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Abstract—
Predicting sequential execution blocks of a large scale parallel

application is an essential part of accurate prediction of the
overall performance of the application. When simulating a future
machine that is not yet fabricated, or a prototype system only
available at a small scale, it becomes a significant challenge.
Using hardware simulators may not be feasible due to excessively
slowed down execution times and insufficient resources. These
challenging issues become increasingly difficult in proportion to
scale of the simulation.

In this paper, we propose an approach based on statistical
models to accurately predict the performance of the sequential
execution blocks that comprise a parallel application. We de-
ployed these techniques in a trace-driven simulation framework
to capture both the detailed behavior of the application as well
as the overall predicted performance. The technique is validated
using both synthetic benchmarks and the NAMD application.

Index Terms—parallel simulator, performance prediction,
trace-driven, machine learning, statistical model

I. INTRODUCTION

Emerging applications such as computational biology, com-
putational cosmology, engineering design, earthquake model-
ing and weather forecasting demand an unprecedented amount
of compute power. On the other hand, computer hardware
designs have achieved incredible performance gains over the
past half century, and the trend toward more powerful and
cost-effective systems continues. As an example, the new Blue
Waters supercomputer will have more than 300, 000 cores,
targeting sustained petaflops of performance for a range of
science and engineering applications.

Developing parallel applications that scale up to use these
machines efficiently is a significant challenge. Each applica-
tion evidences idiosyncratic memory usage, communication
pattern, and load balance issues. Furthermore, for irregular
and dynamic applications, the runtime behaviors of a paral-
lel application can be very complicated. Therefore, parallel
performance is hard to model without actually running the
program. Large-processor runs on supercomputers are costly
and rarely available as often as desired. When the target
machine is not operational yet, these challenges become even
greater. The prevalent practice is therefore not to begin tuning
and scaling until the machine becomes available, creating a
large time lag between machine availability and its productive
lifetime. A simulator that can simulate the behavior of par-
allel applications and predict their performance using small

clusters thus becomes increasingly important for application
developers and machine designers.

To achieve a high fidelity prediction of a parallel application,
one needs to accurately predict the performance of CPU
in the sequential execution blocks and of the interconnect
network. The sequential performance issue is the focus of this
paper. Low availability of a sufficiently large target platform
for the full scale application often motivates the use of an
available platform with different performance characteristics.
Accurate prediction under such conditions is only possible
with a deep understanding of the differences and a framework
that compensates for them accordingly. Even when actual
hardware is available, its earliest available form is typically a
relatively small scale early prototype system. Simulation for a
full system can still be challenging, since the prototype system
may not be large enough to run the application with a problem
size appropriate for the full machine.

One commonly used tool to predict the sequential execution
time of applications for future machines is the cycle accurate
hardware simulator. However, using such a simulator may not
be feasible due to a significant slowdown (e.g. 10,000X) in
execution time. If the target problem would require 1 second
on 300, 000 cores, then, assuming perfect scaling, one would
have to wait 95 years for those results from a typical single
core cycle accurate hardware simulator. Such naive uses are
clearly impractical. In contrast, we will show that simulation
and modelling can be efficient and accurate.

This paper introduces two techniques to predict performance
of sequential execution blocks of large scale applications effec-
tively in a trace-driven simulation system. The first technique
is a selective sampling technique, either using slicing [4], or
miniaturization to reduce the required resource footprint of
cycle accurate execution. The second uses machine learning
algorithms to effectively model the execution times of the
sequential execution blocks. These techniques are then vali-
dated using the NAS BT benchmark, the synthetic kNeighbor
benchmark, and the NAMD [11] application. In particular, we
compare a detailed performance prediction of NAMD on an
Argonne’s BlueGene/P installation against a 4096-core run.

II. BIGSIM SIMULATION FRAMEWORK

We implemented the proposed statistical model-based pre-
diction methods within the context of the BigSim simulation



framework. BigSim is a simulation framework that aims at
providing fast and accurate performance evaluation of current
and future large parallel systems using much smaller machines,
while supporting different levels of fidelity. It targets petascale
systems composed of hundreds of thousands of multi-core
nodes while enabling researchers to realistically model the per-
formance of a specific interprocessor network design running
a specific scientific application code. BigSim is capable of
simulating a broad class of applications written in CHARM++
and MPI. It is currently being used to predict the performance
of applications on the upcoming Blue Waters system.

