API, ap-

plication specific task mapping decisions require no architecture or machine specific

knowledge (BG/L or XT3 for example).

6.1 The Topology Manager

We now describe this API, which we call the Topology Manager that can be used

by any application for mapping of objects to processors. The library is generic and

can be used in parallel programs written in different programming models. The

Topology Manager API provides various functions which can be grouped into the

following categories:

1. Size and properties of the allocated partition: At runtime, the appli-

cation needs to know the dimensions of the allocated partition (getDimNX,

getDimNY, getDimNZ), number of cores per node (getDimNT) and whether we

have a torus or mesh in each dimension (isTorusX, isTorusY, istorusZ).

40

2. Properties of an individual node: Each task in the application is placed

on some processor which has X, Y and Z coordinates. The interface also

provides calls to convert from ranks (IDs of the tasks) to physical coordinates

and vice-versa (rankToCoordinates, coordinatesToRank).

3. Additional Functionality: Mapping algorithms often need to calculate

number of hops between two ranks or pick the closest rank to a given rank

from a list. Hence, the API provides functions like getHopsBetweenRanks,

pickClosestRank and sortRanksByHops to facilitate mapping algorithms.

The functions described above are implemented on different IBM and Cray ma-

chines and the application sees a uniform interface. The next section describes the

process of deriving this information at runtime.

6.2 Topology Discovery on Torus Machines

We now discuss the process of extracting this information from the system at runtime

and why it is useful to use the Topology Manager API on different machines.

6.2.1 IBM Blue Gene Machines

On Blue Gene/L and Blue Gene/P [[7]], topology information is available through

system calls to the “BGLPersonality” and “BGPPersonality” data structures, re-

spectively. It is useful to use the Topology Manager API instead of the system

calls for two reasons. First, these system calls can be expensive (especially on Blue

Gene/L) and so it is advisable to avoid doing too many of them. The API does a

few system calls to obtain enough information so that it can construct the topology

information itself. Topology information is then available throughout the execution

of the program with low overhead.

41

The second reason is that on Blue Gene/L and Blue Gene/P, there is a limit

to the smallest size of a partition which can be allocated (32 nodes on the Watson

BG/L and 64 nodes on the ANL BG/P). If fewer nodes than this smallest unit are

requested, the smallest partition will be allocated though only a subset of the nodes

in it are used by the application. In these cases, the lower level system calls give

information about the entire booted partition and not the actual nodes being used.

Our API calculates which portion of the allocated partition is being used when you

use fewer nodes than the allocated partition and gives the correct information.

6.2.2 Cray XT Machines

Cray machines have been designed with a significant overall bandwidth, and possibly

for this reason, documentation for topology information was not readily available at

the installations we used. We thank Shawn Brown from PSC, Larry Kaplan from

Cray and William Renaud from ORNL for helping us obtain topology information

through personal communication. We hope that the information provided here will

be useful to other application programmers.

Obtaining topology information on XT machines is a two step process: 1. First

we obtain the node ID (nid) corresponding to a given MPI rank (pid) which tells

us which physical node a given MPI rank is placed on. This requires using differ-

ent system calls on XT3 and XT4: cnos get nidpid map available through ”cata-

mount/cnos mpi os.h” and PMI Portals get nidpid map available from ”pmi.h”.

These calls provide a map for all ranks in the current job and their corresponding

node IDs. 2. The second step is obtaining the physical coordinates for a given node

ID. This can be done by using the system call rca get meshcoord from ”rca lib.h”.

Once we have information about the physical coordinates for all ranks in the job,

the API derives information such as the extent of the allocated partition by itself

(this assumes that the machine has been reserved and we have a contiguous parti-

42

tion). Using the size of the partition and the size of the total machine (11× 12× 16

for BigBen and 21× 16× 24 for Jaguar), the API can determine if there is a mesh

or torus in each direction. Again, once the TopoManager object is instantiated, it

stores this information and does not make system calls again.

Figure 6.1: Allocation of 256 continuous nodes on the XT3 machine at PSC

Figure 6.1 shows a specific allocation of 256 contiguous nodes in a 3D shape of

dimensions 8×8×4. This snapshot was generated by the BigBen monitor available

on the PSC website.

The API provides a uniform interface which works on all the above mentioned

machines and hides architecture specific details from the application programmer.

This API can be used as a library for Charm++, MPI or any other parallel pro-

gram. The next chapter describes the use of object-based decomposition and the

Topology Manager API in some production codes.

43

7 Application-specific Mapping

N etwork topology information can be used to optimize communication by map-

ping parallel applications onto the allocated job partition. This chapter presents

mapping techniques and performance improvements obtained for two parallel ap-

plications written in Charm++: OpenAtom and NAMD. Communication infor-

mation about the applications is assumed and not obtained automatically.

7.1 OpenAtom

An accurate understanding of phenomena occurring at the quantum scale can be

achieved by considering a model representing the electronic structure of the atoms

involved. The CPAIMD method [[66]] is one such algorithm which has been widely

used to study systems containing 10− 103 atoms [[67–77]]. To achieve a fine-grained

parallelization of CPAIMD, computation in OpenAtom [[16]] is divided into a large

number of objects, enabling scaling to tens of thousands of processors. We will look

at the parallel implementation of OpenAtom, explain the communication involved

and then discuss the topology aware mapping of its objects.

In an ab initio approach, the system is driven by electrostatic interactions be-

tween the nuclei and electrons. Calculating the electrostatic energy involves comput-

ing several terms. Hence, CPAIMD computations involve a large number of phases

with high inter-processor communication: (1) quantum mechanical kinetic energy of

non-interacting electrons, (2) Coulomb interaction between electrons or the Hartree

energy, (3) correction of the Hartree energy to account for the quantum nature of

44

the electrons or the exchange-correlation energy, and (4) interaction of electrons

with atoms in the system or the external energy. These phases are discretized into a

large number of objects which generates a high volume of communication, but this

ensures efficient interleaving of work. The entire computation is divided into ten

phases which are parallelized by decomposing the physical system into fifteen chare

arrays. For a detailed description of this algorithm please refer to [[16]].

7.1.1 Communication Dependencies

The ten phases referred to in the previous section are parallelized by decomposing

the physical system into fifteen chare arrays of different dimensions (ranging between

one and four). A simplified description of these arrays (those most relevant to the

mapping) follows:

GSpace and RealSpace: These arrays contain the g-space and real-space representa-

tions of each electronic state [[66]]. Each electronic state is represented by a 3D array

of complex numbers. OpenAtom decomposes this data into a 2D chare array of

objects. Each object holds a plane of one states (see Figure 7.1). The chare arrays

are represented by G(s, p) [ns ×Ng] and R(s, p) [ns ×N] respectively. GSpace and

RealSpace interact through transpose operations (as part of a Fast Fourier Trans-

form) in Phase I and hence all planes of one state of GSpace interact with all planes

of the same state of RealSpace.

RhoG and RhoR: These arrays hold the g-space and real-space representations of

electron density and are decomposed into 1D and 2D chare arrays, respectively.

They are represented asGρ(p) andRρ(p, p
′). RealSpace interacts with RhoR through

reductions in Phase II. RhoG is obtained from RhoR in Phase III through two

transposes.

45

G
Sp

ac
e

Pa
ir

Ca
lc

ul
at

or
Re

al
Sp

ac
e

Rh
oR

D
en

si
ty

O
rt

ho

Tr
an

sp
os

e

Tr
an

sp
os

e

Re
du

cti
on

M
ul
tic
as
t

Rh
oR

H
ar

t
Rh

oG

Rh
oG

H
ar

t

I VI

II V

III
IV

VI
I

VI
II

F
ig

u
re

7.
1:

D
ec

om
p

os
it

io
n

of
th

e
p
h
y
si

ca
l

sy
st

em
in

to
ch

ar
e

ar
ra

y
s

(o
n
ly

im
p

or
ta

n
t

on
es

sh
ow

n
fo

r
si

m
p
li
ci

ty
)

in
O

p
e
n
A
t
o
m

46

PairCalculators: These 3D chare arrays are used in phase IV. They communi-

cate with GSpace through multicasts and reductions. They are represented as

Pc(s, s
′, p) [ns × ns × Ng]. All elements of the GSpace array with a given state

index interact with all elements of the PairCalculator array with the same state in

one of their first two dimensions.

7.1.2 Mapping Techniques

OpenAtom provides us with a scenario where the load on each object is static (un-

der the CPAIMD method) and the communication is regular and clearly understood.

Hence, it should be possible to intelligently map the arrays in this application to

minimize inter-processor communication and maintain load balance. OpenAtom

has a default mapping scheme, but it should be noted that the default mapping

is far from random. It is the mapping scheme used on standard fat-tree networks,

wherein objects which communicate frequently are co-located on processors within

the constraints of even distribution. This reduces the total communication volume.

It only lacks a model for considering the relative distance between processors in its

mapping considerations. We can do better than the default mapping by using the

communication and topology information at runtime. We now describe how a com-

plex interplay (of communication dependencies) between five of the chare arrays is

handled by our mapping scheme.

GSpace and RealSpace are 2D chare arrays with states in one dimension and

planes in the other. These arrays interact with each other through transpose oper-

ations where all planes of one state in GSpace, G(s, ∗) talk to all planes of the same

state, R(s, ∗) in RealSpace (state-wise communication). The number of planes in

GSpace is different from that in RealSpace. GSpace also interacts with the Pair-

Calculator arrays. Each plane of GSpace, G(∗, p) interacts with the corresponding

plane, P (∗, ∗, p) of the PairCalculators (plane-wise communication) through multi-

47

casts and reductions. So, GSpace interacts state-wise with RealSpace and plane-

wise with PairCalculators. If all planes of GSpace are placed together, then the

transpose operation is favored, but if all states of GSpace are placed together, the

multicasts/reductions are favored. To strike a balance between the two extremes, a

hybrid map is built, where a subset of planes and states of these three arrays are

placed on one processor.

GSpacePairCalculator

RealSpace

States

Planes

States

Planes

Planes

States

States

3D Torus Partition

Figure 7.2: Mapping of a few OpenAtom arrays to the 3D torus of the machine

Mapping GSpace and RealSpace Arrays: Initially, the GSpace array is placed on the

torus and other objects are mapped relative to its mapping. The 3D torus is divided

into rectangular boxes (which will be referred to as “prisms”) such that the number

of prisms is equal to the number of the planes in GSpace. The longest dimension of

the prism is chosen to be same as one dimension of the torus. Each prism is used for

all states of one plane of GSpace. Within each prism for a specific plane, the states

in G(*, p) are laid out in increasing order along the long axis of the prism. Once

GSpace is mapped, the RealSpace objects are placed. Prisms perpendicular to the

GSpace prisms are created, which are formed by including processors holding all

planes for a particular state of GSpace, G(s, ∗). These prisms are perpendicular to

the GSpace prisms and the corresponding states of RealSpace, R(s, ∗) are mapped

48

on to these prisms. Figure 7.2 shows the GSpace objects (on the right) and the

RealSpace objects (in the foreground) being mapped along the long dimension of

the torus (box in the center).

Mapping of Density Arrays: RhoR objects communicate with RealSpace plane-wise

and hence Rρ(p, ∗) have to be placed close to R(∗, p). To achieve this, we start with

the centroid of the prism used by R(∗, p) and place RhoR objects in proximity to it.

RhoG objects, Gρ(p) are mapped near RhoR objects, Rρ(p, ∗) but not on the same

processors as RhoR to maximize overlap. The density computation is inherently

smaller and hence occupies the center of the torus.

Mapping PairCalculator Arrays: Since PairCalculator and GSpace objects interact

plane-wise, the aim is to place G(∗, p) and P (∗, ∗, p) nearby. Chares with indices

P (s1, s2, p) are placed around the centroid of G(s1, p), ..., G(s1 + block size, p) and

G(s2, p),, G(s2 + block size, p). This minimizes the hop-count for the multicast

and reduction operations. The result of this mapping co-locates each plane of Pair-

Calculators (on the left in Figure 7.2) with its corresponding plane of GSpace objects

within the GSpace prisms.

The mapping schemes discussed above substantially reduce the hop-count for dif-

ferent phases. They also restrict different communication patterns to specific prisms

within the torus, thereby reducing contention and ensuring balanced communica-

tion throughout the torus. State-wise and plane-wise communication is confined to

different (orthogonal) prisms. This helps avoid scaling bottlenecks as we will see in

Section 7.1.4. These maps perform no better (and generally slightly worse) than the

default maps on architectures which have more uniform network performance, such

as Ethernet or Infiniband.

49

7.1.3 Time Complexity

Although maps are created only once during application start-up, they must still be

efficient in terms of their space and time requirements. The memory cost of these

maps grows linearly (4 integers per object) with the number of objects, which is a

few megabytes in the largest system studied. The runtime cost of creating the most

complex of these maps is O(n3/2log(n)) where n is the number of objects. Despite

this complexity, this time is sufficiently small that generating the maps for even the

largest systems requires only a few minutes.

Table 7.1 shows the time it takes to construct two of the complex maps (Re-

alSpace and RealParticlePlane) when running WATER 256 70Ry. Even on 8192

processors, it takes less than one-third of a minute to create a RealParticlePlane

map. Algorithm 7.1 shows the pseudo-code for creating the RealSpace map from

the GSpace map. The creation of RealParticlePlane is similar but there are more

sorting calls inside the first for loop, which increases it running time. RealParticle-

Plane objects are not on the critical path of execution and hence the mapping of this

array can be turned off if it takes a long time for very large runs. This illustrates a

common tradeoff: it is always important to evaluate if the time spent in computing

a mapping is worth the performance benefit achieved from it.

Cores RealSpace RealParticlePlane

1024 0.33 1.48
2048 0.52 3.19
4096 1.00 4.90
8192 3.07 17.89

Table 7.1: Execution time (in seconds) to obtain mapping solutions for RealSpace
and RealParticlePlane objects on Blue Gene/P (System: WATER 256M 70Ry)

RealSpace objects are extremely important because of the large communication

with GSpace and density objects, and their mapping cannot be ignored. The algo-

50

Algorithm 7.1 Mapping of RealSpace objects based on the the map for GSpace
objects

Input: nstates (Number of states in the RealSpace chare array)
nplanes (Number of planes in the RealSpace chare array)
gsmap (Mapping of the GSpace chare array)

Output: rsmap Mapping of the RealSpace chare array)
for state← 1 to nstates do

Create a processor list plist consisting of processors in gsmap[state, ∗]
RSobjs per pe = maximum number of RSMap objects per processor
for plane← 1 to nplanes do

Exclude processors which have RSobjs per pe from plist
Sort plist by increasing hops from the first processor in the list
Assign object rsmapstate,plane on the first element in plist

end for
end for

rithm above shows that the running time of the algorithm is nstates × nplanes ×

nstates× log(nstates). Approximating nstates and nplanes by n1/2, the time com-

plexity is O(n3/2log(n)). There may be room for improvement if we can move the

sorting out of the inner for loop. As an optimization, maps can be stored and

reloaded in subsequent runs to minimize restart time. Offline creation of maps us-

ing more sophisticated techniques and adapting these ideas to other topologies is an

area of future work.

7.1.4 Performance Improvements

To analyze the effects of topology aware mapping in a production science code, we

studied the strong scaling (fixed problem size) performance of OpenAtom with and

without topology aware mapping. Two benchmarks commonly used in the CPMD

community, the minimization of WATER 32M 70Ry and WATER 256M 70Ry were

used. The benchmarks simulate the electronic structure of 32 molecules and 256

molecules of water, respectively, with a standard g-space spherical cutoff radius

of |g|2cut = 70 Rydberg (Ry) on the states, at the Γ point (1 k-point), three di-

mensional periodic boundary conditions, the BLYP generalized gradient corrected

51

density functional [[78, 79]] and Martins-Troullier type pseudopotentials [[80]]. To

illustrate that the performance improvements extend beyond benchmarks to pro-

duction science systems, we also present results for GST BIG, which is a system

being studied by our collaborator, Dr. Glenn J. Martyna. GST BIG consists of

64 molecules of Germanium, 128 molecules of Antimony and 256 molecules of Tel-

lurium at a cutoff radius of |g|2cut = 20 Ry on the states, at the Γ point (1 k-point)

and otherwise as in the benchmarks above.

Blue Gene/L (IBM T. J. Watson) runs are done in co-processor (CO) mode to

use a single core per node. Blue Gene/P (Intrepid at ANL) runs were done in VN

mode which uses all four cores per node. Cray XT3 (BigBen at PSC) runs are done

in two modes: single core per node (SN) and two cores per node (VN). As shown

in Table 7.2, performance improvements from topology aware mapping for BG/L

can be quite significant. As the number of cores and likewise, the diameter of the

torus grows, the performance impact increases until it is a factor of two faster for

WATER 32M 70Ry at 2048 and for WATER 256M 70Ry at 16384 cores. There

is a maximum improvement of 40% for GST BIG. The effect is not as strong in

GST BIG due to the fact that the time step in this system is dominated by a subset

of the orthonormalization process which has not been optimized extensively, but a

40% improvement still represents a substantial improvement in time to solution.

WATER 32M 70Ry WATER 256M 70Ry GST BIG
Cores Default Topology Default Topology Default Topology

512 0.274 0.259 - - - -
1024 0.189 0.150 19.10 16.40 10.12 8.83
2048 0.219 0.112 13.88 8.14 7.14 6.18
4096 0.167 0.082 9.13 4.83 5.38 3.35
8192 0.129 0.063 4.83 2.75 3.13 1.89
16384 - - 3.40 1.71 1.82 1.20

Table 7.2: Execution time per step (in seconds) of OpenAtom on Blue Gene/L
(CO mode)

52

Performance improvements on BG/P are similar to those observed on BG/L

(Table 7.3). The improvement for WATER 32M 70Ry is not as remarkable as on

BG/L but for WATER 256M 70Ry, we see a factor of 2 improvement starting at

2048 cores. The absolute numbers on BG/P are much better than on BG/L partially

because of the increase in processor speeds but more due to the better interconnect

(higher bandwidth and an effective DMA engine). The execution time for WA-

TER 256M 70Ry at 1024 cores is 2.5 times faster on BG/P than on BG/L. This

is when comparing the VN mode on BG/P to the CO mode on BG/L. If we use

only one core per node on BG/P, the performance difference is even greater, but

the higher core per node count, combined with the DMA engine and faster network

make single core per node use less interesting on BG/P.

WATER 32M 70Ry WATER 256M 70Ry GST BIG
Cores Default Topology Default Topology Default Topology

256 0.395 0.324 - - - -
512 0.248 0.205 - - - -
1024 0.188 0.127 10.78 6.70 6.24 5.16
2048 0.129 0.095 6.85 3.77 3.29 2.64
4096 0.114 0.067 4.21 2.17 3.63 2.53
8192 - - 3.52 1.77 - -

Table 7.3: Execution time per step (in seconds) of OpenAtom on Blue Gene/P
(VN mode)

The improvements from topology awareness on Cray XT3, presented in Table 7.4

are comparable to those on BG/L and BG/P. The improvement of 27% and 21%

on XT3 for WATER 256 70Ry and GST BIG at 1, 024 cores is greater than the

improvement of 14% and 13% respectively on BG/L at 1, 024 cores in spite of a

much faster interconnect. However, on 2, 048 cores, performance improvements on

the three machines are similar.

The improvement trends plotted in Figure 7.3 lead us to project that topology

aware mapping should yield improvements proportional to torus size on larger Cray

53

WATER 32M 70Ry WATER 256M 70Ry GST BIG
Cores Default Topology Default Topology Default Topology

Single core per node

512 0.124 0.123 5.90 5.37 4.82 3.86
1024 0.095 0.078 4.08 3.24 2.49 2.02

Two cores per node

256 0.226 0.196 - - - -
512 0.179 0.161 7.50 6.58 6.28 5.06
1024 0.144 0.114 5.70 4.14 3.51 2.76
2048 0.135 0.095 3.94 2.43 2.90 2.31

Table 7.4: Execution time per step (in seconds) of OpenAtom on XT3 (SN and
VN mode)

XT installations. The difference in processor speeds is approximately a factor of

4 (XT3 2.6 GHz, BG/L 700 MHz), which is reflected in the performance for the

larger grained OpenAtom results on XT3 when comparing single core per node

performance. The difference in network performance is approximately a factor of

7 (XT3 1.1 GB/s, BG/L 150 MB/s), when considering delivered bandwidth as

measured by HPC Challenge [[56]] ping pong. This significant difference in absolute

speed and computation/bandwidth ratios does not shield the XT3 from performance

penalties from topology ignorant placement schemes. BG/P and BG/L show similar

performance improvements which is expected since the BG/P architecture is similar

to that of BG/L with slightly faster processors and increased network bandwidth.

OpenAtom is highly communication bound (as briefly discussed in the Intro-

duction). Although Charm++ facilitates the exploitation of the available overlap

and latency tolerance across phases, the amount of latency tolerance inevitably drops

as the computation grain size is decreased by the finer decomposition required for

larger parallel runs. It is important to consider the reasons for these performance

improvements in more detail. Figure 7.4 compares idle time as captured by the

Projections profiling system in Charm++ for OpenAtom on BG/L for the de-

54

512 1,024 2,048 4,096 8,192

S
p

ee
d

u
p

 o
v

er
 d

ef
au

lt
 m

ap
p

in
g

Number of cores

Performance Improvement for OpenAtom

XT3
Blue Gene/L
Blue Gene/P

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

Figure 7.3: Comparison of performance improvements on BG/L, BG/P and XT3
using topology aware mapping (for WATER 256M 70Ry)

fault mapping, versus the topology aware mapping. A processor is idle whenever

it is waiting for messages to arrive. It is clear from Figure 7.4 that the factor of

two speed increase from topology awareness is reflected directly in relative idle time

and that the maximum speed increase which can be obtained from topology aware

mapping is a reduction in the existing idle time.

