
Automatic MPI to AMPI
Program Transformation using Photran

Stas Negara1, Gengbin Zheng1, Kuo-Chuan Pan2, Natasha Negara3,
Ralph E. Johnson1, Laxmikant V. Kalé1, and Paul M. Ricker2

1 Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
{snegara2,gzheng,rjohnson,kale}@illinois.edu

2 Department of Astronomy
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
{kpan2,pmricker}@illinois.edu

3 Department of Computing Science
University of Alberta

Edmonton, Alberta T6G 2E8, Canada
negara@ualberta.ca

Abstract. Adaptive MPI, or AMPI, is an implementation of the Mes-
sage Passing Interface (MPI) standard. AMPI benefits MPI applications
with features such as dynamic load balancing, virtualization, and check-
pointing. Because AMPI uses multiple user-level threads per physical
core, global variables become an obstacle. It is thus necessary to con-
vert MPI programs to AMPI by eliminating global variables. Manually
removing the global variables in the program is tedious and error-prone.
In this paper, we present a Photran-based tool that automates this task
with a source-to-source transformation that supports Fortran. We eval-
uate our tool on the multi-zone NAS Benchmarks with AMPI. We also
demonstrate the tool on a real-world large-scale FLASH code and present
preliminary results of running FLASH on AMPI. Both results show sig-
nificant performance improvement using AMPI. This demonstrates that
the tool makes using AMPI easier and more productive.

1 Introduction

The Message Passing Interface (MPI) is a standardized library API for a set
of message passing functions. It has become the de facto standard for parallel
programming on a wide range of platforms. Most implementations of MPI are
highly optimized for message passing performance, as efficient communication is
one of the most important design goals of the MPI Standard.

However, the new generation of parallel applications are complex, involve
simulation of dynamically varying systems, and use adaptive techniques such
as multiple timestepping and adaptive refinements, as exemplified in [10, 1, 2].
The conventional implementations of the MPI standard tend to associate one

MPI process per processor, which limits their support of the dynamic nature
of these applications, for example, load balancing is challenging, and must be
handled by the application programmer. As a result, application performance
and programmer productivity suffer.

One approach to decouple an MPI process from its OS process is to adopt a
finer grained decomposition using light-weight threads. In this execution model,
each MPI “process” is running in the context of a thread, and there are multiple
threads running on a processor. One advantage of this approach is to allow auto-
matic adaptive overlap of communication and computation, i.e., when one MPI
“process” (or thread) is blocked to receive, another MPI thread on the same pro-
cessor can be scheduled for running. Another advantage is that it allows different
mapping of MPI threads to processors to take advantage of the multicore ar-
chitectures. With sophisticated thread migration techniques [17], dynamic load
balancing via migratable user-level threads can be supported at the run-time.

Adaptive MPI (AMPI) [6] exemplifies this approach. It is an adaptive im-
plementation and extension of MPI with migratable threads, implemented on
top of Charm++ [8]. With AMPI, computation is divided into a number V of
virtual processors (VPs), and the runtime system maps these VPs onto P phys-
ical processors. Virtual processors are implemented as user-level threads. The
number of VPs V and the number of physical processors P are independent,
allowing the programmer to design a more natural expression of the algorithm.
Dynamic load balancing is supported via thread migration. More recent work
in FG-MPI [9] also follows this direction; however, it does not support thread
migration and dynamic load balancing yet.

One major obstacle for switching a legacy MPI application to this multi-
threaded MPI execution model is global (and static) variables. These variables
in the MPI code cause no problem with traditional MPI implementations, since
each process image contains a separate copy. However, they are not safe in the
multi-threading paradigm. Therefore, the global variables in the MPI code need
to be privatized to ensure thread safety. One approach is to manually remove
global variables at source code level. However, this process is mechanical and
sometimes cumbersome. Other more sophisticated approaches described in [17]
enable run-time to automatically privatize global variables by analyzing GOT
(Global Offset Table) in ELF (Executable and Linkable Format) executables.
These approaches however do not handle static variables, and are limited to the
platforms that support ELF executables.