BigSim consists of two components. The first component is
a parallel emulator [18], or functional simulator, that provides
a virtualized execution environment that mimics the target
machine at full scale using much smaller clusters. It uses tech-
niques such as out-of-core execution [9] to handle applications
with large memory footprint. This emulator generates a set
of event logs during execution that capture the application’s
computation and communication behaviors. The second com-
ponent is a post-mortem trace-driven parallel simulator [19]
that predicts parallel performance using the event logs as input,
and supports multiple resolutions for prediction of sequential
and network performance. For example, a high resolution sim-
ulation would predict communication performance accurately
by simulating each packet of every message flowing through
the network NICs and switches, using a parallel discrete
event simulation technique. This paper focuses on the issues
surrounding accurate performance prediction for sequential
pieces of code. However, the network simulator component
is applied in the case studies in Section IV.

An important reason for simulating parallel applications
is to analyze the simulated behavior of the application. The
results from the simulation could reveal both the absolute per-
formance of the application as well as detailed measurements
that help elucidate algorithmic or implementation problems
within an application or bottlenecks within some particu-
lar interconnect design. Furthermore, when combined with
a parallel debugger, BigSim provides a realistic virtualized
environment for effective debugging [4].

With the trace-driven simulation, rich performance data can
be generated by the BigSim simulator in the Projections [6] log
format, which can then be analyzed by the numerous tools in
the Projections performance visualization toolkit. An example
of using Projections will be demonstrated in Section IV.

A. Dependent Execution Blocks

When an application is run within the BigSim emulator, the
emulator records a set of dependencies between the dependent
execution blocks (DEBs) which comprise the execution of the
application. Each DEB represents a segment of sequential
execution within the program during which a task (or MPI
process or CHARM++ entry method) does not block or wait
for remote data. Each DEB is triggered by the receipt of one
or more messages and the completion of zero or more other
DEBs. For example, in normal MPI use with blocking receives,
each DEB depends on one message and one preceding DEB.

When an MPI waitall is used, the subsequent DEB would
depend on many messages and one preceding DEB.

The time interval of a DEB is divided into sequential
execution blocks (SEBs), with the proviso that there is an SEB
boundary at each message-spawn. These SEBs can be further
divided in case it is easier to trace and predict individual
function call times. Typically, SEBs represent computational
intensive functions in the program.

The emulator stores DEB data in its messaging logs. Figure
1 illustrates the structure of a DEB and the data stored for each
one. Each DEB is assigned a unique global ID. The BigSim
emulator records which entity (such as an MPI process, a
virtual processor, or a chare) corresponds to each DEB, the
time duration of the DEB, a predecessor list (DEBs and
messages) and a successor list (DEBs). In addition, it records
a set of messages spawned by the DEB along with the time at
which they were spawned, specified as an offset in time from
the start of the DEB. Each emulating processor produces a
log file containing the DEBs for all entities emulated on that
processor.
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Fig. 1. Dependent Execution Block.

It can be shown that for realistic models of computations
(in either MPI/AMPI or CHARM++), this information suffices
to reconstruct execution even if messages were to be delivered
in a different order [19].

B. Predicting Sequential Execution Blocks

While the communication patterns of the parallel program
are recorded as a set of DEBs for modeling network perfor-
mance, the other important aspect of performance prediction
is to accurately model the time spent executing the sequential
portions of code, namely the SEBs, that are within each DEB.

When the emulator is run on some specific system, it can
record the durations of SEBs as they run on that system.
However, these recorded measurements might not be useful
when attempting to predict the performance of an entirely
different type of system.

Several approaches to predicting SEB performance at dif-
ferent resolutions have previously been explored in BigSim:

1) User-supplied SEB durations: Users specify the du-
rations of each SEB as would be expected for a run on the
target machine using a call-back API from the emulator. This
is a simple and powerful approach, since the API can be used
to implement either simple or user defined models. However,
it may not be feasible for the user to specify the durations of
all SEBs for a large scale application.