It is illuminating to study the exact cause for this reduction in idle time. To that

end, we ported IBM’s High Performance Monitor library [[65]] for Blue Gene/P’s Uni-

versal Performance Counters to Charm++, and enabled performance counters for a

single time step in WATER 256M 70Ry in both topology aware and non-topology

aware runs. We added the per node torus counters (BGP TORUS * 32BCHUNKS),

to produce the aggregate link bandwidth consumed in one step across all nodes to

obtain the results in Figure 7.5. This gives us an idea of the fraction of the total

bandwidth across all links on the network used in one step. If messages travel fewer

hops due to topology aware placement, it will lead to smaller bandwidth consump-

tion, thereby indicating less contention on the network. It is clear from the figure,

55

 0

 100

 200

 300

 400

 500

 600

 700

 800

1,024 2,048 4,096 8,192

Id
le

 T
im

e
(h

o
u

rs
)

Number of cores

WATER_256M_70Ry on Blue Gene/L

Default Mapping
Topology Mapping

Figure 7.4: Effect of topology aware mapping on idle time (time spent waiting for
messages)

that topology aware mapping results in a significant reduction, by up to a factor of

two, in the total bandwidth consumed by the application. This more efficient use

of the network is directly responsible for the reduction in latency due to contention

and decreased idle time.

7.1.5 Multiple Application Instances

The discussion and results so far pertain to using OpenAtom for a single simulation

of the evolution of the electronic states of a particular system. More information

and/or improved accuracy can be obtained through the application of replica meth-

ods, which combine the results of multiple evolutions of a system. For example,

applications of the path integral formulation combine multiple replicas to improve

the accuracy of atomic positions. Similarly, when studying metals it is necessary to

sample multiple K-points of the first Brillouin zone (the default scheme is k = 0)

for convergence. Each of these methods and many similar applications not consid-

ered here, share the trait that most of the computation for each trajectory remains

56

 0

 200

 400

 600

 800

 1,000

 1,200

1,024 2,048 4,096 8,192

B
an

d
w

id
th

 (
G

B
/s

te
p

)

Number of cores

WATER_256M_70Ry on Blue Gene/P

Default Mapping
Topology Mapping

Figure 7.5: Effect of topology aware mapping on aggregate bandwidth consumption
per step - smaller link bandwidth utilization suggests reduction in hops traversed
by messages and hence reduction in contention

independent and their results are combined only within one phase of the computa-

tion. We can therefore treat these as largely independent instances of the simulation

for most optimization considerations. In OpenAtom, we express each of these as

separate instances of the Charm++ arrays.

Multiple instances of OpenAtom are mapped to different parts of the partition

to prevent different instances from contending for the same resources. We divide the

allocated partition along the longest dimension, into sub-partitions equal in number

to the number of instances. We obtain the mappings for the first instance on the

first sub-partition and then translate the maps along the longest dimension to obtain

the maps for the other instances. Figure 7.6 shows the mapping of four OpenAtom

instances on to a torus of dimensions 8×4×8. The torus is split into four parts along

the X dimension (of size 8). Two alternate instances are shown while the other two

have been made invisible. We can see the color pattern repeated at X = 0 and

X = 4 along this dimension for the identical mapping of the two instances.

57

th
is
In
de
x.
x

LE
G
EN
D

012
7

63

X

Y
Z

F
ig

u
re

7.
6:

M
ap

p
in

g
of

fo
u
r
O

p
e
n
A
t
o
m

in
st

an
ce

s
on

a
8
×

4
×

8
to

ru
s

(S
y
st

em
:

W
A

T
E

R
32

M
70

R
y
).

T
w

o
al

te
rn

at
e

in
st

an
ce

s
ar

e
v
is

ib
le

w
h
il
e

th
e

ot
h
er

tw
o

h
av

e
b

ee
n

m
ad

e
in

v
is

ib
le

.

58

There are other possible options which can be experimented with when mapping

multiple instances. We can either split along the longest dimension or the shortest

dimension. Let us take a concrete example where we have to map two instances of

OpenAtom to be mapped on to a torus of dimensions 16×8×32. If we split along

the longest dimension, the diameter of the sub-partition is 28. If we split along the

smallest dimension, the diameter of the sub-partition is still 28. Hence we do not

hope to see major performance difference between the two schemes. Splitting along

more than one dimension may degrade performance due to the creation of smaller

meshes instead of tori.

In the next section, we discuss an application which is very different from Ope-

nAtom. The communication pattern is dynamic and the computational loads of

each object can be different. Also, this application is latency tolerant.

7.2 NAMD

Molecular Dynamics applications enhance our understanding of biological phenom-

ena through bio-molecular simulations. Large-scale parallelization of MD simula-

tions is challenging due to the small number of atoms and small time scales involved.

Load balancing in parallel MD programs is crucial for good performance on large

parallel machines. This section discusses load balancing algorithms deployed in a

MD code called NAMD [[15,22,81]]. It focuses on new schemes deployed in the load

balancers and provides an analysis of the performance benefits achieved. Specifi-

cally, we present the technique of topology aware mapping on 3D mesh and torus

architectures, used to improve scalability and performance.

59

7.2.1 Parallelization of NAMD

Parallelization of NAMD involves a hybrid of spatial and force decomposition. The

3D simulation space is divided into cells called “patches” and the force calculation

between every pair of patches is assigned to a different “compute” object. Patches

are assigned statically to processors during program start-up. On the other hand,

computes, can be moved around to balance load across processors. If a patch com-

municates with more than one compute on a processor, a proxy is placed on this

processor for the patch. The proxy receives the message from the patch and then

forwards it to the computes internally (Figure 7.7). This avoids adding new com-

munication paths when new computes for the same patch are added on a processor.

Patch

Compute

Proxy

Figure 7.7: Placement of patches, computes and proxies on a 2D mesh of processors

The total computational load on a processor is the sum of individual loads of

the computes it houses. The number of proxies on a processor give an indication

of its communication load. Load balancing in NAMD is measurement-based. This

assumes that load patterns tend to persist over time and even if they change, the

change is gradual (referred to as the principle of persistence). The load balancing

60

framework records information about object (compute) loads for some time steps.

It also records the communication graph between the patches and proxies. This

information is collected on one processor and based on the instrumentation data,

a load balancing phase is executed. Decisions are then sent to all processors. The

current strategy is centralized and we shall later discuss future work to make it fully

distributed and scalable.

It should be noted that communication in NAMD is a special case of a general

scenario. In NAMD, every patch multicasts its atom information to many com-

putes. However, each compute (or target of the multicast) receives data from only

two patches (the sources). The general case is where each target can receive from

more than two sources and the strategies deployed in NAMD can be extended to

other cases.

Patches in NAMD are statically mapped in the beginning and computes are

moved around by the load balancers to achieve load balance. Two load balancers

are used in NAMD. An initial comprehensive load balancer invoked in the beginning

places the computes evenly on all processors. A refinement load balancer is invoked

multiple times during a run and it moves a small number of computes to rebalance

the load. Both load balancers follow a greedy approach to distribute load evenly

among the processors.

7.2.2 Load Balancing Algorithms

The decision to place patches statically and load balance the computes is based

on the typical number of patches and computes for a system. For a standard MD

benchmark, 92, 227-atom ApoLipoprotein-A1 (ApoA1), the number of patches and

computes in a typical run on 512 cores is 312 and 22212 respectively. Also, atoms

in a patch move slowly and the relative density of atoms per patch does not change

much as there is no vacuum inside patches – unlike large density variations we see

61

in cosmology applications, for example. Hence, we do not need to load balance the

patches. Atoms are migrated from one patch to another every 20 time steps.

Static Placement of Patches: The 3D simulation space is divided into patches

using a geometric decomposition to have roughly equal number of atoms in each

patch. These patches are then assigned to a subset of the processors in a simple

round-robin or strided fashion. In a typical highly parallel run, the number of

patches is significantly smaller than the number of processors.

Comprehensive Strategy: This algorithm iterates over the list of all computes

in decreasing order of their computational loads and finds a “suitable” processor for

each one, while minimizing load imbalance. A compute is placed on a processor only

if the new load of the processor remains below a threshold value (set to be some

factor of the average load on all processors). The algorithm also tries to minimize

communication by avoiding the creation of new proxies (additional proxies require

new communication paths from a particular patch to the processor on which a new

proxy is being placed). Keeping in mind that each compute communicates with two

patches, the steps in the search of a “suitable” processor for a compute are:

Step I: Place the compute on an underloaded processor which hosts both the

patches or proxies for both of them - this does not add any new commu-

nication paths to the graph.

Step II: If Step I fails, place the compute on an underloaded processor which hosts

at least one patch or proxy for one of the patches - this requires adding one

path for the other patch.

Step III: If both Step I and Step II fail, find the first underloaded available pro-

cessor from the list of underloaded processors which can accept this compute.

62

To summarize the strategy, only underloaded processors are considered for plac-

ing a compute and among them, processors with available patches or proxies are

given preference to minimize communication. This is implemented using a pref-

erence table which stores the least underloaded processors for different categories

(Figure 7.8). The first three cells in the table correspond to Step I and the last two

correspond to Step II. The highest preference is given to a processor with proxies

for both patches (cell 1), then to one with one of the patches and a proxy for the

other (cell 2) and then to a processor with both patches on it (cell 3). If Step I fails,

preference is first given to a processor with a proxy (cell 4) and then to one with the

patch (cell 5). We give preference to placing computes on a processor with proxies

compared to the patches themselves because it was observed that performance is

better if the processors with patches are not heavily loaded.

Patch Proxy

Figure 7.8: Preference table for the placement of a compute

Refinement Strategy: This is algorithmically similar to the comprehensive strat-

egy. The difference is that it does not place all the computes all over again. This

algorithm builds a max heap of over-loaded processors and moves computes from

them to under-loaded processors. Once it has reduced the load on all overloaded pro-

cessors to below a certain value, it stops. The process of choosing an underloaded

processor on which to move a compute, is similar to that in the comprehensive

strategy. The three steps outlined above for the search of a suitable processor are

followed in order in this case also. For a detailed and historical perspective to the

63

NAMD load balancers, read [[82]].

7.2.3 Metrics for Evaluation

Optimal load balancing of objects to processors is NP-hard, so in practice, the best

one can do is to try different heuristic strategies to minimize load imbalance. A

combination of several metrics decides the success of a load balancer and we will

discuss them now before we compare different load balancing strategies:

Computational Load: The most important metric which decides the success of

a load balancer is the distribution of computational load across all processors. A

quantity which can be used to quantify this is the ratio of the maximum to average

load across the set of processors. A high max-to-average ratio points towards load

imbalance.

Communication Volume: As we balance computational load, we should also

aim at minimizing inter-processor communication. This can be achieved by using

proxies, as described earlier, to avoid duplicate communication paths from a patch

to a processor. Additionally, we need to minimize the number of proxies by avoiding

the addition of new proxies.

Communication Traffic: Another optimization possible on non-flat topologies

is to reduce the total amount of traffic on the network at any given time. This

can be done by reducing the number of hops each message has to travel and thus

reducing the sharing of links between messages. Number of hops can be reduced by

placing communicating objects on nearby processors. This reduces communication

contention and hence, the latency of messages. This is the main focus of our work.

Communication traffic is quantified by the hop-bytes metric which is the weighted

sum of the messages sizes where the weights are the number of hops traveled by the

64

respective messages.

7.2.4 Topology Aware Techniques

Recent years have seen the emergence of large parallel machines with a 3D mesh or

torus interconnect topology. Performance improvements can be achieved by taking

the topology of the machine into account to optimize communication. Co-locating

communicating objects on nearby processors reduces contention on the network

and message latencies, which improves performance [[83, 84]]. Let us now see the

deployment of topology aware techniques in the static placement of patches and the

load balancers for NAMD.

Topology placement of patches: Since patches form a geometric decomposition

of the simulation space, they constitute a 3D group of objects which can be mapped

nicely onto the 3D torus of machines. An Orthogonal Recursive Bisection (ORB)

of the torus is used to obtain partitions equal in number to the patches and then

a one-to-one mapping of the patches to the processor partitions is done. This is

described in detail in [[85]]. This idea can be used in other applications with a

geometric decomposition such as cosmological and meshing applications.

Topology Aware Load Balancers: Once patches have been statically assigned

onto the processor torus, computes which interact with these patches should be

placed around them. We will now discuss modifications to the load balancing algo-

rithm that try to achieve this heuristically. The three steps for choosing a suitable

processor to place a compute on (for both the comprehensive as well as refinement

load balancer) are modified as follows:

Step I: If the compute gets placed on a processor with both the patches, then no

heuristic can do better than that because both messages are local to the processor

65

(and no new communication paths are added). However, if we are searching for a

processor with proxies for both patches, we can give topological preference to some

processors. Consider Figure 7.9 which shows the entire 3D torus on which the job

is running. When placing a compute, it should be placed topologically close to the

two processors that house the patches it interacts with. The two patches define a

smaller brick within the 3D torus (shown in dark grey in the figure). The sum of

distances for any processor within this brick to the two patches is less than that for

any processor outside the brick. Hence, if we find two processors with proxies for

both patches, we give preference to the processor which is within this inner brick

defined by the patches.

Inner Brick

Outer Brick

Patch 1

Patch 2

Figure 7.9: Topological placement of a compute on a 3D torus/mesh of processors

Step II: Likewise, in this case too, we give preference to a processor with one proxy

or patch which is within the brick defined by the two patches that interact with the

compute.

Step III: If Step I and II fail, we are supposed to look for any underloaded pro-

cessor to place the compute on. Under the modified scheme, we first try to find

66

an underloaded processor within the brick and if there is no suitable processor, we

spiral around the brick to find the first underloaded one.

To implement these new topology aware schemes in the existing load balancers,

we build two preference tables (similar to Figure 7.8) instead of one. The first

preference table contains processors which are topologically close to the patches in

consideration (within the brick) and the second one contains the remaining proces-

sors (outside the brick). We look for underloaded processors in the two tables with

preference in order to the following: number of proxies, hops from the compute and

then the load on the processor.

7.2.5 Performance Improvements

Performance runs were done to validate the impact of the topology aware schemes

on the execution time of NAMD. Two supercomputers were used for this purpose:

IBM Blue Gene/P (Intrepid) at ANL and Cray XT3 (BigBen) at PSC. The default

job scheduler for XT3 does not guarantee a contiguous partition allocation and

hence those runs were done with a special reservation on the whole machine.

Figure 7.10 shows the hop-bytes for all messages per iteration when running

NAMD on Blue Gene/P on different sized partitions. A standard benchmark used

in the MD community was used for the runs: 92, 227-atom ApoLipoprotein-A1

(ApoA1). All runs in this dissertation were done with the PME computation

turned off to isolate the load balancing issues of interest. As we would expect,

hop-bytes consistently increase as we go from a smaller partition to a larger one.

The three strategies compared are: topology oblivious mapping of patches and com-

putes (Topology Oblivious), topology aware static placement of patches (TopoPlace

Patches) and topology aware placement for both patches and load balancing for

computes (TopoAware LDBs).

Topology aware schemes for the placement of patches and the load balancer help

67

 1,000

 1,200

 1,400

512 1,024 2,048 4,096

H
o

p
−

b
y

te
s

(M
B

 p
er

 i
te

ra
ti

o
n

)

Number of cores

ApoA1 running on Blue Gene/P

Topology Oblivious
TopoPlace Patches
TopoAware LDBs

 0

 200

 400

 600

 800

Figure 7.10: Hop-bytes for different schemes on IBM Blue Gene/P

in reducing the hop-bytes for all processor counts. Also, the decrease in hop-bytes

becomes more significant as we go to larger-sized partitions. This is due to the

fact that the average distance traveled by each message increases as we increase

the partition size in the case of default mapping, but it gets controlled when we

do a topology aware mapping. Since the actual performance of the load balancers

depends on several metrics, the question remains – does the reduction in hop-bytes

lead to an actual improvement in performance? As it turns out, we also see a

reduction in the number of proxies and in the max-to-average ratio for topology

aware load balancers, which is reflected in the overall performance of NAMD on

Blue Gene/P (Table 7.5). The topology oblivious scheme stops scaling around

4, 096 cores and hence we did not obtain numbers for it beyond that. We see an

improvement of 28% at 16, 384 cores with the use of topology aware load balancers.

Similar tests were done on Cray XT3 to assess if a faster interconnect can hide

all message latencies and make topology-mapping unnecessary. Figure 7.11 shows

the hop-bytes for all messages per iteration when running NAMD on Cray XT3

on different sized partitions. We could only run on up to 1024 nodes (1 core per

68

Cores Topology Oblivious TopoPlace Patches TopoAware LDBs

512 13.93 13.85 13.57
1024 7.96 7.87 7.79
2048 5.40 4.57 4.47
4096 5.31 3.07 2.88
8192 - 2.33 2.03

16384 - 1.74 1.25

Table 7.5: Performance of NAMD (ms/step) on IBM Blue Gene/P

node) on XT3 and as a result we do not see a huge benefit on the lower processor

counts. However, if we compare the 512 processor runs on XT3 with 2048 processor

(512 node) runs on Blue Gene/P, we see a similar reduction in hop-bytes. It is also

reflected in a slight improvement in performance at this point (Table 7.6).

 500

 600

128 256 512 1,024

H
o

p
−

b
y

te
s

(M
B

 p
er

 i
te

ra
ti

o
n

)

Number of cores

ApoA1 running on Cray XT3

Topology Oblivious
TopoPlace Patches
TopoAware LDBs

 0

 100

 200

 300

 400

Figure 7.11: Hop-bytes for different schemes on Cray XT3

Improvement in performance indicates that computational load is balanced. Re-

duction in hop-bytes indicates a reduction in the communication traffic on the net-

work. A reduction in communication volume can be inferred from the number of

proxies during a simulation. Table 7.7 presents the number of proxies being used

in a particular run with different topology schemes. It is clear from the table that

69

Cores Topology Oblivious TopoPlace Patches TopoAware LDBs

128 17.43 17.50 17.47
256 8.83 8.88 8.78
512 5.14 5.34 5.10

1024 3.08 3.15 3.01

Table 7.6: Performance of NAMD (ms/step) on Cray XT3

Cores Topology Oblivious TopoPlace Patches TopoAware LDBs

512 4907 4922 4630
1024 15241 15100 14092
2048 22362 22280 20740
4096 38421 28981 29572

Table 7.7: Reduction in total number of proxies on Blue Gene/P

topology aware schemes reduce the total number of proxies also apart from reducing

hop-bytes.

70

8 Automatic Mapping Framework

T he non-trivial task of mapping parallel applications (as presented in the previous

chapter), motivated us to think about automating the mapping process. Several

application groups have realized the importance of topology aware mapping and used

it to improve the performance of individual codes. A general mapping framework

which takes the communication graph of an application as input and outputs efficient

mapping solutions would relieve the application developers of the mapping burden.

A library with several mapping heuristics for a variety of communication graphs

would be a great asset to the parallel computing community.

This chapter introduces the automatic mapping framework we have developed

for mapping of a variety of communication graphs associated with different cate-

gories of parallel applications to parallel machines. All parallel applications can be

divided into two categories depending on their communication graph – regular and

irregular. Regular graphs refer to those where the number of edges from all the

nodes is the same and there is a certain pattern to the communication. Examples

of regular communication are 2D and 3D stencil-like communication and structured

mesh computations. Graphs with varying number of edges from different nodes and

all others which do not fall under the regular category can be labeled as irregular.

Examples of irregular communication are unstructured mesh computations.

The process of automated the mapping of applications can be divided in to two

steps:

1. Obtain the communication graph for an application and identify specific com-

munication patterns in the communication graph.

71

2. Apply heuristics in different cases depending on the communication patterns

to obtain mapping solutions.

The communication graph for an application gives information about the number

of bytes exchanged between tasks or processes in the program. For example, in case

of MPI, the nodes of this graph are the MPI ranks or processes in the program and

edges exist between two nodes if the corresponding MPI ranks communicate through

messages. A test run of the application is performed to obtain a n × n matrix of

communication bytes exchanged between different pairs where n is the total number

of MPI ranks. In case of Charm++, the nodes of the graph are virtual processors

or VPs.

The communication graph is obtained by profiling libraries such as those in

the IBM High Performance Computing Toolkit (HPCT) [[86]] and information from

one run can be used to develop mapping solutions for subsequent similar runs.

This approach assumes that the communication graph for an application running

for a certain set of input parameters does not change from run to run. As of

now, the situation where the graph changes with time, within one run, can not

be handled either since migrating MPI tasks at runtime is not possible. However,

some programming models such as Charm++ provide the capability of profiling

applications as they are running. In such cases, the information can be used for

dynamic mapping (and even load balancing if the need arises).

Figure 8.1 represents a schematic of the automatic mapping framework. There

are two inputs to the framework:

1. The application communication graph which is used by the pattern matching

algorithms (referred to as the object communication graph in the rest of the

dissertation).

2. The processor topology graph which is used by the mapping algorithms.

72

Pattern Matching
Framework

Regular Graphs Irregular Graphs

2D Object Graph 3D Object Graph

Choose best heuristic
depending on hop-bytes

Output: Mapping file
used for the next run

W/o coordinate
information

W/ coordinate
information

MXOVLP, MXOV+AL,
EXCO, COCE, AFFN

EXCO, COCE, AFFN

Processor topology
information

Application
communication graph

BFT, MHT,
Infer structure

AFFN, COCE,
COCE+MHT

Figure 8.1: Schematic of the automatic mapping framework

The framework first searches for regular communication patterns. Depending on

the communication patterns identified by pattern matching, the framework chooses

the best heuristic from the suite for a given object and processor graph pair, based

on the hop-bytes metric. If there is no regular pattern, we assume the graph to be

general and use heuristics for irregular graphs. The framework outputs a mapping

solution in the form a file to be used for a subsequent run (by providing it to the

job scheduler). In case of Charm++ applications, the framework can be used as a

library for mapping at runtime.

The next section discusses the first part of the automatic mapping framework:

identifying regular patterns in communication graphs.