In this paper, we present a compiler-based tool that automatically trans-
forms a user program to run with MPI implementations that support the multi-
threaded execution model. Since a significant number of legacy MPI applications
are written in Fortran, we will mainly target Fortran language in this paper. Our
tool employs Photran’s [11] source-to-source compiler infrastructure for Fortran
that we discuss in more details in Sect. 3. We will focus only on AMPI as the
target MPI implementation for code transformation from now on. However, the
transformed code is a legitimate Fortran MPI program with only a couple of
AMPI specific extensions to support thread migration and load balancing. The

transformed program is portable and can run on any other MPI implementation
as long as the AMPI thread migration feature is disabled.

2 MPI to AMPI Transformation

The design goal of our tool is to automatically transform Fortran 90 MPI pro-
grams to run on AMPI, and take full advantage of AMPI’s load balancing capa-
bility. Two major tasks are: privatizing global variables as we already mentioned,
and generating a pack/unpack subroutine for moving global data at load bal-
ancing time.

Fortran Global Variables Privatization. Global variables are those vari-
ables that can be accessed by more than one subprogram4 (including several
calls of the same subprogram) and are not passed as arguments of these sub-
programs. In Fortran 90, global variables are module variables, variables that
appear in common blocks, and local variables that are saved (i.e. local variables
that keep their values between subprogram calls like static variables in C).

Privatizing global variables means giving every MPI “process” its own copy
of these global variables. This happens automatically in most MPI implemen-
tations, where each MPI process is a separate operating system process, while
multithreaded AMPI requires that it be ensured by the programmer. One way
to do this is, essentially, to put all of the global variables into a large object (a
derived type in Fortran, or struct in C), and then to pass this object around
between subprograms. Each AMPI thread can be given a different copy of this
object. Figure 1 presents an example of privatizing a common block variable. Al-
though this variable has two different names (i in MyProg and v in PrintVal),
it is a single global variable in the original program.

A high level description of the global variables privatization procedure imple-
mented by our tool is as follows. First, a new derived type is declared in a new
module. This derived type contains a component for every global variable in the
program. Every MPI process has its own instance of this type. A pointer to this
type is passed as an argument to every subprogram. Throughout the program,
every access to a global variable is replaced with an access to the corresponding
field of the derived type. Finally, the declarations of global variables are removed
from the program.

In certain cases sharing of global variables is not a problem. For example, a
global variable that is a constant can not be modified by any process. A more
subtle example is a variable that is assigned the same value by every process.
In this scenario, it does not matter whether a process reads a value assigned
by itself or by a different process. Another example is a global variable that is
never read. Our tool does not privatize global variables that are constants, but
employs a conservative approach for more complex cases to avoid performing a
costly program analysis.

4 We use subprograms to refer to both subroutines and functions in Fortran 90.

PROGRAM MyProg
include ’mpif.h’
INTEGER :: i, ierr
COMMON /CB/ i
CALL MPI_Init(ierr)
i = 3
CALL PrintVal
CALL MPI_Finalize(ierr)

END PROGRAM

SUBROUTINE PrintVal
INTEGER :: v
COMMON /CB/ v
print *, ‘‘val=’’, v

END SUBROUTINE

MODULE GeneratedModule
TYPE GeneratedType

INTEGER :: f
END TYPE GeneratedType

END MODULE GeneratedModule

SUBROUTINE MPI_Main
USE GeneratedModule
include ’mpif.h’
INTEGER :: ierr
TYPE(GeneratedType) :: p
CALL MPI_Init(ierr)
p%f = 3
CALL PrintVal(p)
CALL MPI_Finalize(ierr)

END SUBROUTINE MPI_Main

SUBROUTINE PrintVal(p)
USE GeneratedModule
TYPE(GeneratedType) :: p
print *, ‘‘val=’’, p%f

END SUBROUTINE

Fig. 1. Example of the code transformation that privatizes a common block variable.
The original code of an MPI program is on the left; the transformed code, which can
be executed on AMPI, is shown on the right.