2) Simple scaling: Wall-clock measurements of the dura-
tions of SEBs on the emulating machine can be multiplied
by a suitable multiplier (scale factor) to obtain the predicted
running time on the target machine. This multiplier might be
a function of the clock speeds of the simulating and target
machines. The user simply provides the scaling factor.

3) Cycle-Accurate Models: When a more accurate pre-
diction is desired, and the target processor is not yet fabri-
cated, one can utilize a cycle-accurate simulator of the target
processor to predict the sequential performance of SEBs. The
challenge here is compounded by the fact that such simulators
are often slower than real processors by a factor of 10,000 or
more. Even though many chip simulators (such as IBM’s Sys-
temSim simulator [5]) have the capability of fast forwarding
with only a 10 fold slowdown (or so) through regions of code
that do not require accurate prediction, it is often infeasible to
use them to simulate large scale applications.

These approaches either do not provide accurate prediction,
or do so at the cost of extremely high overhead. This motivates
the work in the paper to find an efficient and accurate predic-
tion method. The resulting schemes described later in the paper
approach the accuracy of a cycle accurate simulation of the
whole program, without requiring the costly time of actually
running the whole program within a cycle accurate simulation.

III. SEB PREDICTION

The approach proposed in this paper to predict SEB per-
formance is as follows: (A) identifying major SEBs that
constitute the majority of the execution time of the program
and choose application-specific parameters that best represent
each type of SEB; (B) emulating the application at full scale
(on any available machine) to generate application traces, (C)
executing the application in a small scale (C1) or only on a few
processors (C2) of a real system, or cycle accurate simulator, to
collect data relating the SEB execution times to the associated
parameters; (D) building SEB duration models for each SEB
based on the obtained data via machine learning techniques;
(E) using the models to replace SEB durations in the full scale
traces; and finally, (F) running the high resolution simulator
to predict the overall application performance. This approach
is graphically portrayed in Fig. 2.

Note that the full scale application need only be emulated
once. The trace-driven BigSim simulation in the last step does
not re-execute any application code, but instead uses the trace
logs produced by the emulator. This reduces the need for
running the application multiple times due to changes in the
network topology or processor architectures being modeled.
The rest of this paper describes methods for predicting SEB
execution times when parts of an application can be run either
on the same type of processor as the target machine or on a
cycle-accurate simulator.

A. Identifying Key SEBs

It is important to identify key SEBs (Step A) within an
application if more than one type of SEB exists. Furthermore it
is helpful to prioritize user attention on SEBs which are likely
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Fig. 2. Overview of the proposed simulation workflow, using the existing
BigSim Emulator, BigSim Simulator, and new SEB performance models.

to significantly effect performance. Applications, in some
cases, need to be modified in order to allow the emulation
system to know which SEB is currently being executed. Thus
it is useful for the application developer to identify and add
the appropriate markers to the computationally intensive SEBs.
The application developer would have such domain knowledge
to guide the process, or the SEBs could be determined with
the help of profiling tools such as gprof.

In order for the simulation system to learn the computational
behavior in these SEBs, a set of key parameters that can affect
the performance of an SEB are also provided to the simulation
system by the developer, which will be used later to build
statistical models for SEBs. For example, SEBs for a particular
function (e.g. integration of forces to calculate new particle
positions) in NAMD would likely have associated parameters
that specify the number of atoms which represents the amount
of computation performed in the SEB. Parameters for the
SEBs can sometimes be difficult to get, for example, when the
code has many conditional statements that significantly vary
a function’s behavior and the amount of computation across
different executions of that function. In this case, the execution
time on the emulating machine, or some measurement of
performance counters are useful for the modelling.

The BigSim framework is flexible enough to allow users to
record these application-specific parameters and even perfor-
mance counters corresponding to each SEB during emulation.

B. Data Collection At Small Scale

Once the application’s SEBs and corresponding parameters
have been annotated, the application needs to be run on the
target system (either real hardware, or hardware simulator),
where the SEB native execution time (optionally with perfor-
mance counters) related to the parameters is measured.

One significant challenge in collecting data in order to build
a statistical model for a large parallel program, as mentioned
earlier, is the execution of enormous numbers of SEBs on
small scale (prototype) machine. This might be infeasible
due to memory limitations or be very time consuming. This
may also cause changes in the application behavior due to



constraints on memory or network bandwidth. Executing all
SEBs within a cycle-accurate simulator, for example, might
also be prohibitively expensive. Thus, it is essential to develop
techniques for predicting SEBs execution times with high
fidelity while only executing a small fraction of them in an
accurate, but inexpensive manner.