73

8.1 Communication Graph: Identifying Patterns

Automatic topology aware mapping, as we shall see in the next few sections, uses

heuristics for fast scalable runtime solutions. Heuristics can yield more efficient so-

lutions if we can derive concrete information about the communication graph of the

application and exploit it. For this, we need to look for identifiable communication

patterns, if any, in the object graph. Many parallel applications have relatively sim-

ple and easily identifiable 2D, 3D or 4D communication patterns. If we can identify

such patterns, then we can apply better suited heuristic techniques for such scenar-

ios. We use relatively simple techniques for pattern identification. We believe that

these can be extended to detect more complex patterns based on similar work in

literature [[87,88]]. Some performance analysis tools also provide communication pat-

tern identification and visualization for identifying performance problems in parallel

applications [[89]].

Here, we explain the algorithm for identifying if the communication in an appli-

cation has a near-neighbor stencil-like pattern with four neighbors in 2D. Algorithms

for doing the same in 3D and 4D are similar. We first begin by ensuring that the

number of communicating neighbors for all nodes in the graph is the same and the

number is 5 or less. For a 2D communication pattern, a given node would typically

have four communicating neighbors and may have some communication (through

global operations) with the node with ID 0. Broadcasts from and reductions to node

0 cannot be optimized by remapping of nodes and hence we ignore that. We also

ignore any communication edges whose weight is less than 20% of the average across

all edges in the graph. This is a heuristically decided value and can be changed.

For a 2D communication pattern, if there is no wraparound, nodes on the bound-

aries may have fewer neighbors. Filtering these aberrations, we choose a random

node and find its “distance” (difference between the node IDs) from its four neigh-

74

bors. The distance from two of its neighbors (left and right) would be 1 and from

its top and bottom neighbors would be one of the dimensions of the 2D grid. This

assumes that node IDs are ordered in a row or column major order. Then, for all

other nodes, we ensure that the distances from their respective neighbors are either

1 or the value of distance obtained for the previously chosen random node. If this

holds true for all other nodes in the graph, then the communication is indeed a

uniform 2D near-neighbor pattern.

Algorithm 8.1 Pseudo-code for identifying regular communication graphs
Input: CM n,n (communication matrix)
Output: isRegular (boolean, true if communication is regular)

dims[] (dimensions of the regular communication graph)
for i = 1 to n do

find the maximum number of neighbors for any node in CM i,n

end for
if max neighbors ≤ 5 then

// this might be a case of regular 2D communication
select an arbitrary node startpe find its distance from its neighbors
dist = difference between node IDs of startpe and its top or bottom neighbor
for i := 1 to n do

if distance of all nodes from their neighbors == 1 or dist then
isRegular = true
dim[0] = dist
dim[1] = n/dist

end if
end for

end if

Algorithm 8.1 shows the pseudo-code for identifying one possible 2D communi-

cation pattern. Currently, this algorithm can only identify a 5-point stencil pattern

(left diagram in Figure 8.2). However, the algorithm can be extended trivially so

that it can identify other regular patterns such as a 9-point stencil or a communica-

tion with all 8 neighbors around a node in 2D (other two diagrams in Figure 8.2).

The algorithms for identifying 3D and 4D near-neighbor patterns are similar. Once

the information about communicating neighbors has been extracted and identified,

mapping algorithms can use it to map communicating neighbors on nearby physical

75

processors.

Figure 8.2: Different communication patterns in two-dimensional object graphs —
a 5-point stencil, a 9-point stencil and communication with all 8 neighbors around
a node

The pattern matching algorithms were tested with three production applications

which are known to have regular communication: MILC [[90, 91]], POP [[92–95]] and

WRF [[24,25,96]]. The communication patterns and the size of each dimension were

correctly identified as shown in Table 8.1.

Application No. of cores Dimensionality Size of dimensions

MILC 256 4-dimensional 4× 4× 4× 4
POP 256 2-dimensional 8× 32
POP 512 2-dimensional 32× 16
WRF 256 2-dimensional 16× 16
WRF 512 2-dimensional 32× 32

Table 8.1: Pattern identification of communication in MILC, POP and WRF

Figure 8.3 shows visualizations of the 2D communication graphs as output by

the pattern matching library for POP and WRF running on 256 processors. The

radial and tangential directions in the graph show the two dimensions of the object

graph. POP has an object graph of dimensions 8 × 32 and WRF has an object

graph of dimensions 16× 16.

We have developed two sets of algorithms for mapping of applications with reg-

ular and irregular communication graphs. The next two chapters discuss these

76

Figure 8.3: Communication graph for POP (left) and WRF (right) on 256 processors

algorithms which form the core of the mapping framework.

77

9 Mapping Regular Communication
Graphs

T his chapter focuses on the mapping of regular communication graphs to 2D and

3D mesh topologies. Several applications which perform stencil-like computations

have a regular communication pattern. Examples include MILC [[90,91]], POP [[92–

95]] and WRF [[24, 25, 96]]. These applications can use the algorithms described in

this chapter for mapping to torus topologies.

We first discuss heuristics to map 2D object graphs (grids) to 2D processor graphs

(meshes), then discuss techniques for mapping them to 3D processor meshes. Finally

we discuss mapping 3D object grids to 3D processor meshes and discuss performance

results for some applications.

9.1 Algorithms for Mapping 2D Grids to 2D

Meshes

Let us say that processes in an application have a 2D stencil-like communication

pattern where each task communicates with four neighbors, two in each direction.

So the communication graph for this application is a planar graph which resembles

a 2D grid. We want to map this 2D grid to a 2D processor mesh. For heuristics in

this chapter, we assume that all edges in the communication graph have the same

weight. Further, we are targeting MPI applications, so, the number of ranks (nodes

in the communication graph) is the same as the number of processors (in the mesh).

Therefore, we can assume that the number of nodes in the two graphs is the same.

Of course, if the object grid has the same dimensions as the processor mesh, the

78

best mapping is trivial. Heuristic strategies are needed when the aspect ratios are

different. We describe five heuristics to map a 2D object grid to a 2D processor

mesh. All of these heuristics are designed to optimize different cases and as we shall

see in the results section, they perform best for grids of different aspect ratios.

Heuristic 1 - Maximum Overlap: This heuristic attempts to find the largest

possible area of the object grid which overlaps with the processor mesh and maps

it one-to-one. For the remaining area of the object grid and the processor mesh, we

then make a recursive call to the algorithm. The intuition behind this heuristic is

that we get the best hop-bytes for a large portion of the grid, although for a few

nodes at the boundaries of the recursive calls, we might have longer hops. However,

the hope is that the average hop-bytes for the entire object grid will be low and a

few distant messages will not affect performance.

Figure 9.1 illustrates this mapping technique,i where an object grid of dimensions

9× 8 is to be mapped to a processor mesh of dimensions 6× 12. We first map the

largest possible sub-grid with dimensions 6× 8 to the processor mesh. Once this is

done, a recursive call is made for the object grid of size 3× 8 to be mapped onto a

processor mesh of size 6× 4.

9
6

8

12

6

8

Figure 9.1: Finding regions with maximal overlap in the Maximum Overlap Heuristic
(MXOVLP)

Algorithm 9.1 presents the pseudo-code for this heuristic (referred to as MXOVLP

in figures and tables). Ox and Oy refer to the x and y dimensions of the object grid

79

and Px and Py refer to the x and y dimensions of the processor mesh.

Algorithm 9.1 Maximum Overlap Heuristic (MXOVLP) for 2D to 2D mapping

procedure mxovlp(Ox, Oy, Px, Py)
if Ox == Px then

do a one-to-one mapping and return
end if
if Ox > Px then

map the area Px ×Oy

MXOVLP(Ox − Px, Oy, Px, Py −Oy)
copy the mapping into the main array and return

else
map the area Ox × Py
MXOVLP(Ox, Oy − Py, Px −Ox, Py)
copy the mapping into the main array and return

end if
end procedure

Heuristic 2 - Maximum Overlap with Alignment: This is similar to Heuris-

tic 1 but it tries to align the longer dimension of the object grid with that of the

processor mesh (referred to as MXOV+AL in figures and tables). This realignment is

done at each recursive call and yields a better mapping than MXOVLP in most cases.

Heuristics 1 and 2 lead to dilation at each recursive call at the boundaries where

the object grid is split during recursion. However, as per our claim in Chapter 5,

as long as the average hop-bytes is low, we should obtain a good mapping. All the

following heuristics (including Heuristic 1 above) also do an initial alignment of the

longer dimensions of the object grid and the processor mesh.

There are some optimization possibilities for Heuristics 1 and 2 which will be

explored in future work – After the mapping for recursively smaller sub-graphs is

complete, at the end of each recursive call, it is possible to rotate the mapping

for the sub-graph by 180 degrees or flip it. There are several possibilities at each

recursive call leading to a combinatorial explosion of arrangements. Hence we will

not discuss this post-rotation here.

80

Heuristic 3 - Expand from Corner: In this algorithm, we start at one corner of

the object grid and order all other objects by their increasing Manhattan distance

from the chosen corner. We also order the processors in a similar fashion starting

from one corner. Then the objects are placed in order starting from the chosen

corner of the processor grid (pseudo-code for EXCO in Algorithm 9.2). The intuition

is that objects which communicate with one another will be close in the new ordering

based on the Manhattan distance and hence, will get mapped nearby. Figure 9.2

shows how we start from the upper left corner of the object grid and map objects

successively starting from the corresponding corner of the processor mesh.

Algorithm 9.2 Expand from Corner (EXCO) Heuristic for 2D to 2D mapping

procedure exco(Ox, Oy, Px, Py)
nox = noy = npx = npy = 0
for i := 1 to Ox ×Oy do

< cox, coy >=< nox,noy >
< cpx, cpy >=< npx,npy >
Map[cox][coy] = cpx × Py + cpy
< nox,noy > = findNearest2D(cox, coy, Ox, Oy)
< npx,npy > = findNearest2D(cpx, cpy, Px, Py)

end for
end procedure

Ox

Oy

Px

Py

1 3 6

2 5 9

4 8

7

1 3 6

2 5 9

4 8

7

Figure 9.2: Expand from Corner (EXCO) Heuristic

Heuristic 4 - Corners to Center: This is similar to the Heuristic 3 but in this

case, we start simultaneously from all four corners of the 2D object grid and move

81

towards the center. The objects are again picked based on their Manhattan distance

from the corner closest to them (this heuristic is referred to as COCE in figures and

tables). This modification to Heuristic 3 achieves better proximity for a larger

number of objects since we start simultaneously from four directions. However, for

certain aspect ratios, as we move closer to the center, objects may be placed farther

from their communicating neighbors leading to larger hop-bytes.

Heuristic 5 - Affine Mapping: The idea is to stretch/shrink the object grid in

both dimensions and align it to the processor mesh. It is expected that such a

mapping will preserve the relative orientations of the objects, thereby minimizing

the dilation. A destination processor is calculated for each object based on its

position, (x, y) in the communication graph:

(x, y)→ (bPx ×
x

Ox

c, bPy ×
y

Oy

c) (9.1)

Algorithm 9.3 Affine Mapping (AFFN) Heuristic for 2D to 2D mapping

procedure affn(Ox, Oy, Px, Py)
for i := 1 to Ox do

for j := 1 to Oy do
af x = bPx × i

Ox
c

af y = bPy × j
Oy
c

< freex, freey > = findNearest2D(af x, af y, Px, Py)
Map[i][j] = freex × Py + freey

end for
end for

end procedure

Since the coordinates are constrained to be integers, it is possible that two ob-

jects may be mapped to the same processor. To resolve this, we use the function

findNearest2D which returns an unused processor closest to (af x, af y). It should

be noted that this mapping is not strictly affine since we use findNearest to resolve

conflicts for the same processor (see Algorithm 9.3). This mapping is referred to as

82

AFFN in figures and tables.

A loose theoretical lower bound can be calculated for the affine algorithm based

on Equation 9.1 as show below:

Hops per byte =
(Map[x][y]−Map[x+ 1][y]) + (Map[x][y]−Map[x− 1][y])

2

+
(Map[x][y]−Map[x][y + 1]) + (Map[x][y]−Map[x][y − 1])

2

=
1

2
× (

Px
Ox

+
Px
Ox

+
Py
Oy

+
Py
Oy

)

=
Px
Ox

+
Py
Oy

The calculation above considers (x, y) as a point in continuous space and hence we

ignore the ceiling operation applied in Equation 9.1. Based on this formula, if we

are mapping an object grid of dimensions 9 × 8 to a processor mesh of dimensions

6× 12, the lower bound is 2.167.

The next two algorithms are borrowed from literature and used for visualization

and comparison with the heuristics presented in this dissertation.

Heuristic 6 - Step Embedding: This algorithm is an implementation of the step

embedding technique (STEP) presented in [[53]]. Techniques in [[53]] were written to

optimize chip layout and hence they try to minimize the length of the longest wire.

The paper presents ways to “square up” an arbitrary rectangular grid. However,

unlike our mapping algorithms, for step embedding, the number of nodes in the

processor mesh can be greater than that in the object grid. We borrow the idea of

visualizing the mappings for the object grids from this paper.

Heuristic 7 - Pairwise Exchanges: Several research papers in the past have used

the technique of pairwise exchanges by itself or with an intelligent initial map-

ping [[26,27]]. In this technique (PAIRS), we start with a random or default mapping,

83

choose two objects randomly and swap the processors they are placed on. We retain

this swap if a chosen metric improves otherwise we discard it. This is continued until

the improvement in the chosen metric falls below a certain threshold. The pairwise

exchange algorithm with probabilistic jumps, presented in [[26]] has a O(n3) time

complexity. This algorithm is too expensive to be practical. However, in absence

of the knowledge of the true optimal mapping, we use this algorithm to produce an

approximation of the optimal mapping, to which other (faster) heuristic strategies

can be compared. We use a simpler implementation for our purposes to obtain val-

ues for the hop-byte metric which are close to the optimal solution. Figure 9.3 (top)

shows the time taken by the PAIRS algorithm to obtain a “good” mapping solution

for a regular graph of 4, 096 nodes.

9.1.1 Time Complexity

Among the five heuristics presented in this chapter, MXOVLP and MXOV+AL visit each

node in the object grid only once and decide on its mapping. Hence, they have a

time complexity of O(n) where n is the number of objects to be mapped. However,

EXCO, COCE and AFFN algorithms use the findNearest2D function, which in the

worst case can take O(n) time. Hence the worst case running time of these three

algorithms is O(n2). A detailed discussion on the running time of findNearest2D

can be found in Chapter 10.

In the era of petascale machines with hundreds of thousands of cores, it is cru-

cial to use linear or linearithmic (that is O(n logn)) running time algorithms for

mapping and all presented heuristics adhere to that on the average. Figure 9.3

(bottom) presents the actual running times for the mapping algorithms when run

sequentially on a dual-core 2.4 GHz processor. We can see that three algorithms

(MXOVLP, MXOV+AL and EXCO) take less than a millisecond for obtaining the mapping

of a regular graph with 65, 536 nodes. Even the AFFN and COCE algorithms take

84

 1.35

 1.36

 1.37

 1.38

 1.39

 1.4

 1.41

 1.42

 1.43

 0 50 100 150 200 250 300 350

H
op

s
pe

r b
yt

e

Time (s)

Running time for the PAIRS algorithm for 4K nodes

 0.01

 0.1

 1

 10

 100

1K 4K 16K 64K

Ti
m

e
(m

s)

Number of nodes

Comparison of running time for regular mapping heuristics

AFFN
COCE

MXOVLP
MXOV+AL

EXCO

Figure 9.3: Running time for the PAIRS algorithm (top) and for other mapping
heuristics for regular mapping (bottom)

85

tens of milliseconds. For parallel applications which run for days, this time spent

on mapping should be negligible compared to the total execution time.

9.1.2 Quality of Mapping Solutions: Hop-bytes

This section evaluates the mapping algorithms presented above. We use the hop-

bytes metric to compare across them. For better intuition, the graphs in this section

present the average hops per byte for each algorithm. The ideal value for average

hops per byte is 1 and so the closer to 1 we get, the better the mapping algorithm is.

In an effort to find the hops per byte for close to optimal solutions, we also imple-

mented the O(n3) algorithm of pairwise exchanges (PAIRS) used in literature [[26,27]].

Visualization of the mapping of an object grid to a processor mesh helps under-

stand mapping algorithms better and also helps in fixing potential problems with

them. Figure 9.4 shows a step-by-step process of mapping individual rows of the

object grid on to the processor mesh. We used the STEP algorithm for this figure

which maps rows one by one. Each dot represents a node in the graph and the edges

are communication arcs. The golden edges represent the horizontal communication

and the green edges represent the vertical communication. In the top left corner, we

have the object grid of dimensions 9× 8. The 8 subsequent graphs with dimensions

12×6 show the mapping individual rows of the object grid on to the processor mesh.

We can see how the green vertical edges are dilated in the processor mesh. Similar

diagrams are used to show the mapping of individual rows for other heuristics even

though they do not map graphs by rows. It helps one compare across the various

mapping solutions in a graphical manner.

Figures 9.5 and 9.6 present mappings of some representative object grids to pro-

cessor meshes using the different heuristics. The six 2D grids in each figure illustrate

mappings of the object grid onto the processor mesh based on the six heuristic algo-

rithms: MXOVLP, MXOV+AL, EXCO, COCE, AFFN and STEP. For Figure 9.5, We can

86

R
ow

 1
R

ow
 1

R
ow

 2

R
ow

 3

R
ow

 4

R
ow

 5

R
ow

 6

R
ow

 7

R
ow

 8

R
ow

 9

R
ow

 1

R
ow

 2

R
ow

 1

R
ow

 2

R
ow

 3

m
ap

 to

F
ig

u
re

9.
4:

M
ap

p
in

g
of

a
9
×

8
ob

je
ct

gr
id

to
a

12
×

6
p
ro

ce
ss

or
m

es
h

u
si

n
g

th
e
S
T
E
P

al
go

ri
th

m

87

Figure 9.5: Mapping of a 6 × 5 grid to a 10 × 3 mesh using MXOVLP, MXOV+AL,

EXCO, COCE, AFFN and STEP respectively

see that the first three heuristics stretch some edges significantly while the rest try

to minimize both hop-bytes and maximum dilation. The mapping of the 9×8 object

grid can be found in Appendix B.

Figure 9.7 compares the total theoretical hops for the different algorithms as-

suming that communication is 2D near-neighbor and regular. The representative

object grids and processor meshes were chosen so as to cover a wide range of aspect

ratios. The maximum overlap with alignment heuristic (MXOV+AL) gives the best

solution in most cases. The AFFN heuristic which does a affine inspired mapping

also performs quite well. In the case of mapping of a 100 × 40 grid to a 125 × 32

mesh, AFFN does considerably better than the other algorithms.

9.2 Algorithms for Mapping 2D Grids to 3D

Meshes

Some of the largest and fastest supercomputers in the Top500 list today have a 3D

torus or mesh interconnect. So, in order to use our mapping algorithms on these

real machines, we need to develop algorithms to map 2D communication graphs

88

Figure 9.6: Mapping of a 8×4 grid to a 4×8 mesh using MXOVLP, MXOV+AL, EXCO,

COCE, AFFN and STEP respectively

to 3D processor topologies. We now present algorithms for mapping 2D grids to

3D processor meshes. Some algorithms presented in this section use the 2D to 2D

mapping algorithms developed in the previous section.

Heuristic 1: Stacking: The general idea is to use the algorithms developed in

the previous section for mapping 2D object grids to 2D processor meshes. We find

the longer dimension of the 2D object grid and split the object grid along it, into

several smaller grids (subgrids). The number of subgrids equals the length of the

smallest dimension of the 3D processor mesh. We then take the first subgrid and

map it onto a plane perpendicular to the smallest dimension of the 3D processor

mesh. The mapping framework chooses the best heuristic to map the 2D subgrid to

the 2D processor mesh. A simple translation is used to map the remaining subgrids

to other planes of the processor mesh. For example if we wish to map a 32 × 8

object grid onto a 8× 8× 4 processor mesh, we split the longer dimension (32) into

4 pieces (the smallest dimension of the processor mesh) and then map a 8×8 object

subgrid to a 8× 8 processor mesh.

Heuristic 2: Folding: If the processor topology is a 3D mesh, then in the previous

89

 PAIRS

 1

 10

 100

27x44to36x33 100x40to125x32 64x64to256x16 320x200to125x512

A
v
er

ag
e

h
o
p
s

p
er

 b
y
te

Different mapping configurations

Comparison of regular mapping strategies

MXOVLP

 MVOV+AL

 EXCO

 COCE

 AFFN

Figure 9.7: Hop bytes compared to the lower bound for different techniques

heuristic, elements at the boundaries of the subgrids are separated by a large distance

in the processor mesh (as shown in Figure 9.8). To avoid this, we use a more

general strategy where we fold the 2D object grid like an accordion folder and place

the folded parts perpendicular to the smallest dimension. To achieve this, once we

obtain the mapping for the first subgraph, instead of a simple translation, we flip

the mapping for every alternate subgraph by 180 degrees. Figure 9.8 illustrates the

folding technique to map a 2D grid to a 3D torus or mesh.

Heuristic 3: Space Filling Curve: A space filling curve is a continuous func-

tions whose domain is the unit interval [0,1]. These curves (discovered by Peano in

1890 [[97, 98]] and generalized later on) can be used to fill the entire n-dimensional

Euclidean space (where n is a positive integer). We use a space filling curve to map

the 2D object grid to a 1D line and another space filling curve to map the 1D line

to 3D processor mesh. Space filling curves preserve locality and hence we expect

the dilation and hop bytes to be small under this construction.

90

Figure 9.8: Stacking and Folding

9.3 Algorithms for Mapping 3D Grids to 3D

Meshes

Several algorithms discussed in Section 9.2 above can be extended for the mapping

of 3D object grids to 3D mesh topologies. Here, we discuss the extension of the

affine mapping heuristic to 3D.