Pack/Unpack Subroutine Generation. AMPI uses Charm++ runtime sys-
tem, and its automatic load balancing layer. Periodically, it collects load statis-
tics and decides which threads (if any) need to be migrated to which proces-
sors. To implement such migrations, it is necessary to have our tool generate a
pack/unpack subroutine, which is used to migrate the already privatized global
variables between processors. AMPI already provides basic APIs to pack/unpack
primitive data types (e.g. INTEGER, REAL, etc.) and one-dimensional fixed size
arrays of primitive types. However, it does not handle multi-dimensional arrays
or allocatable arrays. Our tool generates additional code for them, e.g., loops
that iterate over some dimensions of an array, conditional statements that check
whether arrays are allocated or not, etc. The current version of our tool does
not generate code to migrate more complex types (e.g. linked lists).

3 Code Transformation Techniques

We implemented global variables privatization and its pack/unpack subroutine
generation for Fortran 90 using the refactoring infrastructure in Photran, an
Eclipse-based [4] Integrated Development Environment (IDE) for Fortran [11].
Although the tool is intended to be used as a preprocessor immediately before
compilation (so the programmer never sees the transformed version of the pro-
gram), currently it is accessible as a code transformation within the IDE.

Photran IDE exposes an Application Programming Interface (API) that pro-
vides functionality to parse a Fortran program and construct its Abstract Syntax
Tree (AST) representation. The produced AST is rewritable, i.e. Photran’s API
allows AST manipulation and generation of the corresponding Fortran code.
Also, the constructed AST is augmented with information about binding of pro-

1 SUBROUTINE MySub
2 REAL :: ar
3 ALLOCATABLE :: ar
4 DIMENSION :: ar(:,:)
5 SAVE :: ar

...
6 END SUBROUTINE

MODULE GeneratedModule
TYPE GeneratedType

REAL, ALLOCATABLE :: MySub_ar(:,:)
END TYPE GeneratedType

END MODULE GeneratedModule

Fig. 2. Example of the global variable declaration, whose specifications span several
statements (on the left), and the corresponding field declaration that combines all
relevant information in a single statement (on the right).

gram’s entities (variables, subprograms, interfaces, etc.). Our tool analyzes the
underlying Fortran program using information from its AST and transforms the
program by manipulating its AST. In the following section we present code anal-
ysis and transformation performed by our tool to privatize global variables and
generate pack/unpack subroutine.

3.1 Code Analysis and Transformation

The overall code transformation performed by our tool proceeds in five steps:

1. Stubs are generated for the derived type and the module that contains this
type. Our tool ensures that their names do not conflict or shadow names of
other entities in the program.

2. Subprograms are processed. An extra parameter is added to each subpro-
gram and each call site within its body. Components for saved variables
are inserted into the derived type, accesses to these variables are replaced
with accesses to the corresponding derived type components, and finally, the
saved variables are deleted from the subprogram.

3. Common blocks are eliminated in a manner similar to saved local variables.
4. Module variables are eliminated similarly.
5. Pack/unpack subroutine is generated.

The first four steps privatize global variables, and the last step enables mi-
gration of MPI threads between processors in AMPI.

As a result of the code transformation, every global variable is replaced in
the program’s code with the corresponding field of the generated derived type.
The type and specifications of the replacing field should be consistent with those
of the replaced global variable. According to the Fortran standard, specifications
of a variable may be defined by multiple specification statements. Our tool uses
variable binding information provided by Photran infrastructure to collect the
type and all specifications of a particular global variable, which are combined in
a single declaration statement of the replacing field.