Several approaches to scale down the number of SEB exe-
cutions are proposed and described below. These approaches
are orthogonal to each other and could be used in combination
with each other, if desired.

1) Slicing: At Step B (Fig. 2), a full scale application is
executed on the emulator, the emulator logs the contents of
all incoming messages processed by a user-selected subset of
processors (sliced processors). This emulation takes place with
the highest ratio of emulators to emulating processors which
will fit in the memory of the emulating machine and complete
in reasonable time. In Step C2, the emulation logs can now be
executed on a prototype machine, or cycle accurate simulator,
to replay the execution of any of these independently. Typically
one replays as many of the selected processors as is practical
within the constraints of the replaying platform. During re-
playing, the incoming messages which otherwise would have
been received from the network are loaded from the previously
recorded log files. This slicing scheme, also called processor
extraction was first introduced in BigSim emulator [4]. A
simple variant of this scheme is also implemented for MPI, in
which case, all the return values of each MPI call are stored
in log files. This approach allows selective replaying of any
processor sequentially in the application to record the native
performance of SEBs.

Pros: Since the exact sequence of messages is replayed
on one chosen target processor, this technique can accurately
capture the application behavior on the sliced processors.
In particular, the effect of memory contention on the sliced
processors can be accurately recorded in this step. Clearly, if
the number of sliced processors is small, this approach will
lead to savings in the amount of time required on the prototype
target machine or the cycle-accurate simulator.

Cons: An important limitation of this technique is that the
machine architecture of the emulating machine and the target
machine should be compatible, in terms of basic data type
sizes, endianness, and compiler generated paddings. This is
due to the fact that the content of messages data recorded in
the logs file are recorded from the emulating machine, and
replayed on the target machine.

This approach naturally leads to the question of which
slice(s) are to be chosen so that there is enough diversity in
the collected data. This is important while modeling irregular
and dynamic applications. Moreover, enough slices must be
used so as to span all important SEB types and ensure that
the model is accurate.

2) Miniaturization: An alternative approach involves run-
ning a miniature, or scaled down, version of the application
at Step C1 for the purpose of building a statistical model of
execution time of each SEB. If the parameters of SEBs in
the miniature application span the parameter space or allow

building models that generalize well, it is possible to predict
the execution times of SEBs in the target application. In other
words, the miniature application must have SEBs similar to
the target (full scale) application, but in smaller numbers.

Pros: This approach makes the modeling of the whole
application possible on a small number of target processors
or the cycle accurate simulator. In many cases, the miniature
application can be chosen such that the value of parameters
of its SEBs is similar to their corresponding SEB types in
the target application. Thus, a robust model of SEB execution
times could be constructed with limited resources.

Cons: Not all applications can be scaled down effectively.
The behavior of the application may be a function of its size.
In addition, the memory behavior might be very different.

This naturally leads to the questions of how to scale down an
application effectively. In many scientific applications (eg. 2-D
stencil, LU, BT), this can be accomplished by scaling down
the input data grid. However, it may be difficult for complex
and irregular applications. In Section IV-B, we demonstrate the
efficacy of this approach for a real world complex application,
NAMD.

3) Random Sampling: Instead of executing a large num-
ber of SEBs in a costly manner at Step B, it is also possible to
randomly choose some SEBs to be executed, and from those
results, extrapolate the execution times of all SEBs.

Pros: Random sampling is easy to implement on a cycle
accurate simulator which can be dynamically switched in and
out of cycle accurate mode.

Cons: Ensuring that the sampled SEBs adequately span the
range of SEB parameters for all types of SEBs in the full-scale
application is difficult. Implementation without a switchable
cycle accurate simulator introduces significant correctness
challenges.

In this paper, we implement and evaluate both slicing and
miniaturization techniques.