Affine Mapping: Similar to the 2D to 2D affine inspired mapping, we can do a

mapping by using affine translations in all three dimensions (see Algorithm 9.4).

(x, y, z)→ (bPx ×
x

Ox

c, bPy ×
y

Oy

c, bPz ×
z

Oz

c) (9.2)

Since the coordinates are constrained to be integers, it is possible that two ob-

jects may be mapped to the same processor. To resolve this, we use the function

findNearest3D which returns an unused processor closest to the desired unavailable

91

processor. Similar to the 2D affine mapping, a loose lower bound for the 3D affine

heuristic is:

Hops per byte =
Px
Ox

+
Py
Oy

+
Pz
Oz

Algorithm 9.4 Affine Mapping (AFFN) Heuristic for 3D to 3D mapping

procedure affn(Ox, Oy, Oz, Px, Py, Pz)
for i := 1 to Ox do

for j := 1 to Oy do
for k := 1 to Oz do

af x = bPx × i
Ox
c

af y = bPy × j
Oy
c

af z = bPz × k
Oz
c

af = (af x, af y, af z)
free = findNearest3D(af , Px, Py, Pz)
Map[i][j][k] = free

end for
end for

end for
end procedure

9.4 Application Studies

Using the algorithms developed in the previous sections, we attempted topology

aware mapping of two applications: a 2D Stencil benchmark in MPI and the Weather

Research and Forecasting (WRF) program. All performance runs were done on the

IBM Blue Gene/P machines at Argonne National Laboratory. We use TXYZ mapping

as the default mapping. This means that MPI ranks are mapped in order on the

four cores of a node first, then along the increasing X dimension, then Y and Z

respectively.

92

9.4.1 2D Stencil

Many scientific applications [[24, 92, 93]] have a communication structure similar to

a five-point stencil. We use a representative code where there is some computation

followed by the exchange of data with neighbors in every iteration. Each element

communicates with four neighbors in the 2D grid.

First, we study the weak scaling behavior of the application. In other words,

the amount of computation and communication on each processor remains the same

as we scale to more and more processors. The effect of congestion in the network,

however, may be different with varying partition sizes (number of processors) owing

to the difference in topology and corresponding mapping. We compare the perfor-

mance of the default mapping with the “folding” scheme presented in Section 9.2.

 400

 410

 420

 430

 440

 450

 460

 470

256 512 1K 2K 4K 8K 16K

Ti
m

e
pe

r s
te

p
(u

s)

Number of cores

Weak Scaling of 2D Stencil

Default Map
Topology Map

Figure 9.9: Weak Scaling experiment results for 2D Stencil

The results from this experiment are presented in Figure 9.9. Each processor

holds 64×64 doubles and exchanges 4 messages containing 64 doubles (first and last

rows and columns). Topology aware mapping leads to performance improvements

93

for most processor counts, the maximum being 11% at 16, 384 cores. A peculiar

observation is the reduction of time per step from 1, 024 to 2, 048 cores for the default

TXYZ mapping. This is because the torus links become available only at 2, 048-

core and larger allocations. The availability of these links reduces the congestion

significantly. We observe that as the application is run on increasing number of

cores, the congestion in the network and hence the time per step keeps increasing

for the TXYZ Mapping. On the other hand, using the topology aware mapping,

the time per iteration for all the runs remains practically unchanged. We conclude

that topology aware mapping can lead to performance benefits and improve scaling

behavior for this class of applications.

It is interesting to compare the results in Figure 9.9 with the improvement in

hops per byte (shown in Figure 9.10) in each of the above cases. It is evident that

decreasing the hops per byte ratio leads to decreased congestion in the network. As

demonstrated by the 1, 024 and 16, 384-core runs, a larger reduction in hop-bytes

translates into larger performance improvements from topology aware mapping.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

256 512 1,024 2,048 4,096 8,192 16,384

A
v

er
ag

e
h

o
p

s
p

er
 b

y
te

Number of cores

Hop bytes

TXYZ Mapping
 Topology Mapping

Figure 9.10: Average Hops per byte for 2D Stencil

We also study the effect of varying the ratio of computation and communication

94

for this application. This is motivated by the following factors:

• Different supercomputers have varying processing and communication charac-

teristics. For example, comparing the network bandwidth available per float-

ing point operation, BG/P can transfer 0.375 bytes per flop whereas Cray

XT4 can transfer 1.357 bytes per flop to the network. The general trend for

building faster supercomputers is increasing the number of cores per node and

using faster processors. As a result, computation will tend to be faster and

communication is likely to be a bottleneck.

• The same application may use a bigger stencil (e.g. a nine-point stencil)

for the purpose of achieving faster convergence at the cost of doubling the

communication and communication per time step. Increased communication

may lead to an increased congestion in the network.

The ratio of computation versus communication was varied by increasing the

message size while keeping the amount of computation constant. The results for

this experiment are presented in Figure 9.11. On the X-axis, we have increasing

message sizes for a fixed amount of computation. This experiment was run on two

partitions of dimensions 8×4×8 and 8×8×16. Notice that the default mapping leads

to significant congestion in the network leading to long delays and a considerable

increase in the running time of the application. However topology aware mapping

minimizes congestion and reduces the message delivery times, especially for large

message sizes. The performance improvements for 8 KB messages at 1, 024 cores

and 4, 096 cores are 66% and 53% respectively.

9.4.2 WRF Experiments

WRF stands for the Weather Research and Forecasting Model [[24]]. This code

is a next-generation mesoscale numerical weather prediction system that is being

95

 100

 1000

 10000

 100000

512 2K 8K 32K 128K

Ti
m

e
pe

r s
te

p
(u

s)

Message Size (Bytes)

Messaging effects on benefit from mapping

Default Map 1K Cores
Default Map 4K Cores

Topology Map 1K Cores
Topology Map 4K Cores

Figure 9.11: Effect of percentage of communication on benefit from mapping for 2D
Stencil

designed to serve operational forecasting and atmospheric research. For our experi-

ments, we used the weather data from the 12 km resolution case over the Continental

U.S. (CONUS) domain on October 24, 2001. The benchmark simulates the weather

for 3 hours using the data from a restart file. We used profiling tools to obtain

the communication graph of WRF which was given as input to the mapping frame-

work. The pattern matching algorithm (Section 8.1) found that WRF has a 2D

near-neighbor communication pattern. Although developers of WRF would already

know this, we used the pattern matching tool to validates its efficacy. Besides, the

specific object graph, i.e. which rank communicates with which, still needs to be

derived in absence of direct information from the application. The communication

graph for WRF is a 2D grid with dimensions 16× 16 on 256 processors, 32× 32 on

1, 024 processors and so on.

Based on the pattern matching findings, the framework output mapping files

which were passed as an option to the job scheduler on BG/P. WRF was run in the

96

SMP mode (using 1 process per node) because it uses OpenMP to create threads

on each node. We compare the mappings with the default XYZ mapping on BG/P

using average hops per byte. The hops per byte are obtained by using IBM’s HPCT

profiling tools [[86]]. Figure 9.12 shows the actual weighted hops (hops per byte

averaged over all MPI ranks) obtained from profiling data for WRF. The corre-

sponding percent improvements in application performance at each core count are

listed above the bars. The empirically obtained values correlate strongly with the

calculated theoretical hops. It is clear that topology aware mapping of MPI ranks

to physical processors is successful in decreasing the average hops per rank for all

the applications. The average hops for WRF reduce by 64% on 1, 024 and 2, 048

nodes which is quite significant and should lead to a dramatic drop in the load on

the network.

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 4.0

256 512 1,024 2,048

A
v

er
ag

e
h

o
p

s
p

er
 b

y
te

Number of nodes

Average weighted hops per byte

 Default
 Topology

0 %0 %

17 %
8 %

Lower Bound

Figure 9.12: HPCT data for actual hops per byte for WRF

Using topology aware mapping, we were able to bring the average hops per rank

close to 1 (Figure 9.12). This suggests that most MPI ranks are sending messages

only 1 hop away and we should see performance improvements. When running on

256 nodes, we were able to reduce the average hops by 35% and the time spent in

97

MPI Wait by 4%. This leads to a 2% reduction in overall communication time. This

does not lead to any overall performance improvement. The results on 512 nodes

are similar in spite of the reduction in hops. However, when we ran WRF on 1, 024

nodes, the average hops per byte reduced by 64% and communication time reduced

by 45%. At 1, 024 nodes, communication is roughly 45% of the total time and

hence we see an overall performance improvement of 17%. On 2, 048 nodes, there is

similar improvement in hops and we obtain a performance improvement of 8%. This

information is summarized in Table 9.1 below. Such performance improvements can

be quite significant for the overall completion time of long running simulations. We

expect that the gains when running WRF on large installations will be even more.

Percentage Reduction
Nodes WRF Mesh Dimensions Hops Comm. Time Total Time

256 16× 16 35.9% 2% 0%
512 32× 16 41.6% 2% 0%

1024 32× 32 63.5% 45% 17%
2048 64× 32 65.1% −12% 8%

Table 9.1: Percentage reduction in average hops per byte, communication time and
total time using topology aware mapping

It is important to keep in mind that the performance of a parallel application

is a complex function of various factors. The routing protocols, latency tolerance

of the application (see Chapter 11) and fraction of time spent in communication

can affect performance in varying degrees. Hence, a reduction in hop-bytes and a

corresponding improvement in the communication behavior of an application may

not always lead to an overall performance improvement. However, learning from

the WRF results, it is reasonable to expect that as we run on larger partitions,

communication time will be a significant fraction of the overall execution time and

hence the benefits from topology aware mapping will increase.

98

10 Mapping Irregular
Communication Graphs

P arallel applications with irregular but static communication constitute another

class of communication graphs. Unstructured mesh applications are a classic ex-

ample of such patterns. Unlike applications with regular patterns, for applications

of this class, we cannot exploit the regularity of the graphs and simpler embedding

onto the regular 2D or 3D topology of the machine. This chapter discusses heuristic

techniques for mapping irregular communication graphs to regular topologies.

We will discuss heuristics for two different cases of irregular graphs –

1. There is no information about the physics behind the application, from which

the communication graphs were obtained. In this scenario, we use heuristics

which exploit the neighbor relations between different nodes. The heuristics

make no assumptions about patterns in the communication graph. However,

if the domain is known to have a geometric structure, we can try to infer the

geometric arrangement of the tasks, analogous to pattern matching for regular

graphs.

2. It is known that the application has a geometric structure even though the

graph is irregular. Quite often, when simulating fractures in planes or solid

objects with unstructured meshes, the tasks in the parallel application have

some geometric coordinate information associated with them , and the com-

munication structure is related to the geometry (i.e. entities with nearby

coordinates communicate more.) If we have this coordinate information, we

can exploit it to do a better mapping.

99

The heuristics presented in this chapter are applicable for mapping to 2D, 3D

or even higher dimensional processor topologies. This is facilitated by the general

idea on which all algorithms in this chapter are based: At each step, they pick a

“suitable” object to map and find a “desirable” processor to place the object on.

If the desired processor is not available (it is overloaded based on some criteria),

another processor close to this processor is chosen. As long as we can define an

efficient function to find the nearest available processor for a specific topology, the

heuristics are generally applicable. Let us begin by looking at an implementation

of the function for finding the nearest available processor in a 2D mesh.

10.1 Finding the Nearest Available Processor

If the “desired” processor for an object is not available, we place the object on the

nearest available processor. Some algorithms such as affine mapping might lead to

hits for the same processor for two objects and in this case, one of the objects has

to be placed on a nearby processor. If we can implement a function which returns

the nearest available processor given 1) a processor to start from, and 2) a table of

which processors are available, we can use the algorithms for any topology.

Algorithm 10.1 shows the code for finding the nearest available processor in a

two-dimensional mesh. We start from the desirable processor and spiral around

it, first looking at processors at distance 1, then distance 2, 3 and so on. All

processors at a certain distance are enumerated by choosing one coordinate (x) first

and then calculating the other coordinate (y) based on the current value of distance

being considered. The first available processor that we come across is returned as

the answer. We refer to this as the spiraling (through enumeration) algorithm for

finding the nearest available processor. The code for doing the same in a 3D mesh

looks very similar (see Algorithm B.1 in Appendix B). We can also extend this code

100

to 2D and 3D tori by extending the area under consideration on both sides to include

wraparound links.

Algorithm 10.1 Finding the nearest available processor in 2D
procedure findNearest2D(x, y, freeProcs)

diameter = Px + Py − 2
if isAvailable2D(x, y, freeProcs) then

return < x, y >
end if
for d := 1 to diameter do

for i := (−1)× d to d do
j = d−abs(i)
rx = x + i
ry = y + j
if withinBounds2D(rx, ry) && isAvailable(rx, ry, freeProcs) then

return < rx, ry >
end if
rx = x + i
ry = y − j
if withinBounds2D(rx, ry) && isAvailable(rx, ry, freeProcs) then

return < rx, ry >
end if

end for
end for

end procedure

The spiraling implementation presented above has a worst case time complexity

of O(n). Hence, if findNearest2D is called for each node during mapping, it leads

to a worst-case time complexity of O(n2) for the mapping algorithm. Figure 10.1

shows the running time for the algorithm when it is called from one of the mapping

algorithms (AFFN) for irregular graphs. Note that, time on the y-axis is in millisec-

onds and is on a logarithmic scale. Towards the end (for the last two thousand calls),

the execution time for findNearest2D calls is quite significant. As more and more

processors become unavailable, spiraling around the desirable processor continues

for longer and longer distances before an available processor is found.

However, in practice it is possible to keep the running time of this function

constant by keeping a list of the available processors when their number drops

101

 0.001

 0.01

 0.1

 0 2000 4000 6000 8000 10000 12000 14000 16000

Ti
m

e
(m

s)

Time for individual findNearest calls

Figure 10.1: Execution time for 16, 384 consecutive calls to the spiraling algorithm
for findNearest from the AFFN algorithm for irregular graphs

below a certain threshold. Using a quadtree data structure (octree in case of 3D),

we think that the asymptotic time complexity of this algorithm can be reduced to

O(logn × logn), although we have not proved this yet. The next section describes

the quadtree implementation of the algorithm.

10.1.1 Quadtree: An Alternative to Spiraling

We can build a quadtree representing the two-dimensional mesh of processors. Each

leaf in the tree holds one processor and each intermediate node in the tree represents

a subdomain of the mesh (all processors in the subtree under it). The tree is

obtained by recursive bisection of the mesh into approximately equal halves along

both dimensions. The number of levels in the tree is O(log4n). At each node,

the number of available processors is maintained along with information about the

subdomain of the mesh controlled by it. Figure 10.2(a) shows the division of a 2D

102

(a) Recursive bisection of the mesh

32

8

8

8

8

2
2

2

2

1
1

1 1

1

1

1

1

2

2

2
2

1

1

1

1

1
1

1

1

2

2

2

2

1

1

1

1

1

1

1

1

2

2

2

2

1

1

1

1

1

1

1

1

(b) Quadtree view of the 2D mesh

Figure 10.2: Representation of a 2D mesh of processors of dimensions 4 × 8 as a
quadtree

103

processor mesh into a quadtree and Figure 10.2(b) shows its tree representation with

the label at each node indicating the number of available processors (initial view).

To find the nearest available processor, we start at the leaf which holds the

desirable processor. If it is available, we return immediately. If not we traverse

up the tree to its parent and see if any of the parent’s children have an available

processor. This is done recursively until we reach the root of the tree. To avoid

visiting each node in the tree, several pruning criteria are applied:

1. At each level, the intermediate nodes store the number of available processors

in the respective subtrees. We go down a particular node only if it has at least

one available processor.

2. At any point in the search, the best solution so far (in terms of the smallest

hops to the desirable processor) is maintained. We do not visit those nodes for

which all processors under their subtree are farther away from the desirable

processor than the current best solution.

Traversals up and down the quadtree depend on the height of the tree which is

O(log4n). When looking for a nearest available processor we start from a leaf and

traverse all the way to the root (which takes O(log4n)). At each intermediate node

encountered on the way, we might go down the tree depending on if we expect to find

a processor in that sub-tree. We believe that the pruning criteria mentioned above

can restrict the running time for this algorithm to O(log4n × log4n) by avoiding

unnecessary traversals. Figure 10.3 shows the running time for the algorithm when

it is called from one of the mapping algorithms (AFFN) for irregular graphs. We can

see that most individual calls take no longer than 10 µs (compared to up to 100 µs

in the case of spiraling). In the next section, we compare the two implementations

of findNearest when they are deployed in actual mapping algorithms.

104

 0.001

 0.01

 0.1

 0 2000 4000 6000 8000 10000 12000 14000 16000

Ti
m

e
(m

s)

Time for individual findNearest calls

Figure 10.3: Execution time for 16, 384 calls to the quadtree implementation for
findNearest for the AFFN algorithm for irregular graphs

10.1.2 Comparison between Spiraling and Quadtree

The problem encountered with the spiraling implementation was that towards the

end, when there were few available processors, it took a very long time to find a

suitable processor. Comparing Figure 10.3 with the one for spiraling (Figure 10.1),

we can see that we are successful in avoiding that problem. In fact, towards the end

we are able to avoid visiting more and more nodes since most of the subtrees are

empty, thereby leading to a decrease in the execution time. On the average calls to

the quadtree implementation take much less time than the spiraling implementations

(1.8 µs versus 16 µs).

Table 10.1 compares the execution time for the two implementations for a syn-

thetic case. We start with an empty (all processors available) 2D mesh and look for

processors around a certain processor, making them unavailable as we find them.

The total time for finding all the processors one by one is recorded and tabulated.

105

The first three columns represent the case where we look for processors close to

(0, 0) and the remaining three refer to the case where we look for processors close

to the processor at the center of the mesh. It is evident that the savings from using

the quadtree implementation can be huge in some cases. For example, when looking

for processors around one corner, the speedup over the spiraling implementations is

nearly 23 times for 16, 384 nodes.

Start from one corner Start from center
Cores Spiraling Quadtree Speedup Spiraling Quadtree Speedup

1024 5.45 0.83 6.6 3.88 1.67 2.3
2048 20.92 2.44 8.6 13.09 5.02 2.6
4096 67.34 5.24 12.9 44.13 12.49 3.5
8192 304.64 16.61 18.3 198.12 38.05 5.2

16384 1005.82 44.23 22.7 676.52 98.48 6.9

Table 10.1: Comparison of execution time (in ms) for spiraling and quadtree imple-
mentations of findNearest

 0.1

 1.0

 10.0

 100.0

 1,000.0

256 1,024 4,096 16,384

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Number of nodes

Comparison of findNearest implementations

Spiral
Quadtree

Figure 10.4: Comparison of execution time for spiraling and quadtree implementa-
tions when invoked from the AFFN mapping algorithm

Let us try to see the impact of using spiraling and quadtree in one of the mapping

algorithms. We noticed that the AFFN heuristic for irregular graphs (similar to

106

the AFFN heuristic for regular graphs) takes a significant amount of time. This

algorithm will be discussed later in this chapter but we use it as our test case for the

performance of the findNearest function. Figure 10.4 shows the execution times

for the mapping algorithm for different number of nodes. We can see that for more

than 1, 024 nodes, quadtree is the correct choice for findNearest. At 16, 384 nodes,

the run which uses a quadtree is nearly 10 times faster than the one which uses

spiraling.

Now we will discuss heuristics for two different classes of scenarios, depending on

whether we do or do not have coordinate information associated with the commu-

nication graph. In section 10.3, we will try to employ some graph layout algorithms

to obtain the coordinate information if it is not present.

10.2 Strategies for General Communication

Graphs

In the most general case, we have a communication graph for an application and we

do not have any information about patterns, structure or geometry of the graph.

In this scenario, we use heuristics which exploit the neighbor relations between

different nodes. The heuristics below make no assumptions about patterns in the

communication graph. They also do not assume that the communication graph has

any spatial properties.

Heuristic 1 - Breadth First Traversal: A simple approach is to map nodes of

a graph as we traverse it breadth-first. We start with a randomly chosen node

(typically one with the id zero) and place it on processor zero. Then we map the

neighbors of the mapped node nearby and put neighbors of the mapped neighbors

in a queue. Neighbors for a given node are mapped in an arbitrary order, and are

107

mapped around the processor on which the given node is mapped. This algorithm

is referred to as BFT in the following figures and tables.

Algorithm 10.2 Breadth First Traversal (BFT) Heuristic

procedure bft(commMatrix , Px, Py)
// start with a random node start and a processor p and place start on p
queue.push(start)
Map[start] = p
while !queue.empty() do

start = queue.pop()
p = Map[start]
for i in neighborsstart do

if Map[i] == NULL then
queue.push(i)
q = findNearest2D(p, Px, Py)
Map[i] = q

end if
end for

end while
end procedure

Algorithm 10.2 shows the pseudo-code for the BFT heuristic. Since the algorithm

visits each element in the graph once, it takes linear time (assuming that the search

for a nearest available empty processor takes constant time). In the worst case,

findNearest2D can take O(n) time at each call. However, if the mapping heuristic

is good and places objects on the processor mesh in an organized way, each call to

findNearest2D takes constant time.

Figure 10.5 shows a graph containing 90 nodes. This graph was obtained from a

Charm++ benchmark which does unstructured mesh computations on 2D meshes.

Each node in the graph is a task or process in the program and contains a portion

of the unstructured mesh. The mesh is distributed among the nodes by METIS, a

graph partitioning library [[99]]. Each node might typically contain 100 to 10, 000

triangles. Figure 10.6(a) shows the default mapping of this graph on to a 2D pro-

cessor grid of dimensions 15 × 6. Showing all the edges between the nodes of the

communication graph gives us an idea of which algorithms stretch the edges more.