Figure 2 shows a saved variable ar declared in subroutine MySub and the cor-
responding field MySub ar in the generated derived type. The type of variable ar
is defined in the declaration statement at line 2. Lines 3-5 contain three specifica-
tion statements that define variable ar as an allocatable two-dimensional saved
array. All this information is integrated in a single declaration statement of field
MySub ar, where irrelevant (SAVE) and redundant (DIMENSION) specifications are
filtered out.

SUBROUTINE MySub
INTEGER, PARAMETER :: offset = 5
INTEGER, PARAMETER :: x = offset + 10
INTEGER, PARAMETER :: y = offset + 20
INTEGER, PARAMETER :: total = x * y
INTEGER :: boundary = y
REAL, SAVE :: ar(total)
...

END SUBROUTINE

MODULE GeneratedModule
INTEGER, PARAMETER :: CN_offset = 5
INTEGER, PARAMETER :: CN_y = CN_offset + 20
INTEGER, PARAMETER :: CN_x = CN_offset + 10
INTEGER, PARAMETER :: CN_total = CN_x * CN_y
TYPE GeneratedType

INTEGER :: MySub_boundary = CN_y
REAL :: MySub_ar(CN_total)

END TYPE GeneratedType
END MODULE GeneratedModule

Fig. 3. Example of two global variable declarations that contain constants (on the left),
and the corresponding generated module (on the right).

Declarations with Constants. Declarations of global variables may contain
constants, e.g. a variable may be initialized with a constant, or dimensions of an
array may be specified using constants. To make the declaration of the replacing
field in the generated derived type consistent with the declaration of such global
variable, our tool moves declarations of all constants contained in the variable’s
declaration to the generated module (i.e. the declarations of constants are deleted
from the original code and placed in the generated module, and all accesses
to the deleted constants in the original code are replaced with accesses to the
corresponding constants from the generated module). These moved declarations
of constants may contain some other constants, whose declarations also need to
be moved to the generated module, and so on.

Figure 3 illustrates a code sample (on the left), where declarations of two
global variables, boundary5 and ar, contain constants y and total respectively.
Declarations of constants y and total contain other constants. Moreover, the
declaration of constant total contains constant y. To generate the correct code,
we need to detect all constants that are immediately or transitively contained
in the declarations of global variables boundary and ar and also, we need to
establish an order of appearance of these declarations in the generated module
such that if a declaration of some constant C1 contains constant C2, then the
declaration of constant C2 comes before the declaration of constant C1 in the
generated module.

To achieve this goal, our tool constructs a graph, where nodes represent
constants and edges represent “is contained in” relationship, i.e., there is an
edge going from a node that represents constant C1 to a node that represents
constant C2 if and only if constant C1 is contained in the declaration of constant
C2. The graph construction starts with the initial set of nodes for constants that
are immediately contained in the declarations of global variables and proceeds
recursively by adding nodes and edges for constants that are contained in the
declarations of constants that are already present in the graph.

Figure 4 shows the constructed graph for the code sample on the left in
Fig. 3. Double circled nodes represent the initial set of nodes. All constants,
whose nodes appear in the graph, are moved to the generated module. The order
of appearance of the declarations of these constants in the generated module is

5 According to the Fortran standard, the local variable boundary is implicitly a saved

variable because its declaration includes an initializer.

offset

total

x y

Fig. 4. Graph that represents “is contained in” relationship between constants of the
code sample on the left in Fig. 3.

the topological order of the graph. For the graph in Fig. 4 this means that the
declaration of constant offset is the first, it is followed by the declarations of
constants x and y in any order, and finally comes the declaration of constant
total. Figure 3 (on the right) presents the resulting generated module. Note
that all constants, whose declarations are moved to the generated module, are
renamed by prefixing their original names with “CN ”. In real-world programs
these constants may be from different subprograms and modules, and our tool
ensures that they have unique names both in the generated module and in all
places in the program, where they are accessed.