C. Building SEB Duration Models via Machine Learning

Once the execution data for a set of annotated SEBs is
collected, at Step D, standard machine learning tools are used
to build models of execution times. In this paper, we use the
Weka software [3] (a popular machine learning workbench) to
experiment with a large class of machine learning algorithms
to select the best algorithm for a given SEB type. To estimate
the performance of our models, we use the standard 10 fold
cross-validation technique, where a sample of data is divided
into 10 subsets. One of the subsets (called the testing set)
is used to build the model while the other subsets are used
to validate the model. The cross-validation process is then
repeated 10 times (the folds), with each of the 10 subsets
used exactly once as the validation data. The smaller the cross-
validation error, the better the model. In addition, we would
like our models to be simple, so as to make fast predictions
of the execution times for the target machine.

We now briefly describe some of the learning algo-
rithms/techniques that are used in the paper.



1) Linear Regression: uses the Akaike [1] criterion for
model selection, and is able to deal with weighted instances.
It has the ability to select attributes for use in the linear
regression. To reduce the number of attributes that need to
be collected for any SEB, we eliminate collinear attributes
from the model. We select the attributes using M5’s method
where we step through the attributes removing the one with
the smallest standardized coefficient until no improvement is
observed in the estimate of the error given by the Akaike
information criterion. It can also handle ill-posed problems
using the Ridge regularization [16].

2) Least median squared linear regression: uses Linear
Regression to generate linear models from random subsamples
of the data. The model with the lowest median squared error
is chosen as the final model [12].

3) SVMreg: implements the support vector machine for
regression [15]. The parameters can be learned using various
algorithms (e.g., RegSMOImproved [13]). There are a variety
of options for the kernels to be used along with the algorithm,
ranging from simple linear kernels to RBF kernels. This
technique is known to generalize well and is robust to noise.

Using a synthetic benchmark called kNeighbor, we now
compare the accuracy of these algorithms. kNeighbor is a
program written in CHARM++. It creates a certain number of
parallel objects distributed on the parallel machine; the objects
are arranged in a 1-dimensional array. In each iteration, each
chare element sends a message to its k neighboring objects
on both sides in a wraparound fashion. When an object has
received all the expected messages (2 ∗K), it does a certain
amount of computation and proceeds to the next iteration. To
make it more interesting, the work load of each object changes
for each iteration, which is a function of parameter N : f(N),
N is randomly generated within a range between 1 to 100 at
each iteration. The main SEB in kNeighbor benchmark does
computation in proportion to N .

We collect the timing information by executing the appli-
cation on 7 processors and use the data collected from one of
them to build the model. The results are summarized in Table I
for each of the above techniques. The second and third column
show the model learnt by the algorithm and its cross-validation
accuracy respectively. Subsequently, we predict the execution
time of each SEB and report the relative mean error in the
fourth column of the table. The relative mean error, also called
relative mean difference, is the mean of the absolute difference
(prediction vs. actual) divided by the mean execution time.

Method Time(N) in µs Cross-Val Rel. Error

LR. −0.036N2 + 0.009N3 + 12.47 1.83% 3.89%
LMSq. 1.36N − 0.07N2 + 0.009N3 − 3.56 1.18% 3.03%
SVM −2.58N + 0.0509N2 + 0.009N3 + 21.6 1.07% 0.28%

TABLE I
kNEIGHBOR RESULTS ON THE THREE MODELS.

With the SEB prediction model (i.e. time(N)) obtained
from above methods, we now simulate the kNeighbor with
an increased problem size, where the range of N is now
between 1 to 200, and validate the prediction with actual runs.

The results are: the relative mean error in the prediction of
the time consumed in SEB is 3.17% for the Least Median
Square model; and 3.84% for the Linear Regression Model
respectively. The SVM regression model is highly accurate
even for a linear kernel, the relative mean error being 0.21%.
Note that this is an example of using a scaled down run to
predict larger problem size, i.e. miniaturization. In this case,
the model generalizes well even outside the set of parameters
of the miniature application.

Since the model is based on machine learning on a relatively
small data set, the accuracy of the SEB prediction model
highly depends on the quality of the data set. For example,
the models investigated so far may not be able to correctly
reflect the variations in delay caused by external interference,
including operating system noise. However, it is possible to
integrate models of noise [10] into our framework.