108

0

1

2 3

19

4

6

8

21

10

5

7

9

36

37

38

13

15

35

11

12

14

18

24

20

26

16

17

22

23

25

30

32

42

27

28

29

39

82

85

31

88

44

33

34

41

64

74

75

40

43

83

73

45

46

47

51

52

56

59

48

49

53

63

62

71

77

50

55

54 69

57

58

61

60

65
66

67 68

70

72

78

80

76

81

79

84

86

87

89

Figure 10.5: Irregular graph with 90 nodes

109

We can also see if there are certain areas of the processor mesh which are getting

swamped by communication. Figure 10.6(b) shows the mapping of the irregular

graph using the BFT heuristic on to a 2D mesh of dimensions 15× 6.

0 1 2 3

19

4

6 8

21

10

5

7 9

36 37 38

13 15

35

11

12 14

18

24

20

26

16 17

22 23

25

30 32

42

27 28 29

39

82

85

31

88

44

33 34

41

64

74 75

40

43

83

73

45 46 47

51 52

56 59

48 49 53

6362

71

77

50

5554

69

57 58

6160 65

66 67 68 70

72

78 80

76

8179

84 86 87 89

(a) Default Mapping, Hops per
byte: 3.07

0

1

2

3

19

4

6

8

21

10

5

7

9

36

37 38

13

15

35

11

12

14

18

24

20

26

16 17

22

23

25

30

32

42

27

28

29

39

82

85

31

88

44

33

34

41

64

74

75

40

43

83

73

45

46

47

51

52

56

59

48

49

53

63

62

71

77

50

55

54

69

57

58

61

60

65

66

67 68

7072

78

80

76

81 79

84

86

87

89

(b) BFT, Hops per byte: 3.16

0

1

2

3

19

4

6

8

21

10

5

7

9

36

37

38

13

15

35

11

12

14

18

24

20

26 16

17

22

23

25 30

32

42

27

28

29

39 82

85

31

88

44

33

34 41

64

74 75

40

43

8373

45

46

47

51

5256

59

48

49

5363

62

71

77

50

55

54

69

57

58

61

60

6566

67 68

70

72

78

80

76

81

79

84

86

87

89

(c) MHT, Hops per byte: 2.75

Figure 10.6: Mapping of an irregular graph with 90 nodes using the (a) Default
mapping, (b) BFT, and (c) MHT algorithm to a 15× 6 grid

Heuristic 2 - Max Heap Traversal: This is an optimization over Heuristic 1.

Here, we start with the node which has the maximum number of neighbors and

place it on the processor at the center of the 2D mesh. All unmapped neighbors of

mapped nodes are put into a max heap. The nodes are stored in decreasing order of

the number of neighbors that have already been mapped. Thus, we give preference

to nodes which have the maximum number of neighbors that have already been

placed.

110

The node at the top of the heap is deleted and placed close to the centroid of

the processors on which its neighbors have been placed. We use the findNearest

function to find the nearest available processor to the centroid if the “desired”

processor is unavailable. This algorithm is referred to as MHT in figures and tables.

Figure 10.6(c) shows the mapping of the irregular graph shown earlier using the MHT

heuristic on to a 2D mesh of dimensions 15× 6.

10.3 Inferring the Spatial Structure

Sometimes we know that an application is simulating entities that are laid out

in 2D/3D space but we do not have the spatial coordinates of the nodes in the

communication graph. Even if we do not have coordinate information, we can still

try to infer the geometric arrangement of the tasks. This is analogous to pattern

matching for regular graphs. Graph layout algorithms assign coordinates to each

node for a layout of planar graphs using force-directed graph algorithms [[100,101]].

We observed that graph layout algorithms created graphs which matched the actual

geometry of the meshes quite well.

To infer the coordinates of nodes in a graph, we use the graphviz library [[3]],

specifically neato, one of the graph layout algorithms. The layout computed by neato

is specified by a physical model where nodes are treated as objects being influenced

by forces. The layout tries to find positions for nodes such that the forces or the

total energy in the system is minimized. Figure 10.7 shows the geometry inferred by

the graphviz library for an irregular graph of 90 nodes (shown earlier in Figure 10.5).

Neato implements the algorithms developed by Kamada and Kawai [[100]]. Once we

have coordinates for the nodes from the graphviz library, we can use any of the

algorithms discussed in the next section.

111

0

1

2 3

19

4

6

8

21

10

5

7

9

36

37

38

13

15

35

11

12

14

18

24

20

26

16

17

22

23

25

30

32

42

27

28

29

39

82

85

31

88

44

33

34

41

64

74

75

40

43

83

73

45

46

47

51

52

56

59

48

49

53

63

62

71

77

50

55

54 69

57

58

61

60

65
66

67 68

70

72

78

80

76

81

79

84

86

87

89

0

1
2

3

19

4

6

8

21

10

5

7

9

36

37

38

13

15

35

11

12

14

18

24

20

26

16

17

22

23
25

30

32

42

27

28
29

39

82

85

31

88

44

33

34

41

64
74

75

40

43

83

73

45

46

47

51

52

56

59

48

49

53

63

62

71

77

50

55

54

69 57

58

61

60

65

66

67

68
70

72
78

80

76

81

79
84

86

87

89

Figure 10.7: Using the graphviz library to infer the spatial structure of an irregular
graph with 90 nodes

10.4 Strategies for Graphs with Coordinate

Information

Quite often, when using unstructured meshes to simulate fractures in planes or

solids which are laid out in 2D/3D space, the tasks in the parallel application have

some geometric coordinate information associated with them. This information

can be used when mapping a 2D or 3D communication graph to 2D/3D processor

topologies. The heuristics below exploit coordinate information associated with the

nodes to guide their decisions.

Heuristic 1 - Affine Mapping: In this case, we try to do a geometric placement

of the object graph on to the processor graph based on physical coordinate informa-

112

tion associated with each node. Each node in the graph has X and Y coordinates

which are coordinates of the centroid for all triangles of the underlying mesh in that

particular node. Based on its coordinates, if more than one node gets mapped to

the same processor, all subsequent nodes after the first one are mapped by spiraling

around their original mapping. For this we use the findNearest function discussed

earlier. Affine mapping leads to a stretching and shrinking of the object graph and

may or may not give the best solutions depending on its aspect ratio. This algorithm

(pseudo code in Algorithm 10.3) is referred to as AFFN in figures and tables.

Algorithm 10.3 Affine Mapping (AFFN) Heuristic

procedure affn(commMatrix , coordInfo, Px, Py)
// let minx, maxx, miny and max y denote the maximum x and y coordinates

associated with any node
for i := 1 to Numnodes do

af x = bPx × x−minx
maxx−minx

c
af y = bPy × y−miny

maxy−miny
c

< freex, freey > = findNearest2D(af x, af y, Px, Py)
Map[i][j] = freex × Py + freey

end for
end procedure

Heuristic 2 - Corners to Center: Another heuristic that is similar to the ones

we developed for regular graphs, starts from four corners of the object graph simul-

taneously and maps progressively from those directions inward. The four corners

for an irregular graph are obtained based on the coordinates associated with the

nodes. Depending upon the shape of the graph, it might not be possible always to

find four corners of a given graph. Hence, simplistically, we choose the four nodes

with the minimum and maximum X and Y coordinates respectively.

After placing the four chosen nodes on four corners of the 2D mesh (in 3D,

we would do the same with eight corners), we can use heuristics developed in the

previous section to choose the mapping of the remaining nodes. We can either do a

breadth first traversal from each node or we can do a max heap traversal and place

113

0

1

2

3

19

4 6

821

10

5

79

36

37

38

13

15

35

11

12

14

18

24

20

26

16

17

22

23

25

30

32

42

27

28

29

39

82

85

31

88

44

33

34

41

64

7475

40

43

83

73

45

46

47

51

52

56

59

48

49 53

63

62

71

77

50

55

54 69

57

58

61

60

65

66

67

68 70

72

78

80

76

81 79

84

86

87

89

(a) AFFN, Hops per byte: 2.87

0

12

3

19

4 6

8

21

10

5

7

9

36

37

38

13

15

35

11

12

14

18

24

20

26

16

17

22

23

25

30

32

42

27

2829

39

82

85

31

88

44

33 34

41

64

74

75

40

43

83

73

45

46

47

51

52

56

59

48

49

53

63

62

71

77

50

55

54

69

57

58

61

60

6566

67

68

70 727880

76

81

79

84

86

8789

(b) COCE, Hops per byte: 2.89

0

1

2

3

19

46

8

21

10

5

79

36

37 38

13

15

35

11

12

14

18

24

20

26

16

17

22

23

25

30

32

42

27

28

29 39

82

85

31

88

44

3334 41

64

74

75

40

43 83

73

45

46

47

5152

56

59

48

49

53

63

6271

77

50 55

54

69

57

58

61

60

65

66

67

68

70

7278

80

76

81

79

84

86

87

89

(c) COCE+MHT, Hops per byte:
3.00

Figure 10.8: Mapping of an irregular graph with 90 nodes using the (a) AFFN, (b)
COCE, and (c) COCE+MHT algorithms to a grid of dimensions 15× 6

nodes with the maximum mapped neighbors first. COCE refers to the algorithm

which uses the BFT heuristic for mapping the remaining nodes after the corners

have been placed. COCE+MHT refers to the algorithm which uses the MHT heuristic

for the remaining nodes. Figures 10.8 (a), (b) and (c) present the mapping of the

same 90-node graph shown previously, using the AFFN, COCE and COCE+MHT mapping

algorithms respectively.

114

10.5 Comparison of Strategies for 2D Irregular

Graphs

This section compares the mapping heuristics discussed in the three sections above

for mapping of 2D irregular graphs to 2D processor meshes. We compare the running

time for different algorithms and also compare them based on achieved hop-bytes.

10.5.1 Time Complexity

The time complexity of the mapping algorithms depends on the running time of

the findNearest implementation, that is used by all of them. Let us assume that

findNearest takes constant time at each call. The BFT heuristic visits each node in

the graph once and hence takes linear time for doing the mapping. The max heap

traversal (MHT) heuristic deletes the element at root of the heap which is Θ(logn)

and inserts new elements in the heap which takes Θ(logn) for each insert. Every

node in the graph is only inserted once and hence the total time complexity for the

algorithm is O(n logn). The COCE heuristic takes linear time since it visits each

node only once and needs constant time to place it. The COCE+MHT algorithm which

uses the max heap technique takes O(n logn). The affine mapping heuristic also

visits each node once and therefore has a linear running time. The running times

for these algorithms are summarized in Table 10.2 below.

If we assume that findNearest has an average case time complexity ofO(log4n×

log4n), then an additional O(n (log4n)2) term is added to the all the algorithms.

More powerful heuristics (than the ones implemented) are possible, but with scal-

ability in mind anything worse than linearithmic (for the average case) are not

practical. Figure 10.9 shows the actual running times for the mapping algorithms

when run sequentially on a dual-core 2.4 GHz processor. We can see that BFT and

COCE take less than 10 ms for a 16, 384-node graph.

115

Time Complexity
Algorithm Constant Logarithmic

BFT O(n) O(n (log4n)2)

MHT O(n logn) O(n (log4n)2)

COCE O(n) O(n (log4n)2)

COCE+MHT O(n logn) O(n (log4n)2)

AFFN O(n) O(n (log4n)2)

Table 10.2: Time complexity for different mapping algorithms for irregular graphs
assuming constant and logarithmic running time for findNearest

10.5.2 Quality of Mapping Solutions: Hop-bytes

We now compare the mapping heuristics discussed earlier using irregular graphs

of varying sizes. These are mapped on two-dimensional processor meshes and the

comparison is done by calculating the hops per byte for each mapping. The heuristics

are also compared with the hops per byte obtained from the pairwise exchanges

technique (PAIRS). We start with the solution obtained by MHT and do pairwise

swaps until we have a “reasonable” value for hops per byte. Figure 10.10 shows the

average hops per byte for various algorithms when mapping graphs containing 256

to 16, 384 nodes respectively.

The MHT heuristic, which does a max heap traversal based on the maximum

number of mapped neighbors, gives the best average hops per byte. The other

three heuristics (BFT, COCE and AFFN) do not perform as well. Another heuristic

we discussed was an extension an COCE where we start with four corners of the

mesh but then choose the subsequent nodes to be mapped from a max heap. This

heuristic (COCE+MHT) compares favorably with the MHT algorithm. It is interesting

that MHT performs quite well even though it does not use coordinate information

associated with the nodes.

Next we compare the effects of varying the aspect ratios of the processor graph

(keeping the total number of processors constant). Table 10.3 presents the hops per

116

 0.01

 0.1

 1

 10

 100

 1000

256 1K 4K 16K

Ti
m

e
(m

s)

Number of nodes

Comparison of running time for irregular mapping heuristics

AFFN
COCE+MHT

MHT
COCE

BFT

Figure 10.9: Running time for different irregular mapping heuristics

byte for mapping a 1, 024-node graph using various heuristics. The dimensions of

the processor grid are varied from 512 × 2 to 32 × 32. A general trend which can

be observed is that mapping heuristics do not perform very well when the aspect

ratio is very skewed (one dimension is much larger than the other dimension). For

the first two mesh dimensions, only the BFT heuristic does better than the default

mapping. Even for a mesh of 128× 8, BFT is the best.

Mesh Default BFT MHT COCE COCE+MHT AFFN

512× 2 11.97 11.67 22.97 15.86 14.85 14.70
256× 4 6.93 6.57 11.00 8.69 8.28 7.87
128× 8 5.02 4.37 6.27 5.45 4.95 4.77
64× 16 4.93 4.03 4.59 4.45 4.02 3.92
32× 32 6.28 4.87 3.23 4.66 3.29 4.55

Table 10.3: Average hops per byte for mapping of a 1, 024 node graph to meshes of
different aspect ratios

The MHT heuristic, which performed the best for different mesh sizes in Fig-

ure 10.10, only works well when the shape of the processor mesh is close to a square.

117

 10.0

 12.0

 14.0

 16.0

256 1,024 4,096 16,384

A
v

er
ag

e
h

o
p

s
p

er
 b

y
te

Number of nodes

Comparison of irregular mapping strategies

Default
 BFT
 MHT
 COCE
 COCE+MHT
 AFFN
 PAIRS

 0.0

 2.0

 4.0

 6.0

 8.0

Figure 10.10: Hop-bytes for mapping of different irregular graphs to meshes of
different sizes

For other aspect ratios, BFT is a good heuristic. We can also see that placing four

corners of the mesh first (in the COCE+MHT heuristic) helps and this heuristic does

very well for the last three cases (and better than MHT in almost all cases.) This

shows that it is useful to have the freedom to use the coordinate information associ-

ated with nodes when needed. Since different heuristics are the “best” depending on

a situation and that the time taken for the algorithms is short, it may be worthwhile

to try all of them, and choose the best.

10.6 Application Studies

The previous sections discussed strategies for mapping an irregular graph to a 2D

processor topology. These strategies can be easily extended to map such graphs

on to 3D topologies. This section discusses the mapping of an unstructured mesh

computation application to 3D torus partitions.

118

10.6.1 ParFUM Benchmark: Simple2D

Simple2D is a ParFUM benchmark which performs unstructured mesh computa-

tions on 2D meshes. ParFUM [[23]] is a framework within Charm++ for writing

unstructured mesh applications. We used the mapping algorithms discussed above

to map the objects in Simple2D to 3D tori.

 3.0

 4.0

 5.0

256 1,024 4,096 16,384

A
v

er
ag

e
h

o
p

s
p

er
 b

y
te

Number of nodes

Comparison of irregular mapping strategies

Default
 BFT
 MHT
 COCE+MHT
 PAIRS

 0.0

 1.0

 2.0

Figure 10.11: Hop-bytes for mapping of different irregular graphs to meshes of
different sizes

Figure 10.11 presents the hop-bytes for mapping of this unstructured mesh ap-

plication to 3D torus partitions ranging in size from 256 to 16, 384 processors. These

experiments used a mesh similar to the one shown in Figure 10.5 and were performed

with a virtualization ratio of 1. As we increase the number of processors, the im-

provement in average hops per byte over the default mapping increases. For smaller

number of processors, MHT performs the best, but gradually COCE+MHT improves and

results in similar average hops per byte on large number of processors.

An important observation is that the default mapping is much better than what

a random or initial mapping would obtain for the hops per byte values. Let us

analyze a particular case to get a better idea. Assuming that the objects are mapped

119

randomly, the average hops per byte would be half of the network diameter. For the

16, 384 processor case, the dimensions of the torus are 16×32×32 and the diameter

is 8 + 16 + 16 = 40. So on the average, each message would travel 20 hops if the

objects were mapped randomly. As we can see in Figure 10.11, the hops per byte

value for the default mapping is 4.6 – significantly smaller than that for the random

mapping.

The default mapping is a linearized mapping of the objects by their IDs to the

processors. This suggests that the IDs of the objects correspond well with the

communication properties of the objects (i.e. objects with nearby IDs communicate

with each other.) We attribute this to the METIS partitioning algorithm [[99]] which

is used for partitioning the unstructured mesh into a graph of objects. METIS tries

to preserve communication properties of the graph by numbering communicating

objects with nearby IDs. As a result, we do not see much improvement in hops per

byte over the default mapping using the heuristics presented (especially for smaller

partitions.) The small improvement in hops per byte over the default mapping

does not translate into actual performance improvements when running Simple2D

on Blue Gene/P and we will analyze this further as part of future work.

120

11 Virtualization Benefits

P arallelizing an application consists of two tasks: 1. decomposition of the problem

into a large number of sub-problems to facilitate efficient parallelization to thou-

sands of processors, 2. mapping of these sub-problems on to physical processors

to ensure load balance and minimum communication. Object-based decomposition

separates the two tasks and gives independent control over both of them. This chap-

ter discusses the benefits of virtualization, achieved through overdecomposition, in

mitigating contention and facilitating topology aware mapping.

In MPI and most other parallel paradigms, the number of tasks into which the

problem is decomposed is equal to the number of physical processors used. The

Charm++ runtime allows the application developer to decompose the problem

into objects (or virtual processors or VPs), whose number can be much larger than

the number of processors (P). This overdecomposition of work (VP much greater

than P) is called processor virtualization. The runtime does a default mapping of

the objects that can be overridden by the user.

The following sections describe how virtualization helps in mitigating contention

and facilitating mapping and in addition, how the Charm++ runtime makes the

automatic mapping framework more useful.

11.1 Reducing Impact of Network Contention

Virtualization through overdecomposition can reduce the performance impact of

network contention in two ways:

121

Reducing Contention Overdecomposition can help in reducing contention by

scheduling different objects over time and preventing a burst of messages on the

network. The network can get flooded with messages if all processors are sending

their data to others at the end of an iteration. When there are multiple objects

on each processor, they would finish their iterations at different times, therefore,

sending messages progressively and avoiding congestion on the network.

Mitigating the Effect of Contention: Having multiple objects on a processor

that can be scheduled dynamically as needed leads to an overlap of computation

and communication (Figure 11.1). When a certain object is waiting for messages

to arrive, before it can proceed with computation, another object on the same

processor can be scheduled to do work if it is ready. If we can ensure that there

is always some work to be scheduled, the processor would not have to wait for

messages. In the event that certain messages are delayed because of contention,

overdecomposition increases the tolerance for increased latencies compared to when

no overlap is possible.

Overlap facilitated
by virtualization

PE 0

PE 1

PE 0

PE 1

Figure 11.1: Overlap of computation and computation increases tolerance for com-
munication delays

122

Thus, virtualization helps by (a) spreading the communication over time, thereby

reducing the chance of contention in the network and (b) if there is still contention

(and associated delays), it helps by reducing the sensitivity of the application to the

delays.

11.1.1 Experimental Evidence

Further evidence for this can be seen by experiments we performed with a 3D Stencil

computation. In a seven-point 3D Stencil, the 3D data array is divided among a 3D

array of objects. The number of objects in case of Charm++ can be much more

than the number of processors. We ran a 3D Stencil program on the Blue Gene/L

machine at Watson in CO and VN mode. The results are presented in Tables 11.1

and 11.2 below.

32768 chares 4096 chares
Cores RR TO RR TO

512 23.06 20.49 29.11 24.86
1024 11.54 10.23 17.42 14.78
2048 6.66 5.29 8.29 7.74
4096 3.15 2.82 4.05 3.43
8192 1.68 1.51 - -

16384 0.89 0.86 - -
32768 - - - -

Table 11.1: Execution time (in milliseconds) of 3D Stencil on Blue Gene/L (CO
mode) for different number of chares per processor (RR: Round-robin, TO: Topology
aware)

As we can see (in Table 11.1), using more chares or objects per core gives better

performance for all core counts. When comparing the round robin columns at differ-

ent core counts, it is evident that having more chares per core leads to more overlap,

which minimizes the wait for messages and therefore yields better performance. It is

important to remember that having more chares leads to blocking of data and hence

123

better cache locality in most cases. This can also contribute to better performance

when using more VPs per PE.

We would also expect that the cases with no overlap would benefit more using

topology aware mapping than those where overlap through virtualization can han-

dle delays. For example, when running in CO mode on 4, 096 cores, we obtain a

performance improvement of 15% from topology aware mapping when using one VP

per PE and only 10% when using 8 VPs per PE. Similar results are observed when

running in VN mode (Table 11.2).

32768 chares 4096 chares
Cores RR TO RR TO

512 62.15 51.09 78.44 47.08
1024 30.72 25.22 38.48 29.86
2048 23.24 11.23 19.49 17.10
4096 9.08 5.73 9.34 9.81
8192 4.02 3.25 4.63 5.25

16384 2.07 1.95 - -
32768 2.47 1.23 - -

Table 11.2: Execution time (in milliseconds) of 3D Stencil on Blue Gene/L (VN
mode) for different number of chares per processor (RR: Round-robin, TO: Topology
aware)

11.2 Facilitating Topology Aware Mapping

Virtualization also facilitates topology aware mapping by providing additional de-

grees of freedom since there are more objects which can be mapped. The Charm++

runtime in particular, helps in automating the process of mapping by offering run-

time instrumentation support and dynamic load balancing.

124

11.2.1 Additional Degrees of Freedom

Virtualization leads to division of the work on a given processor into multiple objects.