Derived Type Global Variables. A global variable may be of a derived type.
The generated replacing field for this variable should be of the same derived type,
therefore our tool moves the declaration of this derived type from the original
code to the generated module. The moved derived type may contain fields, whose
type is also derived, and, thus, needs to be moved to the generated module as
well, and so on. In order to detect all derived types that have to be moved to
the generated module and to establish the correct order of their appearance in
it, our tool employs an approach similar to the one used for constants that are
contained in the declarations of global variables.

To privatize global variables of derived types, our tool constructs a graph,
where nodes represent derived types and edges represent “is used in” relation-
ship, i.e., there is an edge going from a node that represents derived type DT1 to
a node that represents derived type DT2 if and only if derived type DT1 is used
as a type of any field in the declaration of derived type DT2. The graph con-
struction starts with the initial set of nodes for derived types of global variables
and proceeds recursively by adding nodes and edges for derived types that are
used in the declarations of derived types that are already present in the graph.
All derived types, whose nodes appear in the graph, are moved to the generated
module. The order of appearance of the declarations of these derived types in
the generated module is the topological order of the constructed graph.

Global Fixed Size Arrays. In real-world scientific computation programs
(like the one we use for our case study) there are many large fixed size arrays
declared in different modules. If all these global arrays are placed in the gener-

MODULE MyMod
INTEGER :: ar1(3)
REAL :: ar2(5,5)
REAL, ALLOCATABLE :: ar3(:)

END MODULE

Fig. 5. Example of a module that contains fixed size arrays.

MODULE GeneratedModule
TYPE GeneratedType

INTEGER, POINTER :: MyMod_ar1(:)
REAL, POINTER :: MyMod_ar2(:,:)
REAL, ALLOCATABLE :: MyMod_ar3(:)

END TYPE GeneratedType
END MODULE GeneratedModule

SUBROUTINE GeneratedInit(p)
USE GeneratedModule
TYPE(GeneratedType) :: p
ALLOCATE(p%MyMod_ar1(3))
p%MyMod_ar1 = 0
ALLOCATE(p%MyMod_ar2(5,5))
p%MyMod_ar2 = 0.0

END SUBROUTINE

Fig. 6. The generated derived type (on the left) and initialization subroutine (on the
right) for the module in Fig. 5.

ated derived type, its size would exceed the maximum allowed size of a derived
type, which may vary for different Fortran compilers, and is usually around sev-
eral megabytes. To avoid this problem, our tool transforms fixed size arrays into
pointer arrays and generates an initialization subroutine that allocates these
arrays according to their sizes in the original program. This initialization sub-
routine is called right after MPI Init, ensuring that every MPI process gets its
own allocated and initialized copy of the transformed arrays.

Figure 5 shows a module that contains two fixed size arrays, ar1 and ar2,
and one allocatable array ar3. Figure 6 presents the generated derived type (on
the left) and initialization subroutine (on the right) for the module in Fig. 5.
Both fixed size module arrays are transformed to pointer arrays in the generated
derived type. These pointer arrays are allocated and initialized in the generated
initialization subroutine. The initialization to value 0 is required in order to
be consistent with the original code, where these pointer arrays are fixed size,
because Fortran compilers initialize fixed size arrays to value 0 by default.

4 Evaluation

This section offers comparative evaluations between the original MPI code and
the transformed version with AMPI. We use NAS Benchmarks and a real-world
application FLASH for the study. By simply compiling the transformed code
with AMPI, these programs benefit with the AMPI’s dynamic load balancing.

4.1 Multi-zone NAS Benchmark

NAS Parallel Benchmark (NPB) is a well known parallel benchmark suite.
Benchmarks in its Multi-Zone version [7], LU-MZ, SP-MZ and BT-MZ, which
are written in Fortran, solve discretized versions of the unsteady, compressible
Navier-Stokes equations in three spatial dimensions. Among these benchmarks,
LU and SP are well-balanced, while BT is imbalanced application. In BT, the

partitioning of the mesh is done such that the sizes of the zones span a signif-
icant range, therefore creating imbalance in workload across processors, which
provides a good case study for AMPI and its load balancing capability.