D. Using Modeled SEB Durations

After the models for the SEB durations are obtained, the
SEB durations in the emulation log files are adjusted accord-
ingly, as illustrated at the Step E of Fig. 2. A tool has been
created for doing this. It performs the following operations
for all SEBs inside a DEB: replace the duration of each SEB
with a value if provided by a model; otherwise, scale the
duration of the SEB by the user specified factor. The tool
can be used between the emulation and simulation phases of
BigSim, allowing multiple models to be evaluated with only
a single, potentially costly, emulation run. After this tool has
been run, the newly produced adjusted emulation logs can
be fed into a full scale network simulation to predict overall
performance (Step F).

IV. VALIDATION

This section offers validation case studies with NAS Par-
allel BT Benchmark (MPI) and a large real-world molecular
dynamics application called NAMD.

A. NAS BT Benchmark

We use Abe cluster at NCSA to predict SEB execution times
of BT benchmark class D, which is written in Fortran and
MPI, on a target machine of 1024 cores of Ranger cluster at
Texas Advanced Computing Center. Abe cluster is a cluster of
1200 Dell PowerEdge 1955 server computers, each configured
with two quad-core Intel Xeon processors, 8 gigabytes of
memory, and infiniBand interconnect. The Ranger cluster is an
AMD Opteron cluster that is comprised of 3, 936 16-way SMP
compute nodes providing a total of 62, 976 compute cores.

Using profiling tool, we determined that the four most
computational intensive subroutines in BT are: x solve cell,
y solve cell, z solve cell and compute rhs. The parameters
we identified to represent these functions are simply the size
of each major computation loop. We run BT on the BigSim
emulator which emulates a 1024 core execution environment
of Ranger using only 64 cores of Abe cluster. During the em-
ulation, 8 sliced processors (out of the 1024 target processors)
are chosen to record full content of each received MPI message



in order to replay. To train the prediction models, we replay the
8 sliced processors on the Ranger cluster, the target machine,
one at a time, to collect the SEB execution times for building
the model. Each replay is a sequential execution of the parallel
BT program using the message log as input. Because Ranger
and Abe have compatible processors, the trace logs can be
replayed on Ranger straightforwardly.
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Fig. 3. SEB predictions accuracy for BT.

A linear regression model is built for each of the above
SEB types and is used to predict the duration of each SEB in
the class D benchmark for the 1024 Ranger processors. The
prediction error is reported in Fig. 3. It can be seen that the
maximum error is less than 4%, which shows that in this case,
the data collected in 8 slices has enough diversity and spans
all important SEB types. We now present a detailed analysis
of a real-world molecular dynamics application.

B. NAMD on BlueGene/P

NAMD [11] is a scalable parallel application for Molecu-
lar Dynamics simulations written using the CHARM++ pro-
gramming model. It is widely used for the simulation of
biomolecules to understand their structure. In this section, we
predict NAMD performance on BlueGene/P against a 4096-
core run on Intrepid, an Argonne’s BlueGene/P installation.

To evaluate the SEB prediction approaches, we ran NAMD
with the Satellite Tobacco Mosaic Virus (STMV), a 1,066,628-
atom system benchmark, with a 2AwayX configuration. This
decomposition leads to approximately 149, 687 force com-
putation objects . The force calculation performed by these
objects can be categorized into seven major types: pair-
wise non-bonded (calc p), pairwise non-bonded with energy
(calc pe), self non-bonded (calc s), self non-bonded with
energy (calc se), angle, dihedral and force integration. These
corresponds to the SEBs, one for each type of the force
calculation. For this particular STMV benchmark, these SEBs
account for more than 90% of the execution time.

First, NAMD source is modified to record SEBs and their
parameters. For example, SEB “calc p” represents the function
that calculate forces on the atoms in two neighboring patches.
The parameters that are chosen for it are the number of atoms
in each patch and 9 other parameters which are used during
the function execution. These parameters include the distance
of the two patches in each dimension of the three dimensional

space and the number of pairs of atoms on which different
types of forces are calculated. We also record the number
of inner loop iterations in the SEB. This captures the data
dependent execution behavior of “calc p”.

We evaluate both slicing and miniaturization approaches of
data collection and compared their accuracy.

1) Slicing: In all our experiments, the measurement data
collected from the prototype is divided into two parts: training
and test set. The training set (2/3 of the instances chosen
randomly) is used as an input to the learning algorithm and
testing set (remaining 1/3 of the instances) is used to evaluate
the accuracy of the model.