This division can depend on the type of work and on the temporal nature of when

the work is performed. Hence, creating virtual processors divides objects by type of

computation and by different phases in the application. OpenAtom is a very good

example of division of computation into multiple chare arrays (see Chapter 7).

Multiple chare arrays which perform different kinds of computation and commu-

nication at different points in time gives the mapping framework more flexibility for

placing the objects (see Figure 7.1 for details). Figure 11.2 shows a Projections [[102]]

timeline view of the various phases in a time step of OpenAtom. Different phases

of an iteration (showing interactions between different chare arrays) can be seen in

different colors. At the processor level, OpenAtom presents a scenario where a

given processor communicates with different sets of processors in different phases.

Since we decompose the work on each processor into multiple objects, we have a

flexibility to map these objects based on their communication with other objects.

In case of conflicting communication patterns with different sets of objects in dif-

ferent phases, overdecomposition gives us flexibility of mapping which would not be

available otherwise.

11.2.2 Instrumentation and Dynamic Load Balancing

There are two limitations when using the automated mapping framework with MPI

applications:

1. There is a lack of sophisticated profiling tools for MPI which can provide the

communication graph of an MPI application at runtime. Hence, the commu-

nication graph from a given run is used offline to develop mapping solutions.

2. As an effect of 1. and also because of lack of support for migrating MPI ranks

125

F
ig

u
re

11
.2

:
D

ec
om

p
os

it
io

n
of

th
e

p
h
y
si

ca
l
sy

st
em

in
to

ch
ar

e
ar

ra
y
s

(o
n
ly

im
p

or
ta

n
t

on
es

sh
ow

n
fo

r
si

m
p
li
ci

ty
)

in
O

p
e
n
A
t
o
m

126

at runtime, mapping can only be changed in a subsequent run and only at

start-up.

Because of these limitations, the mapping framework is useful only for those

MPI applications where the communication graph can be assumed to be the same

across two different runs (at least for the same number of processors) and if it can

be assumed that the communication graph does not change during a run. However,

there are several MPI applications which fall in this category.

Charm++ applications do not suffer from the limitations above. The Charm++

runtime instruments the application and hence the information is available during

a run to enable runtime remapping (in other words, communication-aware load bal-

ancing). Also, Charm++ and Adaptive MPI [[103]] support runtime migration of

objects and hence if the communication graph changes as the application is run-

ning, we can reassign the objects during the run. The results for the ParFUM

benchmark in Chapter 10 have been obtained by an integration of the automatic

mapping framework with the mapping/load balancing modules of the Charm++

runtime.

127

12 Scalable Mapping and Load
Balancing

Most of the mapping algorithms developed in the automatic mapping frame-

work are sequential. When used at runtime, such as with Charm++, they work

by gathering the instrumented communication graph on one processor, running the

mapping algorithm, and then scattering the decisions to the relevant processors so

they can migrate the objects to the new target processors. Machines with hundreds

of thousands of cores will require million-way parallelism and our mapping algo-

rithms should be able to handle such scales. The scaling bottlenecks, when we have

a large number of objects and processors are the following:

• Communication bottleneck: If the loads and communication edges for all

objects are collected on a single processor, there are millions of messages being

sent to that processor simultaneously which can become a communication

bottleneck. After the load balancing decisions have been made, they have to

be sent to all the objects which again leads to communication problems.

• Memory constraints: A single processor has a limited amount of memory

directly connected to it. At large scales, it becomes infeasible to store the

entire communication graph on a single processor.

• Processing power: If the load balancing decisions are made by a single

processor, load balancing might take a very long time depending on the number

of objects and the running time of the algorithm.

Hierarchical mapping by forming smaller groups and assigning a master rank

in each group to calculate the mapping decisions is one technique to improve scal-

128

ability [[104, 105]]. It mitigates all of the problems mentioned above but does not

remove the bottlenecks completely. Also, hierarchical algorithms do not have global

load and communication information and hence the load balancing solutions might

be inferior compared with the centralized schemes. Another possible approach is to

parallelize the mapping process completely by allowing each object to decide its des-

tination processor. Fully distributed strategies [[106–109]] that use information from

topological neighbors only are not adequate because they are too slow to disperse

the load, in absence of global information. Hence, we want each object’s mapping

to have some sense of the global load and communication information. This chapter

discusses completely distributed mapping and load balancing strategies (with global

information).

In this chapter, the mapping problem is generalized to topology aware load bal-

ancing. The problem can be stated as follows: there are n objects to be placed

on p processors (n is much greater than p). Each object (assigned to some pro-

cessor initially) has a different computational load and communicates with some

other objects. The goal is to achieve close to optimal load balance and optimize

communication considering the topology as well. The problem in this most general

form is NP-hard. Centralized and hierarchical solutions to this problem collect the

loads of all objects on one or a few processors which are responsible for balancing

the load. For completely distributed strategies, we assume that the “knowledge”

of the computational loads of objects are distributed and each object should make

its decision by itself. The strategies discussed in this chapter are relevant in the

context of Charm++ programs because we can have multiple objects per physical

processor. They are also applicable to other MPI applications such as multi-bock

codes that do explicit application-level load balancing.

We discuss load balancing solutions for a few scenarios. Two specific cases are:

1. We have a one-dimensional array of objects which communicate in a ring

129

pattern (i.e. object i communicates with i − 1 and i + 1). We want to map

these objects on to linear array of processors. We use this case to illustrate

the basic technique in a simpler context.

2. The second scenario is where we have a two-dimensional array of objects where

each object communicates with two immediate neighbors in its row and two

in its column. We wish to map this group of objects on to a 2D mesh of

processors.

12.1 Mapping of a 1D Ring

Problem: Load balancing a 1D array of v objects which communicate in a ring

pattern to a 1D linear array of p processors.

Figure 12.1: The solution of the 1D ring load balancing problem involves finding
the right places to split the ring for dividing among the processors

Solution: We want to map these objects on to processors while considering the

load of each object and the communication patterns among the objects. In order to

optimize communication, we want to place objects next to each other on the same

processor as much as possible and cross processor boundaries only for ensuring load

balance. We assume that the IDs of objects denote the nearness in terms of who

communicates with whom. Hence the problem reduces to finding contiguous groups

130

of objects in the 1D array such that the load on all processors is nearly the same

(see Figure 12.1).

5 9 1 2 3 1 6 4

5 14 10 3 5 4 7 10

5 14 15 17 15 7 12 14

5 14 15 17 20 21 27 31

v1 v2 v3 v4 v5 v6 v7 v8

Figure 12.2: Prefix sum in parallel to obtain partial sums of loads of all objects up
to a certain object

We arrange the objects virtually by their IDs and perform a prefix sum in parallel

between them based on the object loads. At the conclusion of a prefix sum, every

object knows the sum of loads of all objects that appear before it (Figure 12.2).

Then, the last object broadcasts the sum of loads of all objects so that every object

knows the global load of the system. Each object i can calculate its destination

processor (di), based on the total load of all objects (Lv), prefix sum of loads up to

it (Li), its load (li) and the total number of processors (p), by this equation,

di = bp ∗ Li − li/2
Lv

c (12.1)

In summary, every object decides its destination processor in parallel through a

parallel prefix operation and then migrate to the respective processors.

131

12.1.1 Complexity Analysis

Let us compare the running time and memory requirements for the centralized versus

completely distributed load balancing algorithms. Let us assume that there are v

objects (or VPs) to be placed on p physical processors.

In the centralized scheme, one processor stores all the information and hence

the memory requirements are proportional to the number of objects, v. In the

distributed case, each processor stores information about its objects which is v/p.

In the centralized case, each processor sends a message to one processor with its load

information, which leads to p messages of size v/p each. On the other hand, in the

parallel prefix there are logv phases and v messages of constant size are exchanged

in each phase. These comparisons are summarized in Table 12.1 below.

Strategy Centralized Distributed

Memory O(v) O(v/p)
Number of messages O(p) O(v logv)
Communication Volume O(v) O(v logv)
Decision Time Ω(v) O(1)

Table 12.1: Time complexity comparison of centralized and distributed load balanc-
ing algorithms for a 1D ring

In the centralized case, if we assume that the fastest algorithm for load balancing

will have a linear running time, the time complexity for the decision making can be

said to have an asymptotic lower bound of Ω(v). In the distributed case, since every

object makes its own decisions, the algorithm’s decision time is constant. Hence,

even though there is more communication for completely distributed algorithms, we

get huge savings in memory usage and decision time, which will be necessary when

v is very large. Also, the serial bottleneck at processor 0, which must receive O(p)

messages in the centralized case, is removed.

132

12.2 Mapping of a 2D Stencil

Problem: Mapping a 2D array of objects which communicate in a stencil-like

pattern, to a 2D mesh of processors.

Solution 1: In this case, the assumption is that object (i, j) communicates with

four other objects: (i, j − 1), (i, j + 1), (i − 1, j) and (i + 1, j). And as in the

previous case, we want to optimize communication and balance computational load.

Again, non-trivial cases that are of interest are when the aspect ratios of the object

mesh and the processor mesh are different.

One possible solution is to do a parallel prefix sum in every row and column.

Each object can then decide the x and y coordinates of its destination processor

based on the the loads it has from the two prefix sum operations it participated in

and the total loads of its row and column. However, this might lead to collisions

for the same destination processor and load imbalance, so we might need another

step of neighborhood load balancing afterwards. In neighborhood load balancing,

processors with less than average work would request work from their neighbors.

Solution 2: Another solution is to use a parallel prefix in 1D as we did in the

previous section. To do this, we have to linearize the objects in some fashion. Space

filling curves can be used to map the 2D object grid to a 1D line [[97, 98]]. Space

filling curves preserve the neighborhood properties of the objects in 2D. Figure 12.3

shows the linearization of an object grid of dimensions 32× 32 and a processor grid

of dimensions 8× 8.

Having linearized the object grid, we can perform a parallel prefix on the 1D

array of objects and obtain a destination processor for each object. This processor

number is the linearized index of each processor if we create a space filling curve

for the 2D processor mesh. Hence, based on this linearized index, we can obtain

133

Figure 12.3: Hilbert order linearization of an object grid of dimensions 32× 32 and
a processor mesh of dimensions 8× 8

the x and y coordinates of the processor by decoding, using the same logic used for

generating space filling curves. The hope is that nearby objects in the 2D object

grid end up close to one another on the 2D processor mesh.

12.2.1 Performance Results

The two solutions mentioned above for 1D and 2D (both using a one-dimensional

parallel prefix) were implemented in Charm++. Table 12.2 shows the time it takes

for distributed load balancing of 1 and 4 million chares with a 2D communication

pattern.

Cores 1 million chares 4 million chares

4096 1.81 12.96
16384 6.77 9.59

Table 12.2: Time (in seconds) for distributed load balancing

Distributed load balancing for 1 million chares take only 2 and 7 seconds on

134

4, 096 and 16, 384 cores of XT5. For 4 million chares, the distributed algorithm

takes about 13 seconds on 4, 096 cores and 10 seconds on 16, 384 cores. Table 12.3

shows the improvement in hops per byte when using the distributed topology aware

algorithms compared to a random and default mapping. Five trials were done

generating random loads for 1 million objects running on 4, 096 cores. Since, there

are several thousand objects on each core, the ideal hops per byte is significantly

less than one. The load balancers succeed in reducing the average hops per byte

significantly.

Mapping Random Default Topology

Trial 1 42.65 3.76 0.11
Trial 2 42.66 3.76 0.12
Trial 3 42.67 3.76 0.12
Trial 4 42.67 3.76 0.12
Trial 5 42.66 3.76 0.12

Table 12.3: Reduction in hops per byte using distributed topology aware load bal-
ancing for 1 million objects on 4, 096 cores

Trial3 Trial4 Trial5

M
ax

 t
o

 A
v

g
 R

at
io

Ratio of maximum to average load

Random Mapping
Default Mapping
Topology Mapping

 0.0

 0.5

 1.0

 1.5

 2.0

Trial1 Trial2

Figure 12.4: Performance of the distributing load balancers in terms of bringing the
maximum load on any processor closer to the average

Figure 12.4 shows the improvement in the ratio of maximum to average load

135

using the load balancers describe above. Ideally, the ratio of maximum to average

load should be 1 denoting perfect load balance. We can see in the figure that the

load balancers succeed in bringing the value very close to 1. In summary, for very

large problems, distributed algorithms can be fast, use much less memory than

centralized algorithms and avoid communication bottlenecks at a single processor.

Hence, they will be indispensable when running applications on large allocations of

petascale and exascale machines.

136

13 Conclusion and Future Work

T he research conducted as a part of this dissertation has reestablished the impor-

tance of topology aware mapping in improving application performance and scaling

for current day supercomputers. Our MPI benchmarks show that in spite of worm-

hole routing, contention can severely affect message latencies. Machines with high

interconnect bandwidth such as Cray XTs are not spared by this. We have demon-

strated performance improvements of up to two times for production scientific codes

such as OpenAtom and NAMD running on the largest contemporary machines.

This dissertation makes several important contributions. We claim, aided by

micro-benchmark results that hop-bytes is a good evaluation metric for mapping

algorithms. Maximum dilation, which was considered as the more important metric

in VLSI design and early parallel computing work, is not as important on parallel

machines though it can still impact performance in certain cases.

The dissertation presents a framework for automatic mapping of parallel appli-

cations with regular and irregular communication graphs on parallel machines. The

two steps involved in automating the process are: 1. obtaining the communica-

tion graph and identifying regular communication patterns, 2. intelligent and fast

heuristic solutions for mapping applications based on their communication graphs.

A suite of mapping heuristics has been developed for regular and irregular communi-

cation graphs. We compare different algorithms for their running time and evaluate

their performance based on the hop-bytes metric. Using this mapping framework,

we demonstrate performance improvements for synthetic benchmarks and scientific

applications. This automatic mapping framework will save much effort on the part

137

of application developers to generate mappings for their individual applications.

We also discuss the benefits of virtualization in general and that of the Charm++

runtime in particular, in handling and mitigating contention and facilitating the pro-

cess of mapping. We present scalable distributed load balancing techniques which

will be required for future petascale and exascale machines. We show that these al-

gorithms can run faster, reduce memory requirements and minimize communication

bottlenecks on one processor.

There are several directions for future research based on this work. The auto-

matic mapping framework can be enhanced with more sophisticated algorithms for

pattern matching and topology aware mapping. The pattern matching algorithms

only identify communication with a small number of neighbors. Other cases for con-

sideration are complex communication patterns such as many-to-many (FFT being

one example) and multicasts. The mapping framework does not handle simultane-

ous multiple communication patterns in an application (such as in OpenAtom.)

For MPI applications, the framework does not handle changes in the communica-

tion graph between runs and with time. Handling such cases requires more support

from the MPI runtime which might happen in the future. We need runtime in-

strumentation and migration of ranks in an MPI application to handle changing

communication graphs.

Obtaining tighter lower bounds for a clearer picture of the optimality of the

mapping algorithms is another direction for research. A simulation framework such

as BigSim [[110]] would be a useful tool for this. We can vary message latencies and

contention in a simulation to see the impact and benefit from topology aware map-

ping strategies. Comparing with other algorithms in the literature (both past and

recent) would also give a better understanding of the efficiency of these algorithms.

The work presented on distributed load balancing is in its preliminary stages. We

chose two specific communication scenarios and implemented strategies for them.

138

For this work to be generally useful, algorithms for other regular patterns and ir-

regular communication patterns would have to be developed (which would be more

challenging.)

139

References

[[1]] C. Catlett and et al. TeraGrid: Analysis of Organization, System Archi-
tecture, and Middleware Enabling New Types of Applications. In Lucio
Grandinetti, editor, HPC and Grids in Action, Amsterdam, 2007. IOS
Press.

[[2]] Jonathan Richard Shewchuk. Triangle: Engineering a 2d quality mesh gen-
erator and delaunay triangulator, 1996.

[[3]] Emden R. Gansner and Stephen C. North. An open graph visualization
system and its applications to software engineering. Software - Practice
and Experience, 30:1203–1233, 1999.

[[4]] Cray Inc. Scalable Computing at Work: Cray XT4 Datasheet. www.cray.

com/downloads/Cray_XT4_Datasheet.pdf, 2006.

[[5]] Cray Inc. Cray XT Specifications. http://www.cray.com/Products/XT/

Specifications.aspx, 2009.

[[6]] N. R. Adiga, G. Almasi, , Y. Aridor, R. Barik, D. Beece, R. Bellofatto,
G. Bhanot, R. Bickford, M. Blumrich, and A. A. Bright. An Overview of
the Blue Gene/L Supercomputer. In Supercomputing 2002 Technical Papers,
Baltimore, Maryland, 2002. The Blue Gene/L Team, IBM and Lawrence
Livermore National Laboratory.

[[7]] IBM Blue Gene Team. Overview of the IBM Blue Gene/P project. IBM
Journal of Research and Development, 52(1/2), 2008.

[[8]] Lionel M. Ni and Philip K. McKinley. A survey of wormhole routing tech-
niques in direct networks. Computer, 26(2):62–76, 1993.

[[9]] James W. Dolter, P. Ramanathan, and Kang G. Shin. Performance analysis
of virtual cut-through switching in harts: A hexagonal mesh multicomputer.
IEEE Trans. Comput., 40(6):669–680, 1991.

[[10]] Dilip D. Kandlur and Kang G. Shin. Traffic Routing for Multicomputer
Networks with Virtual Cut-Through Capability. IEEE Trans. Comput.,
41(10):1257–1270, 1992.

[[11]] Ronald I. Greenberg and Hyeong-Cheol Oh. Universal wormhole rout-
ing. IEEE Transactions on Parallel and Distributed Systems, 08(3):254–262,
1997.

140

[[12]] Prasant Mohapatra. Wormhole routing techniques for directly connected
multicomputer systems. ACM Comput. Surv., 30(3):374–410, 1998.

[[13]] Loren Schwiebert and D. N. Jayasimha. On measuring the performance of
adaptive wormhole routing. hipc, 00:336, 1997.

[[14]] Mohamed Ould-Khaoua and Hamid Sarbazi-Azad. An analytical model
of adaptive wormhole routing in hypercubes in the presence of hot spot
traffic. IEEE Transactions on Parallel and Distributed Systems, 12(3):283–
292, 2001.

[[15]] Abhinav Bhatele, Sameer Kumar, Chao Mei, James C. Phillips, Gengbin
Zheng, and Laxmikant V. Kale. Overcoming scaling challenges in biomolec-
ular simulations across multiple platforms. In Proceedings of IEEE Inter-
national Parallel and Distributed Processing Symposium 2008, April 2008.

[[16]] Eric Bohm, Abhinav Bhatele, Laxmikant V. Kale, Mark E. Tuckerman,
Sameer Kumar, John A. Gunnels, and Glenn J. Martyna. Fine Grained
Parallelization of the Car-Parrinello ab initio MD Method on Blue Gene/L.
IBM Journal of Research and Development: Applications of Massively Par-
allel Systems, 52(1/2):159–174, 2008.

[[17]] L.V. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object
Oriented System Based on C++. In A. Paepcke, editor, Proceedings of
OOPSLA’93, pages 91–108. ACM Press, September 1993.

[[18]] Laxmikant V. Kale, Eric Bohm, Celso L. Mendes, Terry Wilmarth, and
Gengbin Zheng. Programming Petascale Applications with Charm++ and
AMPI. In D. Bader, editor, Petascale Computing: Algorithms and Applica-
tions, pages 421–441. Chapman & Hall / CRC Press, 2008.

[[19]] Message Passing Interface Forum. MPI: A Message Passing Interface. In
Proceedings of Supercomputing ’93, pages 878–883. IEEE Computer Society
Press, 1993.

[[20]] W. Gropp and E. Lusk. The MPI communication library: its design and a
portable implementation. In Proceedings of the Scalable Parallel Libraries
Conference, October 6–8, 1993, Mississippi State, Mississippi, pages 160–
165, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1994.
IEEE Computer Society Press.

[[21]] Steve Otto Marc Snir and etc. MPI: The Complete Reference, volume 1.
The MIT Press.

[[22]] James C. Phillips, Gengbin Zheng, Sameer Kumar, and Laxmikant V. Kalé.
NAMD: Biomolecular simulation on thousands of processors. In Proceed-
ings of the 2002 ACM/IEEE conference on Supercomputing, pages 1–18,
Baltimore, MD, September 2002.

141

[[23]] Orion Lawlor, Sayantan Chakravorty, Terry Wilmarth, Nilesh Choudhury,
Isaac Dooley, Gengbin Zheng, and Laxmikant Kale. Parfum: A parallel
framework for unstructured meshes for scalable dynamic physics applica-
tions. Engineering with Computers, 22(3-4):215–235, September 2006.

[[24]] Michalakes, J., J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock,
and W. Wang. The Weather Research and Forecast Model: Software Ar-
chitecture and Performance. In Proceedings of the 11th ECMWF Workshop
on the Use of High Performance Computing In Meteorology, October 2004.

[[25]] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker,
W. Wang, and J. G. Powers. A description of the advanced research wrf
version 2. Technical Report Technical Note NCAR/TN-468+STR, June
2005.

[[26]] Shahid H. Bokhari. On the Mapping Problem. IEEE Trans. Computers,
30(3):207–214, 1981.

[[27]] Soo-Young Lee and J. K. Aggarwal. A Mapping Strategy for Parallel Pro-
cessing. IEEE Trans. Computers, 36(4):433–442, 1987.

[[28]] P. Sadayappan and F. Ercal. Nearest-Neighbor Mapping of Finite Element
Graphs onto Processor Meshes. IEEE Trans. Computers, 36(12):1408–1424,
1987.

[[29]] S. Wayne Bollinger and Scott F. Midkiff. Processor and Link Assignment in
Multicomputers Using Simulated Annealing. In ICPP (1), pages 1–7, 1988.

[[30]] S. Wayne Bollinger and Scott F. Midkiff. Heuristic Technique for Processor
and Link Assignment in Multicomputers. IEEE Trans. Comput., 40(3):325–
333, 1991.