 0.5

 1.0

 2.0

 4.0

 8.0

 16.0

 32.0

 64.0

 128.0

BT.A.16 BT.B.64 LU.A.16 LU.B.16 SP.A.16 SP.B.64

 T
im

e
(s

)

original (native MPI)
Transformed (native MPI)
Transformed (AMPI)

(a) Performance

 1.0

 4.0

 16.0

 64.0

 256.0

 1024.0

 4096.0

BT.A.16 BT.B.64 LU.A.16 LU.B.16 SP.A.16 SP.B.64

 T
im

e
*

 N
P

R
O

C
S

Original (MPI)
AMPI w/o LB (vp/p=4)
AMPI with LB (vp/p=4)

(b) Load balancing

Fig. 7. Comparing NAS benchmarks time on a logarithmic scale (Queen Bee cluster).

We transformed the above mentioned three benchmarks, and evaluated the
transformed code on the Queen Bee cluster at LSU. The native MPI we used for
comparison is MVAPICH, which takes advantage of the Infiniband interconnect.
Figure 7(a) illustrates the execution time of the original benchmarks on the na-
tive MPI, and the transformed benchmarks on the native MPI and AMPI. The
X axis displays the name of a benchmark, the problem class, and the number of
processors it was run on. The transformed code introduces some overhead that
ranges from a fraction of one percent for LU.B.16 up to 14% for BT.A.16. Al-
though the transformation overhead is the highest for both BT-MZ benchmarks,
running on AMPI almost completely eliminates it. Note that in this comparison,
we do not employ any specific benefits of AMPI, and the observed speed up is
solely due to the efficient implementation of its communication layer.

Figure 7(b) compares the total resource consumption (execution time mul-
tiplied by the number of physical processors used) between the native MPI and
AMPI. In AMPI runs, we mapped four MPI threads to a single physical pro-
cessor, therefore reducing the number of physical processors used by a factor of
four. The second bar shows the AMPI time without load balancing. The decrease
in the total processor time demonstrates one of the benefits of using AMPI, i.e.,
adaptive overlapping of the computation/communication. The third bar shows
the AMPI time with dynamic load balancing. We employed a greedy-based load
balancer that is called once after the third simulation step. We see that BT-MZ
benchmarks take advantage of both computation/communication overlap and
load balancing, while LU.A.16, LU.B.16, and SP.A.16 benefit only from compu-
tation/communication overlap (since there is no load balance problem in both
LU and SP). SP.B.64 is the only case that does not benefit from any advantages
offered by AMPI.

4.2 Case Study – FLASH

We evaluated our tool on a large-scale project: FLASH, version 3 [3, 5, 2],
which was developed by the University of Chicago. FLASH is a parallel, multi-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 4 8 16

 T
im

e
(s

)

 Number of Physical Processors

AMPI no LB
AMPI with LB
MVAPICH Transformed code
MVAPICH Original

(a) Performance Comparison

S
pe

ed
up

0

2

4

6

8

10

12

14

16

Number of Physical Processors

1 2 4 8 16

AMPI Speedup

(b) AMPI Speedup

Fig. 8. Sedov simulation performance (Abe cluster, NCSA).

dimensional code used to study astrophysical fluids. It is written mainly in For-
tran 90 and parallelized using MPI. It is essentially a collection of code pieces,
which are combined in different ways to produce different simulation problems,
e.g., FLASH supports both uniform grid and a block-structured adaptive mesh
refinement (AMR) grid based on the PARAMESH library.

We transformed and evaluated Sedov-Taylor explosion simulation problem [13],
which is a common test problem for strong shocks and non-planar symmetry.
The problem is set up using a delta function initial pressure perturbation in an
uniform medium. We use 9 AMR levels and two-dimensional fluids for our tests.
The experiments are run on the Abe cluster at NCSA.