When data collected from 32 processor slices is used as an
input to the Linear Regression algorithm, the following model
is obtained for “calc p”:
time = 0.246 ∗MinNumAtoms + 0.052 ∗MaxNumAtoms

− 7.994 ∗Dx− 7.888 ∗Dy − 7.17 ∗Dz
+ 0.094 ∗Numn + 0.013 ∗Numi + 1.274 ∗Numm + 19.822.

(1)

Here MinNumAtoms and MaxNumAtoms are the minimum
and maximum among the number of atoms present in the two
patches on which forces are being computed. The distance
in each dimension is given by Dx, Dy and Dz respectively.
Finally, the number of inner loop iterations are given by
Numn, Numi and Numm. The algorithm took 0.02 s to
build the model and had a relative mean error of 1.77% on
the testing set.

The model is intuitive as we expect the execution time to
increase with the number of atoms in the two patches and
the number of inner loop iterations. It is interesting to note
that as the distance between the two patches increases, the
number of atoms within cut-off radius decreases and hence
the execution time is reduced. Clearly, Eq. 1 captures this
behavior and assigns a negative coefficient to each distance
term.

When the same data (obtained from 32 processor slices) is
used as an input to the Least Median Square algorithm (with
sample size 500), we obtain the following model:

time = 0.272 ∗MinNumAtoms + 0.068 ∗MaxNumAtoms

− 9.097 ∗Dx− 9.131 ∗Dy − 8.1109 ∗Dz+
0.093 ∗Numn + 0.013 ∗Numi + 1.60 ∗Numm + 13.141.

(2)

The algorithm took 10.5 seconds to build the model and had a
relative mean error of 1.75% on the testing set. The learning
time (and the accuracy) increases as we increase the size
of the random sample. Note that although the two models
have different coefficients, their relative error is comparable.
In comparison, the SVM regression algorithm took 49.99 s to
build the model and its relative mean error of 1.7576%.

When using the slicing technique, one must be careful to
ensure that the given set of slices, have instances of each SEB
to be able to build a robust model. With an application like
NAMD, where the mix of objects assigned to each processor
varies, this is a substantial concern. Although it is difficult
to theoretically ascertain the minimum number of instances
required for learning, we observed that having at least 50
instances results in a robust model.

We now use the model to predict timings for all the SEBs



(a) actual run (b) prediction

Fig. 6. NAMD CPU time profile - actual v.s. prediction for STMV 4 timesteps on 4,096 cores of BlueGene/P.
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Fig. 4. SEB prediction accuracy for different number of sliced processors.
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Fig. 5. NAMD SEB predictions vs actual time.

in the complete application (4096 processors). The relative
mean error for several important SEBs is shown in Fig 4.
The figure shows that as we increase the number of slices
to collect the measurement data, the accuracy of the model
improves. Note that the “calc” type SEBs consume most time
of the application, and they are predicted with high accuracy
(relative error less than 4%).

2) Miniaturization: In this experiment, we use a much
smaller system Apoa1 (with only about 90,000 atoms) to
collect the measurement data for the SEBs and use it to predict
the SEB execution time of the much larger STMV system.

The linear regression model for “calc p” is:
time = 0.157 ∗MinNumAtoms + 0.045 ∗MaxNumAtoms

+ 0.453 ∗Dx− 0.68 ∗Dy − 1.486 ∗Dz
+ 0.103 ∗Numn + 0.009 ∗Numi + 0.648 ∗Numm + 14.555.

(3)

Although the model looks quite different as compared
to Eq. 1, the relative mean error in the prediction for the

corresponding SEB is only 4.7%. This shows that the minia-
turization technique can be used effectively for the same
prediction.

We compare the accuracy of the prediction of the total time
spent by the application in executing each SEB type in Fig. 5
with the native run. In the experiment “slice” we use 32 slices
to build the model. In the “small+slice” experiment, we use
8 slices obtained from a smaller run (on 512 processors) of
the same system, i.e. STMV. Finally, in the “miniature+slice”
experiment we use 8 slices obtained from a 32 processor run
of apoa1. Each of these techniques leads to a highly accurate
prediction of the total time spent in the case of different “calc”
type SEBs, which consume most of the time of the application.
However, in the case of “angle” and “integrate”, the models
based on the “slice” experiment are most accurate.