[[31]] Francine Berman and Lawrence Snyder. On mapping parallel algorithms
into parallel architectures. Journal of Parallel and Distributed Computing,
4(5):439–458, 1987.

[[32]] N. Mansour and R. Ponnusamy and A. Choudhary and G. C. Fox. Graph
contraction for physical optimization methods: a quality-cost tradeoff for
mapping data on parallel computers. In ICS ’93: Proceedings of the 7th
international conference on Supercomputing, pages 1–10. ACM, 1993.

[[33]] S. Arunkumar and T. Chockalingam. Randomized Heuristics for the Map-
ping Problem. International Journal of High Speed Computing (IJHSC),
4(4):289–300, December 1992.

[[34]] F. Ercal and J. Ramanujam and P. Sadayappan. Task allocation onto a
hypercube by recursive mincut bipartitioning. In Proceedings of the 3rd
conference on Hypercube concurrent computers and applications, pages 210–
221. ACM Press, 1988.

142

[[35]] M. Muller and Michael Resch. PE mapping and the congestion problem in
the T3E. In Proceedings of the Fourth European Cray-SGI MPP Workshop,
Garching, Germany, 1998.

[[36]] Eduardo Huedo and Manuel Prieto and Ignacio Mart́ın Llorente and Fran-
cisco Tirado. Impact of PE Mapping on Cray T3E Message-Passing Per-
formance. In Euro-Par ’00: Proceedings from the 6th International Euro-
Par Conference on Parallel Processing, pages 199–207, London, UK, 2000.
Springer-Verlag.

[[37]] Thierry Cornu and Michel Pahud. Contention in the Cray T3D Communi-
cation Network. In Euro-Par ’96: Proceedings of the Second International
Euro-Par Conference on Parallel Processing-Volume II, pages 689–696, Lon-
don, UK, 1996. Springer-Verlag.

[[38]] Deborah Weisser, Nick Nystrom, Chad Vizino, Shawn T. Brown, and John
Urbanic. Optimizing Job Placement on the Cray XT3. 48th Cray User
Group Proceedings, 2006.

[[39]] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Gi-
ampapa, P. Heidelberger, S. Singh, B. D. Steinmacher-Burow, T. Takken,
M. Tsao, and P. Vranas. Blue Gene/L torus interconnection network. IBM
Journal of Research and Development, 49(2/3), 2005.

[[40]] G. Almasi, C. Archer, J. G. Castanos, J. A. Gunnels, C. C. Erway, P. Hei-
delberger, X. Martorell, J. E. Moreira, K. Pinnow, J. Ratterman, B. D.
Steinmacher-Burow, W. Gropp, and B. Toonen. Design and implementa-
tion of message-passing services for the Blue Gene/L supercomputer. IBM
Journal of Research and Development, 49(2/3), 2005.

[[41]] IBM System Blue Gene Solution. Blue Gene/P Application Develop-
ment Redbook. http://www.redbooks.ibm.com/abstracts/sg247287.

html, 2008.

[[42]] George Almasi and Siddhartha Chatterjee and Alan Gara and John Gunnels
and Manish Gupta and Amy Henning and Jose E. Moreira and Bob Walkup.
Unlocking the Performance of the Blue Gene/L Supercomputer. In SC ’04:
Proceedings of the 2004 ACM/IEEE conference on Supercomputing, page 57.
IEEE Computer Society, 2004.

[[43]] Kei Davis and Adolfy Hoisie and Greg Johnson and Darren J. Kerbyson
and Mike Lang and Scott Pakin and Fabrizio Petrini. A Performance and
Scalability Analysis of the Blue Gene/L Architecture. In SC ’04: Proceed-
ings of the 2004 ACM/IEEE conference on Supercomputing, page 41. IEEE
Computer Society, 2004.

143

[[44]] Francois Gygi, Erik W. Draeger, Martin Schulz, Bronis R. De Supinski,
John A. Gunnels, Vernon Austel, James C. Sexton, Franz Franchetti, Stefan
Kral, Christoph Ueberhuber, and Juergen Lorenz. Large-Scale Electronic
Structure Calculations of High-Z Metals on the Blue Gene/L Platform. In
Proceedings of the International Conference in Supercomputing. ACM Press,
2006.

[[45]] Brian E. Smith and Brett Bode. Performance Effects of Node Mappings on
the IBM Blue Gene/L Machine. In Euro-Par, pages 1005–1013, 2005.

[[46]] G. Bhanot, A. Gara, P. Heidelberger, E. Lawless, J. C. Sexton, and
R. Walkup. Optimizing task layout on the Blue Gene/L supercomputer.
IBM Journal of Research and Development, 49(2/3):489–500, 2005.

[[47]] Hao Yu, I-Hsin Chung, and Jose Moreira. Topology mapping for Blue
Gene/L supercomputer. In SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, page 116, New York, NY, USA, 2006. ACM.

[[48]] Tarun Agarwal, Amit Sharma, and Laxmikant V. Kalé. Topology-aware
task mapping for reducing communication contention on large parallel ma-
chines. In Proceedings of IEEE International Parallel and Distributed Pro-
cessing Symposium 2006, April 2006.

[[49]] Blake G. Fitch, Aleksandr Rayshubskiy, Maria Eleftheriou, T. J. Christo-
pher Ward, Mark Giampapa, and Michael C. Pitman. Blue matter: Ap-
proaching the limits of concurrency for classical molecular dynamics. In SC
’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
New York, NY, USA, 2006. ACM Press.

[[50]] Leonid Oliker, Andrew Canning, Jonathan Carter, Costin Iancu, Michael
Lijewski, Shoaib Kamil, John Shalf, Hongzhang Shan, Erich Strohmaier,
Stephane Ethier, and Tom Goodale. Scientific Application Performance
on Candidate PetaScale Platforms. In Proceedings of IEEE Parallel and
Distributed Processing Symposium (IPDPS), March 2007.

[[51]] Abhinav Bhatelé, Eric Bohm, and Laxmikant V. Kalé. Optimizing commu-
nication for Charm++ applications by reducing network contention. Con-
currency and Computation: Practice and Experience, 2010.

[[52]] Abhinav Bhatelé, Laxmikant V. Kalé, and Sameer Kumar. Dynamic topol-
ogy aware load balancing algorithms for molecular dynamics applications.
In 23rd ACM International Conference on Supercomputing, 2009.

[[53]] Aleliunas, R. and Rosenberg, A. L. On Embedding Rectangular Grids in
Square Grids. IEEE Trans. Comput., 31(9):907–913, 1982.

[[54]] Ellis, J.A. Embedding rectangular grids into square grids. Computers, IEEE
Transactions on, 40(1):46–52, Jan 1991.

144

[[55]] Melhem, Rami G. and Hwang, Ghil-Young. Embedding Rectangular Grids
into Square Grids with Dilation Two. IEEE Trans. Comput., 39(12):1446–
1455, 1990.

[[56]] Jack Dongarra and P Luszczek. Introduction to the HPC Challenge Bench-
mark Suite. Technical Report UT-CS-05-544, University of Tennessee, Dept.
of Computer Science, 2005.

[[57]] C. Walshaw, M. Cross, M. G. Everett, S. Johnson, and K. Mcmanus. Parti-
tioning & mapping of unstructured meshes to parallel machine topologies.
In Proc. Irregular ’95: Parallel Algorithms for Irregularly Structured Prob-
lems, volume 980, pages 121–126. Springer, 1995.

[[58]] Kevin McManus, Mark Cross, Chris Walshaw, Steve Johnson, and Peter
Leggett. A scalable strategy for the parallelization of multiphysics unstruc-
tured mesh-iterative codes on distributed-memory systems. Int. J. High
Perform. Comput. Appl., 14(2):137–174, 2000.

[[59]] C.E. Leiserson. Fat-trees: Universal Networks for Hardware-Efficient Su-
percomputing. IEEE Transactions on Computers, 34(10), October 1985.

[[60]] Top500 supercomputing sites. http://top500.org.

[[61]] M.Blumrich, D.Chen, P.Coteus, A.Gara, M.Giampapa, P.Heidelberger,
S.Singh, B.Steinmacher-Burow, T.Takken, and P.Vranas. Design and Anal-
ysis of the Blue Gene/L Torus Interconnection Network. IBM Research
Report, December 2003.

[[62]] Jud Leonard, Avi Purkayastha, Matt Reilly, and Tushar Mohan. The soft-
ware interface for a cluster interconnect based on the kautz digraph. Cluster
Computing, IEEE International Conference on, 0:187–193, 2007.

[[63]] Nitin Godiwala, Jud Leonard, and Matthew Reilly. A network fabric for
scalable multiprocessor systems. High-Performance Interconnects, Sympo-
sium on, 0:137–144, 2008.

[[64]] Abhinav Bhatelé, Eric Bohm, and Laxmikant V. Kalé. A Case Study of
Communication Optimizations on 3D Mesh Interconnects. In Euro-Par
2009, LNCS 5704, pages 1015–1028, 2009.

[[65]] V. Salapura, K. Ganesan, A. Gara, M. Gschwind, J.C. Sexton, and R.E.
Walkup. Next-Generation Performance Counters: Towards Monitoring
Over Thousand Concurrent Events. In IEEE International Symposium on
Performance Analysis of Systems and Software, pages 139 – 146, April 2008.

[[66]] M. E. Tuckerman. Ab initio molecular dynamics: Basic concepts, current
trends and novel applications. J. Phys. Condensed Matter, 14:R1297, 2002.

145

[[67]] Pasquarello A, Hybertsen MS, and Car R. Interface structure between
silicon and its oxide by first-principles molecular dynamics. Nature, 396:58,
1998.

[[68]] De Santis L and Carloni P. Serine proteases: An ab initio molecular dy-
namics study. Proteins, 37:611, 1999.

[[69]] A. M. Saitta, P. D. Soper, E. Wasserman, and M. L. Klein. Influence of a
knot on the strength of a polymer strand. Nature, 399:46, 1999.

[[70]] Rothlisberger U, Carloni P, Doclo K, and Parinello M. A comparative
study of galactose oxidase and active site analogs based on QM/MM Car
Parrinello simulations. J. Biol. Inorg. Chem., 5:236, 2000.

[[71]] Haye MJ, Massobrio C, Pasquarello A, and Car R. Structure of liquid
GexSe1-x at the stiffness threshold composition. Phys. Rev. B, 58:R14661,
1998.

[[72]] Blase X, Charlier JC, De Vita A, and Car R. Structural and electronic prop-
erties of composite BxCyNz nanotubes and heterojunctions. Appl. Phys. A,
68:293, 1999.

[[73]] V. Musolino, A. Selloni, and R. Car. Structure and dynamics of small
metallic clusters on an insulating metal-oxide surface: Copper on MgO(100).
Phys. Rev. Lett., 83:3242, 1999.

[[74]] J. J. Mortensen and M. Parrinello. A density functional theory study of
a silica-supported zirconium monohydride catalyst for depolymerization of
polyethylene. J Phys. Chem. B, 104:2901, 2000.

[[75]] A. Pasquarello, I. Petri, P. S. Salmon, O. Parisel, R. Car, E. Toth, D. H.
Powell, H. E. Fischer, L. Heim, and A. E. Merbach. First solvation shell of
the Cu(II) aqua ion: Evidence for fivefold coordination. Science, 291:856,
2001.

[[76]] M. Boero, M. Parrinello, S. Huffer, and H. Weiss. First principles study
of propene polymerization by ziegler-natta hetergeneous catalysis. J. Am.
Chem. Soc., 122:501, 2000.

[[77]] Kaupp M, Rovira C, and Parrinello M. Density functional study of O-17
NMR chemical shift and nuclear quadrupole coupling tensors in oxyheme
model complexes. J Phys. Chem. B, 104:5200, 2000.

[[78]] A.D. Becke. Density-functional exchange-energy approximation with correct
assymptotic behavior. Phys. Rev. A, 38(6):3098–3100, (1988).

[[79]] C. Lee, W. Yang, and R.G. Parr. Development of the Calle-Salvetti cor-
relation energy into a functional of the electron density. Phys. Rev. B,
37(2):785–789, (1988).

146

[[80]] N. Troullier and J.L. Martins. Efficient pseudopotentials for plane wave
calculations. Phys. Rev. B, 43(3):1993–2006, (1991).

[[81]] Klaus Schulten, James C. Phillips, Laxmikant V. Kale, and Abhinav
Bhatele. Biomolecular modeling in the era of petascale computing. In
D. Bader, editor, Petascale Computing: Algorithms and Applications, pages
165–181. Chapman & Hall / CRC Press, 2008.

[[82]] L. V. Kalé, Milind Bhandarkar, and Robert Brunner. Load balancing in
parallel molecular dynamics. In Fifth International Symposium on Solving
Irregularly Structured Problems in Parallel, volume 1457 of Lecture Notes
in Computer Science, pages 251–261, 1998.

[[83]] Abhinav Bhatelé and Laxmikant V. Kalé. Quantifying Network Contention
on Large Parallel Machines. Parallel Processing Letters (Special Issue on
Large-Scale Parallel Processing), 19(4):553–572, 2009.

[[84]] Abhinav Bhatelé and Laxmikant V. Kalé. Benefits of Topology Aware Map-
ping for Mesh Interconnects. Parallel Processing Letters (Special issue on
Large-Scale Parallel Processing), 18(4):549–566, 2008.

[[85]] Sameer Kumar, Chao Huang, Gengbin Zheng, Eric Bohm, Abhinav Bhatele,
James C. Phillips, Hao Yu, and Laxmikant V. Kalé. Scalable Molecular
Dynamics with NAMD on Blue Gene/L. IBM Journal of Research and
Development: Applications of Massively Parallel Systems, 52(1/2):177–187,
2008.

[[86]] H. Wen and S. Sbaraglia and S. Seelam and I. Chung and G. Cong and D.
Klepacki. A Productivity Centered Tools Framework for Application Per-
formance Tuning. In QEST ’07: Proceedings of the 4th International Con-
ference on the Quantitative Evaluation of Systems, pages 273–274, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[[87]] Robert Preissl, Thomas Köckerbauer, Martin Schulz, Dieter Kranzlmüller,
Bronis R. de Supinski, and Daniel J. Quinlan. Detecting Patterns in MPI
Communication Traces. Parallel Processing, International Conference on,
0:230–237, 2008.

[[88]] Darren J. Kerbyson and Kevin J. Barker. Automatic Identification of Ap-
plication Communication Patterns via Templates. In In Proc. Int. Conf.
Parallel and Distributed Computing Systems (PDCS), Las Vegas, NV, Au-
gust 2005.

[[89]] Nikhil Bhatia, Fengguang Song, Felix Wolf, Jack Dongarra, Bernd Mohr,
and Shirley Moore. Automatic experimental analysis of communication
patterns in virtual topologies. Parallel Processing, International Conference
on, 0:465–472, 2005.

147

[[90]] MILC Collaboration. MIMD Lattice Computation (MILC) Collaboration
Home Page. http://www.physics.indiana.edu/~sg/milc.html.

[[91]] Claude Bernard, Tom Burch, Thomas A. DeGrand, Carleton DeTar, Steven
Gottlieb, Urs M. Heller, James E. Hetrick, Kostas Orginos, Bob Sugar, and
Doug Toussaint. Scaling tests of the improved Kogut-Susskind quark action.
Physical Review D, (61), 2000.

[[92]] J. K. Dukowicz and R. D. Smith. Implicit free-surface method for the Bryan-
Cox-Semtner ocean model. Journal of Geophysics Research, 99:7991–8014,
April 1994.

[[93]] John K. Dukowicz, Richard D. Smith, and Robert C. Malone. A Refor-
mulation and Implementation of the Bryan-Cox-Semtner Ocean Model on
the Connection Machine. Journal of Atmospheric and Oceanic Technology,
10(2):195–208, April 1993.

[[94]] R. D. Smith, J. K. Dukowicz, and R. C. Malone. Parallel ocean general
circulation modeling. In Proceedings of the 11th annual international con-
ference of the Center for Nonlinear Studies on Experimental mathematics
: computational issues in nonlinear science, pages 38–61. Elsevier North-
Holland, Inc., 1992.

[[95]] Kirk Bryan. A numerical method for the study of the circulation of the
world ocean. Journal of Computational Physics, 135(2):154–169, 1997.

[[96]] The weather research & forecasting model website. http://wrf-model.

org.

[[97]] G. Peano. Sur une courbe, qui remplit toute une aire plane. Mathematische
Annalen, 36(1):157–160, 1890.

[[98]] D. Hilbert. Ueber die stetige Abbildung einer Line auf ein Flächenstück.
Mathematische Annalen, 38:459–460, 1891.

[[99]] George Karypis and Vipin Kumar. Parallel multilevel k-way partitioning
scheme for irregular graphs. In Supercomputing ’96: Proceedings of the 1996
ACM/IEEE conference on Supercomputing (CDROM), page 35, 1996.

[[100]] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Inf. Process. Lett., 31:7–15, April 1989.

[[101]] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by
force-directed placement. Software: Practice and Experience, 21:1129–1164,
March 1991.

148

[[102]] Laxmikant V. Kale, Gengbin Zheng, Chee Wai Lee, and Sameer Kumar.
Scaling applications to massively parallel machines using projections perfor-
mance analysis tool. In Future Generation Computer Systems Special Issue
on: Large-Scale System Performance Modeling and Analysis, volume 22,
pages 347–358, February 2006.

[[103]] Chao Huang, Gengbin Zheng, Sameer Kumar, and Laxmikant V. Kalé.
Performance Evaluation of Adaptive MPI. In Proceedings of ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
2006, March 2006.

[[104]] Gengbin Zheng. Achieving high performance on extremely large parallel ma-
chines: performance prediction and load balancing. PhD thesis, Department
of Computer Science, University of Illinois at Urbana-Champaign, 2005.

[[105]] Gengbin Zheng, Esteban Meneses, Abhinav Bhatele, and Laxmikant V.
Kale. Hierarchical Load Balancing for Charm++ Applications on Large
Supercomputers. In Proceedings of the Third International Workshop on
Parallel Programming Models and Systems Software for High-End Comput-
ing (P2S2), San Diego, California, USA, September 2010.

[[106]] A. Corradi, L. Leonardi, and F. Zambonelli. Diffusive load balancing policies
for dynamic applications. In IEEE Concurrency, pages 7(1):22–31, 1999.

[[107]] Anna Ha’c and Xiaowei Jin. Dynamic load balancing in distributed system
using a decentralized algorithm. In Proc. of 7-th Intl. Conf. on Distributed
Computing Systems, April 1987.

[[108]] L. V. Kalé. Comparing the performance of two dynamic load distribution
methods. In Proceedings of the 1988 International Conference on Parallel
Processing, pages 8–11, St. Charles, IL, August 1988.

[[109]] Marc H. Willebeek-LeMair and Anthony P. Reeves. Strategies for dynamic
load balancing on highly parallel computers. In IEEE Transactions on
Parallel and Distributed Systems, volume 4, September 1993.

[[110]] Gengbin Zheng, Terry Wilmarth, Praveen Jagadishprasad, and
Laxmikant V. Kalé. Simulation-based performance prediction for
large parallel machines. In International Journal of Parallel Programming,
volume 33, pages 183–207, 2005.

149

Appendix A

In this appendix, we present figures which depict the mapping of different object

grids to two-dimensional processor meshes using the various mapping algorithms for

regular graphs presented in Chapter 9.

Figure A.1: Mapping of a 9 × 8 grid to a 12 × 6 mesh using MXOVLP, MXOV+AL,

EXCO, COCE, AFFN (and two other variations of it), and STEP respectively

150

Figure A.1 shows the mapping of an object grid of dimensions 9×8 to a processor

mesh of dimensions 12×6 for the various algorithms. Figure A.2 shows the mappings

for the same grid with vertical edges (in green).

Figure A.2: Mapping of a 9 × 8 grid to a 12 × 6 mesh using MXOVLP, MXOV+AL,

EXCO, COCE, AFFN (and two other variations of it), and STEP respectively (vertical
edges also shown)

The mapping figures presented above should help in understanding of the map-

ping algorithms presented earlier and give some idea of the average hop-bytes and

maximum dilation for each. Figures A.3 and A.4 show the mappings for an object

grid of dimensions 14× 6 to a processor mesh of dimensions 7× 12 for the various

algorithms.

151

Figure A.3: Mapping of a 14 × 6 grid to a 7 × 12 mesh using MXOVLP, MXOV+AL,

EXCO, COCE, AFFN and STEP respectively

Figure A.4: Mapping of a 14 × 6 grid to a 7 × 12 mesh using MXOVLP, MXOV+AL,

EXCO, COCE, AFFN and STEP respectively (vertical edges also shown)

152

Appendix B

The first part of this appendix contains pseudo code and detailed implementations

of the spiraling and quadtree implementations for findNearest function. This

function was introduced in Chapter 9 and discussed in some detail in Chapter 10.

Algorithm B.1 Finding the nearest available processor in 3D
procedure findNearest3D(px, py, pz, freeProcs)

diameter1 = procx + procy + procz − 3
if isAvailable3D(px, py, pz, freeProcs) then

return < px, py, pz >
end if
for d1 := 1 to diameter1 do

for i := (−1)× d1 to d1 do
diameter2 = d1−abs(i) −1
for d2 := 0 to diameter2 do

for j := (−1)× d2 to d2 do
k = d2−abs(j)
rx = px + i
ry = py + j
rz = pz + k
if withinBounds3D(rx, ry, rz) && isAvailable(rx, ry, rz, freeProcs)

then
return < rx, ry, rz >

end if
rx = px + i
ry = py + j
rz = pz − k
if withinBounds3D(rx, ry, rz) && isAvailable(rx, ry, rz, freeProcs)

then
return < rx, ry, rz >

end if
end for

end for
end for

end for
end procedure

153

The pseudo code above (Algorithm B.1) depicts the algorithm for finding the

nearest available processor in a 3D mesh. The algorithm for doing the same in 2D

was presented in Chapter 10.