Finally, to obtain trace logs for the full scale (4096 core)
execution with STMV, we run NAMD emulation on only 512
cores of the machine. The trace logs from the emulation are
then adjusted with the predicted SEB time using the learnt
statistical model. The post-mortem parallel simulator replays
these logs using a simple latency-based model to predict the
performance of NAMD on 4,096 cores of BlueGene/P. The
simple latency-based network model we used for BlueGene/P
assumes half of its peak network bandwidth 0.22GB/s and a
latency of 10µs. The NAMD startup phases are fast-forwarded,
since it is not our main interest. The simulation runs for total
of 8 timesteps, and we predict the last 4 steps in full details.

Using the model obtained from the slicing method above, a
per step time of 21.7ms is predicted, v.s. the actual time per
step of 21.1ms. To further analyze the details of the prediction,
we ran NAMD with Projections performance tool and compare
the application behavior to the predicted results using the time
profile tool. The Projections time profile view, as illustrated
in Fig. 6, shows CPU utilization in percentage summed over
4,096 cores over each interval, each SEBs is shown in different
colors. Due to the overhead with performance data instru-
mented for Projections at runtime, the actual run is slowed
down by about 10%. Nevertheless, we can still see that the
predicted NAMD behavior over time matches well with the
actual run on the 4,096 cores of BlueGene/P, with only a little
inaccuracy at the end of each time step, probably due to the
latency model not capturing contention effects.



V. RELATED WORK

Machine learning techniques have been used to construct
models of overall application execution times based on
sparsely sampled data on multiple platforms for large multi-
dimensional parameter spaces [14]. The BigSim techniques
presented in this paper differ because they use machine learn-
ing techniques to build individual SEB performance models,
instead of whole program models. Additionally our approach
can capture detailed behavioral characteristics of the applica-
tion or simulated machine rather than just the total application
execution time. Various sampling techniques are also often
used in the simulation of micro-architectures [17].

Recently researchers involved with the COTSon project,
which attempts to simulate clusters of hundreds of nodes, have
also found that full always-on cycle-accurate whole system
simulations are cost prohibitive, and thus sampling and slicing
approaches are useful [2]. The traditional slicing performed
in COTSon and other systems is the choosing of regions of
a serial program to execute at a detailed micro-architecture
level, not slicing the set of processors [7]. Because the focus
of the BigSim project is to simulate scientific applications on
hundreds of thousands of nodes, this paper proposes the use
of a novel type of slicing and miniaturization technique.

In the field of task scheduling, it has been shown that
machine learning techniques such as neural networks can
be used to construct performance models of the tasks that
comprise a parallel application. The models can then be used
within a task scheduler to produce better overall schedules [8].

VI. CONCLUSION

Predicting sequential execution blocks of a large scale
parallel application is an essential part of accurate prediction
of the overall performance of the application. However, it
is a difficult task due to the complexity of the application
itself, compounded by excessively simulation slowdown and
insufficient resource availability.

In this paper, we propose an approach based on statistical
models to accurately predict the performance of significant
sequential execution blocks. The approach consists of several
steps from emulation to post-moterm simulation to make it
possible to predict performance of very large scale applica-
tions. This is done by first scaling down the simulation prob-
lem size to be manageable using slicing and miniaturization
techniques to capture the characteristics of the application.
Using machine learning techniques, the knowledge gained
is then turned into a statistical model for each SEB, which
can be used to predict the application at full scale running
on the emulator. We deployed these techniques in a trace-
driven simulation framework to capture the whole behavior
of the application and predict the overall performance. The
validation results with both synthetic benchmarks and NAMD
show that the proposed approach is effective and accurate.
For the upcoming Blue Waters machine, we plan to use these
techniques, together with a detailed contention-based network
simulation for Blue Waters interconnect to simulate several

NSF-chosen applications including NAMD and predict their
performance on the machine.
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programming model for petaflops machines and blue gene/cyclops. In
NSF Next Generation Systems Program Workshop, 16th International
Parallel and Distributed Processing Symposium(IPDPS), April 2002.

[19] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. V. Kalé. Simulation-
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