64 int findNearest2D(int px, int py, int dimX, int dimY,

65 int **freeprocs, int* rx, int* ry) {

66 int i, j, d, from, to;

67 int diameter = dimX + dimY - 1;

68 if(isAvailable2D(px, py, freeprocs)) {

69 *rx = px; *ry = py;

70 return 1;

71 }

72

73 for(d=1; d<diameter; d++) {

74 // choose the x-coordinate first

75 if(d > px) from = (-1)*px; else from = (-1)*d;

76 if(d > dimX-1-px) to = dimX-1-px; else to = d;

77 for(i=from; i<=to; i++) {

78 // y-coordinate has two possible choices based on the x

79 j = d - abs(i);

80

81 *rx = px + i;

82 *ry = py + j;

83 if(withinBounds2D(*rx, *ry, dimX, dimY) &&

84 isAvailable2D(*rx, *ry, freeprocs)) return 1;

85

86 *rx = px + i;

87 *ry = py - j;

88 if(withinBounds2D(*rx, *ry, dimX, dimY) &&

89 isAvailable2D(*rx, *ry, freeprocs)) return 1;

90 }

91 }

92 *rx = -1; *ry = -1;

93 return -1;

94 }

Figure B.1: C implementation of the findNearest2D function

Figure B.1 shows the C code for the spiraling implementation of the pseudo code

(see Algorithm 10.1 in Chapter 10) for findNearest2D. This code has optimizations

154

to avoid unnecessary spiraling and hence is different in some ways from the pseudo

code presented earlier. When choosing the X coordinate, we carefully avoid going

out of bounds of the processor mesh. This saves much time spent in spiraling.

Figure B.2 shows the C implementations of two helper functions used by the

spiraling implementation of findNearest2D. The function withinBounds2D is used

to determine if a certain coordinate falls within the processor mesh and is a valid

processor or not. The function isAvailable returns whether a certain processor is

vacant.

20 inline int isAvailable2D(int x, int y, int **freeprocs) {

21 if(freeprocs[y][x] < 0)

22 return 1;

23 return 0;

24 }

25

26 inline int withinBounds2D(int x, int y, int dimX, int dimY) {

27 if(x >= 0 && x < dimX && y >= 0 && y < dimY)

28 return 1;

29 return 0;

30 }

Figure B.2: C implementations of the withinBounds2D and isAvailable helper
functions

Chapter 10 also discussed a quadtree implementation for finding the nearest

available processor. Figure B.3 shows the QuadTree class and Figure B.4 shows the

implementation of the findNearest function using a quadtree. Each node stores

the extent of the subgrid it controls and the number of available processors in the

subtree below it at any given time. The findNearest function uses two helper

functions: withinSubTree to determine if a given processor is within its subtree

and hopsToSubTree which returns the smallest distance from a given processor to

any processor in the subgrid.

Figure B.5 shows a quadtree for a processor mesh of dimensions 8× 32 and the

155

11 class QuadTree {

12 public:

13 QuadTree();

14 QuadTree(int _ox, int _oy, int _bx, int _by, QuadTree *_parent);

15 ~QuadTree();

16

17 inline int getOrigX() { return origX; }

18 inline int getOrigY() { return origY; }

19 inline int getBoundX() { return boundX; }

20 inline int getBoundY() { return boundY; }

21 inline QuadTree* getParent() { return parent; }

22 inline int numAvailable() { return numFreeNodes; }

23

24 bool withinSubTree(int x, int y);

25 int hopsToSubTree(int x, int y);

26 void findNearest(int x, int y);

27

28 private:

29 int origX; // x coordinate of lower left

30 int origY; // y coordinate of lower left

31 int boundX; // extent of node in x

32 int boundY; // extent of node in y

33 QuadTree **child; // leaf nodes will have this as NULL

34 QuadTree *parent; // root node will have this as NULL

35 int numFreeNodes; // number of free processors

36 };

Figure B.3: The QuadTree class: member variables and function declarations

number of free processors at each node initially. The next set of figures present

the mapping of yet another irregular graph of 128 nodes (Figure B.6). Figures B.7

to B.9 present the mapping of this mesh using the various algorithms for irregular

graphs. The values for hops per byte are also presented.

We compared the execution time for the spiraling and quadtree implementations

of findNearest for the mesh presented in Figure B.6 also. Similar to previous

results, we see significant performance improvements in execution time when using

the quadtree implementation (Figures B.10 and B.11).

156

197 void QuadTree::findNearest(int x, int y) {

198 int hops;

199 bool withinSubtree;

200 QuadTree *ret, *chret;

201

202 if(child == NULL && numFreeNodes > 0) {

203 hops = abs(x-origX) + abs(y-origY);

204 if(hops < bestHops) {

205 bestHops = hops;

206 bestNode = this;

207 }

208 } else {

209 // look at all my non-NULL children if they do not contain the

210 // node within them and if they have some free processors and if

211 // their hops might be better than the current

212 if(numFreeNodes > 0) {

213 if((child[0] != NULL) && !(child[0]->withinSubTree(x, y))

214 && (child[0]->hopsToSubTree(x, y) < bestHops))

215 child[0]->findNearest(x, y);

216

217 if((child[1] != NULL) && !(child[1]->withinSubTree(x, y))

218 && (child[1]->hopsToSubTree(x, y) < bestHops))

219 child[1]->findNearest(x, y);

220

221 if((child[2] != NULL) && !(child[2]->withinSubTree(x, y))

222 && (child[2]->hopsToSubTree(x, y) < bestHops))

223 child[2]->findNearest(x, y);

224

225 if((child[3] != NULL) && !(child[3]->withinSubTree(x, y))

226 && (child[3]->hopsToSubTree(x, y) < bestHops))

227 child[3]->findNearest(x, y);

228 }

229 if(parent != NULL && withinSubTree(x, y))

230 parent->findNearest(x, y);

231 }

232 }

Figure B.4: Implementation of the findNearest function using a quadtree

157

256

64

64

64

64

16
16

16 16

4

4

4

4

2

2

1
1

1

1

2

2

1

1

1

1

2
2

1
1

1 1

2

2

1

1

1

1

44

4

4

2
2

1

1

1
1

2

2

1

1

1
1

2

2

1

1

1
1

2
2

1

1
1

1

4

4

4

4

2
2

1 11
1

2

2

1

1

1

1

2

2

1

1

1

1 2

2

1

1

1

1

4

4

4

4

2

2

1
1

1

1

2

2

1
1

1

1

2

2

1
1

1 1

2

2

1

1

1

1

16

16

16
16

4

4

4

4

2

2

1

1

1

1

2

2

1

1

1

1

2

2

1

1

1

1

2

2

1

1

1

1

4

4 4

4

22

111

1

2

2
1

1

1

1

2

2

1

1

1

1

2

2

1

1

1

1

4

4

4

4

2

2
1

1

1

1

2

2

1

1

1

1

2

2

1

1

1

1

2

2

1

1

1

1

4

4

44

2

2

1

1

1

1

2

2

1

1

1

1

2

2

1

1

1

1

2

2

1

1

1

1

16

16
16

16

4

4

4

4

2

2

1

1

1
1

2

2

1

1

1

1

2 2

11 1
1

2
2

1
1

1
1

4
4

4

4

2

2

1 1

1

1

2

2

1
1

1

1

2

2

1

1

1

1

2
2

1
1 1 1

4
4

4
4

2

2

1
1

1

1

2

2

1

1

1
1

2

2

1

1

1

1

2

2

1

1

11

4

4
4

4

2

2

1

1

1

1

2

2

1
1

1

1

2

2

1

1

1
1

2

2

1

1

1

1

16

16

16

16

4

4

4

4

2

2

1

1

1

1

2

2
1

1

1

1

2

2

1

1

1

1

2

2

1

1

1

1

4

4

4

4

2

2

1

1

1
1

2

2

1

1

1

1

2

2

1

1

1

1

2

2 1

1

1

1

4

4

4

4

2

2

1

1

1

1

2

2

1

1

1

1

2

2

1

1

1

1

2

2

1

1

1

1

4

4

4

4

2

2

1

1

1

1

2

2

1

1

1

1

2

2

1

1

1

1

2

2

1

1

1

1

Figure B.5: Representation of a 2D mesh of processors of dimensions 8 × 32 as a
quadtree

158

0

1

2

6

14

15

3

7

20

21

4

5

8

11

18

19

9

28

10

12
5

12
7

13

96
12

97

16

17

30

3148

22

49 29

23

52
53

24

25
26

27

41

43

42

11
4

11
5

12
4

34

3532

33

36
50

63

38

40

44

37

39

61

45

46

47

11
7

11
9

51
54

62

55
58

59
56

57

60 64 65

69
74

78

79

11
1

67
70

66
71

73

68

10
6

11
0

72

75

90

91

88

7677
83

10
9

12
3

81
12
0

80

82

85
11
2

11
3

86

87

89
92

84

11
8

11
6

93

94

95

98

10
0

10
2

99
10
3

10
4 10
7

10
1

12
2

12
6 10
8

10
5

12
1

Figure B.6: Irregular graph with 128 nodes

0 1 2 6

14 15

3 7

20 21

4 5

8 11

18 19

9

28

10

125 127

13

96

12

97

16 17

30 31

48

22

49

29

23

52 53

24 25 26 27

41 4342

114 115

124

34 3532 33 36

50

63

38

40 44

37 39

61

45 46 47

117 119

51 54

62

55

58 5956 57 60

64 65 69

74 78 79

111

67 7066 71

73

68

106 110

72 75

90 9188

76 77

83

109

123

81

120

80 82 85

112 113

86 87

89 92

84

118116

93 94 95

98 100 10299 103

104 107

101

122 126

108105

121

(a) Default Mapping, Hops per byte:
3.22

0

1 2

614

15 3

7

20

214

5

811

18

19

9

28

10

125

127

13

96

12

97

16

17

30

31

48

22

49

29

23

52

53

24

25

26

27

41

43

42

114115

124

34

35

32

33

3650

63

38

40

44

37 39

61

4546

47

117

119

51

54

62

55

58

59

56

57

60

64 65

69

74

78

79

111

67

70

66

71

73

68

106

110

72

75

90

91

8876

77

83

109

123

81

120

80

82

85

112 113

86

87

89

9284

118116

93 94

95

98

100

102

99

103

104

107

101

122

126

108

105

121

(b) BFT, Hops per byte: 3.53

Figure B.7: Mapping of an irregular graph with 128 nodes using the (a) Default
mapping, and (b) BFT algorithm to a grid of dimensions 16× 8

159

0

1

2

6

14

15

3

7

20 21

4

58

11

18

19

9

28

10

125

127

13

96

12

97

16

17

30

31 48

22

49

29

23

52

53

24

25

26

27

41

43

42

114

115

124

34

35 32

33

36

50

63

38

40

44

37

39

61

45

46

47

117 119

51

54

62

55

58

59 5657

60

64

65

69

74

78

79

111

67

70

66

71 73

68

106

110

72

75

90

91

88

7677

83

109

123

81

120 80

82

85

112

113

86

87

89

92

84

118116

93

94

95

98

100102

99

103

104

107

101

122126

108

105

121

(a) MHT, Hops per byte: 2.83

0

1

2

6

14

15

3 7

20

21

4

5

8

11

18

19

9

28

10

125 127

13

9612 97

16

17 30

31

48

22

49

29

23

52

53

24

25

26 27

41

43

42

114

115

124

34 35

32

33

36

50

63

38

40

44

37

39

61

45

46

47

117

119

51

54

6255

58

59 56

57

60

64

6569

7478

79

111

67

70

66 71

73

68106

110 72

75

9091

88

76

77

83

109

123

81

120

80 82

85

112

113

86

87

89

9284

118

116

93

94

9598

100

102

99

103104107

101

122126

108

105121

(b) AFFN, Hops per byte: 3.02

Figure B.8: Mapping of an irregular graph with 128 nodes using the (a) MHT, and
(b) AFFN algorithm to a grid of dimensions 16× 8

160

0

1 2

6

14

15

3

7

20

21

4

5 811

18

19

9 28

10

125

127

13

96

12

97

16

17

30

31

48

22

49

29

23

52

53

24

25

26

27 41

43

42

114

115

124

34 35

32

33

3650

63

38 40

44

37

39

61

45

46

47

117

119

51

5462

55

58

59

56

57

60

64 65

69

7478

79111

67

70 66 71

73

68

106

110

7275

90

91

88

76

77

83

109

123

81

120

80

82

85

112

113

86

87

89

92

84

118

116

93 94

95

98100

102

99

103

104

107

101

122

126

108105

121

(a) COCE, Hops per byte: 2.90

0

1

2

6

14

15

37

20

21

4

5

8

11

18 19

9

28

10

125

127

13

96

12

97

16

17

30

31

48

22

49

29

23

52

53

2425

2627

41

4342

114

115

124

3435 3233

36

50

63

3840 44

37

39

61

45

46

47

117

119 51

5462

55

58

59

56

57

60

64

65

69

7478

79

111

67

70

66 71

73

68106

110

727590

91

8876

77

83

109

123

81

120

80 82

85

112

113

86

87

89 92

84

118

116

93

94

95

98

100

102

99

103 104

107

101

122

126

108 105

121

(b) COCE+MHT, Hops per byte: 2.73

Figure B.9: Mapping of an irregular graph with 128 nodes using the (a) COCE, and
(b) COCE+MHT algorithm to a grid of dimensions 16× 8

 0.1

 1.0

 10.0

 100.0

 1,000.0

2,048 4,096 8,192 16,384

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Number of nodes

Comparison of findNearest implementations

Spiral
Quadtree

Figure B.10: Comparison of execution time for spiraling and quadtree implementa-
tions when invoked from the AFFN mapping algorithm

161

 0.001

 0.01

 0.1

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000

Ti
m

e
(m

s)

Time for individual findNearest calls

 0.001

 0.01

 0.1

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000

Ti
m

e
(m

s)

Time for individual findNearest calls

Figure B.11: Execution time for 16, 384 calls to the spiraling (top) and quadtree
(bottom) implementations for findNearest for the AFFN algorithm for irregular
graphs

162

Vita

Office Address: Residential Address:
4103, Siebel Center for Computer Science 505, East White Street
201, North Goodwin Avenue, MC-258 Apartment 06
Urbana, IL 61801-2302 Champaign, IL 61820-1810
url : www.bhatele.org email : bhatele@illinois.edu

Abhinav Bhatelé

Educational Qualifications

University of Illinois at Urbana Champaign
Doctor of Philosophy in Computer Science August 2010
Dissertation Title: Automating Topology Aware Mapping for Supercomputers
Dissertation Adviser: Laxmikant V. Kalé
Master of Science in Computer Science December 2007
Thesis Title: Application-specific Topology-aware Mapping and Load Balancing for three
dimensional torus topologies
Thesis Adviser: Laxmikant V. Kalé

Indian Institute of Technology, Kanpur
Bachelor of Technology in Computer Science and Engineering May 2005
Thesis Title: Compiler Algorithm Language (CAL): An Interpreter and Compiler
Thesis Adviser: Sanjeev K. Aggarwal

Research Experience

Research Assistant, Parallel Programming Lab, Illinois 2005-2010
• Adviser: Laxmikant V. Kalé
• Topology Aware Mapping: Working towards building on an automated topology-

aware mapping framework (dissertation proposal)
• Load Balancing for MD Applications: Implemented topology-aware load balancers

for a production MD application called NAMD
• Static Topology-aware Mapping: Designed and implemented mapping strategies for

a chemistry application, OpenAtom

Intern, IBM T J Watson Research Center, NY, USA May-July 2007
• Worked in the Blue Gene Software Group. Devised topology sensitive load balancing

algorithms to be applied to Charm++ programs in general and NAMD.

163

Intern, IBM T J Watson Research Center, NY, USA May-July 2006
• Worked at the Advanced Computing Technology Center. Developed a tool for

automatic and detailed profiling of programs at finer levels.

Summer Intern, INRIA Labs, Nancy, France May-July 2004
• Worked with Prof. Stephan Merz in the MOSEL group. Developed a GUI for a

model checker, TLC and a theorem prover, Xprove.

Teaching Experience

Instructor, Computer Architecture I (CS231), Department of Computer Science, Illinois,
Summer 2008 and 2009
- Full responsibility for the course, worked with a TA
- Prepared and gave lectures, awarded final grades
- Used i>clickers to enhance pedagogical technique for the first time in a computer science
course at Illinois
Instructor, Data Structures and Algorithms, Summer course at IIT Kanpur, 2005
- Prepared and gave lectures, created and graded homeworks and exams

Selected Publications

1. Abhinav Bhatele, Eric Bohm and Laxmikant V. Kale, Optimizing communication for
Charm++ applications by reducing network contention, accepted for publication in Con-
currency and Computation: Practice and Experience (EuroPar special issue), 2010
2. Abhinav Bhatele, Lukasz Wesolowski, Eric Bohm, Edgar Solomonik and Laxmikant
V. Kale, Understanding application performance via micro-benchmarks on three large su-
percomputers: Intrepid, Ranger and Jaguar, International Journal of High Performance
Computing Applications (IJHPCA), 2010 url : http://hpc.sagepub.com/cgi/content/
abstract/1094342010370603v1
3. Abhinav Bhatele and Laxmikant V. Kale, Quantifying Network Contention on Large
Parallel Machines, Parallel Processing Letters (Special Issue on Large-Scale Parallel Pro-
cessing), Vol. 19 Issue 4, Pages 553-572, 2009
4. Abhinav Bhatele, Eric Bohm and Laxmikant V. Kale, A Case Study of Communica-
tion Optimizations on 3D Mesh Interconnects, Proceedings of Euro-Par (Topic 13 - High
Performance Networks), 2009
5. Abhinav Bhatele, Laxmikant V. Kale and Sameer Kumar. Dynamic Topology Aware
Load Balancing Algorithms for Molecular Dynamics Applications, Proceedings of 23rd
ACM International Conference on Supercomputing, 2009
6. Abhinav Bhatele, Laxmikant V. Kale, An Evaluative study on the Effect of Contention
on Message Latencies in Large Supercomputers, Proceedings of Workshop on Large-Scale
Parallel Processing (IPDPS), 2009
7. Abhinav Bhatele, Laxmikant V. Kale, Benefits of Topology-aware Mapping for Mesh
Topologies, Parallel Processing Letters (Special issue on Large Scale Parallel Processing),
Vol. 18, Issue 4, Pages 549-566, 2008
8. Abhinav Bhatele, Sameer Kumar, Chao Mei, James C. Phillips, Gengbin Zheng,
Laxmikant V. Kale, Overcoming Scaling Challenges in Biomolecular Simulations across
Multiple Platforms, In Proceedings of IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS) 2008

164

9. Abhinav Bhatele, Laxmikant V. Kale, Application-specific Topology-aware Mapping
for Three Dimensional Topologies, Proceedings of Workshop on Large-Scale Parallel Pro-
cessing (held as part of IPDPS ’08), 2008
10. Eric Bohm, Abhinav Bhatele, Laxmikant V. Kale, Mark E. Tuckerman, Sameer Ku-
mar, John A. Gunnels, Glenn Martyna, Fine grained parallelization of the Car-Parrinello
ab initio MD method on Blue Gene/L, IBM J. Res. Dev., Volume 52, No. 1/2, 2007
11. Sameer Kumar, Chao Huang, Gengbin Zheng, Eric Bohm, Abhinav Bhatele, Jim
Phillips, Gheorghe Almasi, Hao Yu, Laxmikant V. Kale, Achieving Strong Scaling with
NAMD on Blue Gene/L, IBM J. Res. Dev., Volume 52, No. 1/2, 2007

Awards and Achievements

• Feng Chen Memorial Best Paper Award, Dept. of CS, Illinois, 2010
• Teacher Scholar Certificate, Center of Teaching Excellence, Illinois, 2010
• ACM/IEEE George Michael Memorial HPC Fellowship Award, 2009
• Selected for Doctoral Showcase at Supercomputing Conference (SC), Portland, 2009
• Distinguished Paper Award, Euro-Par, Amsterdam, Netherlands, 2009
• David J. Kuck Outstanding M.S. Thesis Award, Dept. of CS, Illinois, 2009
• 3rd Prize for Best Graduate Poster at the ACM Student Research Competition

at Supercomputing Conference (SC), Austin, TX, 2008
• Selected for the TCPP PhD Forum at IPDPS, Miami, FL, 2008
• Nominated among the six best B. Tech. projects in the Computer Science depart-

ment, IIT Kanpur, 2005
• Awarded the Student Benefit Fund Scholarship for excellent performance in

academics in 2002
• Awarded the Academic Excellence Award at IIT Kanpur for the year 2001-2002

Professional Service

• Reviewer, IJHPCA 2010
• Mentoring two undergraduate students working for my advisor, 2008-2010
• Mentor for the WCS Mentoring Program, Dept. of CS, Illinois, 2009 and 2010
• Reviewer, ICPP 2009
• Mentor for Undergraduate Research Lab (CS498la), Dept. of CS, Illinois, Spring

2009
• Volunteer for the Grad Recruitment weekends, Dept. of CS, Illinois, 2008 and 2009
• Student Volunteer, Supercomputing, Austin, TX 2008
• Helped in organization of Charm++ Workshops, 2007 and 2008

Relevant Courses

Graduate – Advanced Computer Architecture, Formal Methods of Computation, Paral-
lel Programming Methods, Programming Languages and Compilers, Advanced Topics in
Compiler Construction, Social Computing, Improving your Research Skills

165

Undergraduate – Advanced Compiler Optimizations, Computer Architecture, Compil-
ers, Computer Networks, Operating Systems, Algorithms II, Theory of Computation, Data
Structures and Algorithms, Discrete Mathematics

Programming Skills

Languages: Charm++, C, C++, JAVA, MPI, OpenMP, VHDL, Ocaml
Platforms: Most flavors of Windows, MacOS and Linux
Tools: Lex, Yacc, LaTeX, Make, Perl

166