Figure 8(a) compares the execution time of the transformed Sedov simula-
tion on AMPI with and without load balancing. We vary the number of physical
processors (X axis) from 1 to 16, while the number of virtual processors is 16
for all AMPI runs. The maximum benefit from load balancing is achieved for
the execution on 4 physical processors (vp/p ratio 4) which is 16.8%. The two
additional bars of the last group reflect the execution time of the original and the
transformed Sedov simulation on the native MPI (MVAPICH). We were a little
surprised to see that the code transformation incurs about 20% overhead com-
pared to the original code when both running on MVAPICH. However, we see
that the overhead is almost completely eliminated while running on AMPI, show-
ing again that AMPI is an efficient implementation of MPI. The corresponding
speedup of the simulation with AMPI is illustrated in Fig. 8(b).

Our investigation shows that the 20% overhead is almost entirely due to
transforming global fixed size arrays to pointer arrays as described in Sect. 3,
as it prevents Fortran compiler from performing aggressive optimizations. We
elaborate a different approach that avoids dynamic allocation of the fixed size
arrays. In this approach we keep fixed size arrays and distribute them across
several derived types such that no derived type exceeds the maximum allowed
size. Pointers to all these derived types are placed in a single derived type, which
is used to pass around all previously global variables (including fixed size arrays).
We plan to implement this approach in the next version of our tool.

Although our evaluation of Sedov simulation shows that code transformation
incurs considerable overhead for this application, the results prove the usefulness
of AMPI features. After we fix the overhead problem in the next version of our

tool, we believe that AMPI execution would demonstrate considerably better
performance than the original MPI execution.

5 Related Work

Much work has been done for supporting multi-threaded programming in MPI
to exploit overlapping of communication with computation. Hybrid program-
ming model with MPI+OpenMP [14] approaches the problem by distributing
OpenMP threads among MPI processes. Users need to specify thread private
variables by explicitly using “private” OpenMP clauses. A compiler that sup-
ports OpenMP is required to compile such applications.

TMPI [16] uses multithreading for performance enhancement of multi-threaded
MPI programs on shared memory machines. More recent work in FG-MPI [9]
shares the same idea with AMPI by exploiting fine grained decomposition us-
ing threads. However, FG-MPI does not support thread migration and dynamic
load balancing. The source-to-source transformation implemented in our tool
will benefit these MPI implementations as well.

SPAG [15] is a tool for analyzing and transforming Fortran programs. It pro-
vides both static and dynamic analysis, but its transformation capabilities are
limited to a predefined set. ROSE [12] is a source-to-source compiler infrastruc-
ture to analyze and transform C, C++, and Fortran programs. Like in Photran,
programs are represented with ASTs that can be manipulated and unparsed back
to source code. To the best of our knowledge, no work has been done in ROSE to
implement a tool that automatically privatizes global variables in legacy Fortran
applications.

6 Conclusions and Future Work

In this paper, we presented a Photran-based tool that automatically transforms
legacy Fortran MPI applications to run on any MPI implementation that sup-
ports multi-threaded execution model. Specifically, we presented techniques to
remove global variables in Fortran applications. We demonstrated the utility of
the tool on AMPI, an MPI implementation that supports processor virtualiza-
tion using user-level threads and dynamic load balancing with thread migration.
We demonstrated the effectiveness of our tool on both NAS benchmarks and a
real-world large scale FLASH application.

We plan to extend our tool such that it automatically generates the code for
more complex types such as linked list in pack/unpack subroutine for load bal-
ancing. Also, we would like to minimize the computational overhead introduced
in the transformed code. We are going to continue our performance evaluation.
In particular, we would like to consider more complex and larger problems, which
are expected to be inherently more load imbalanced, and, consequently, could
benefit more from dynamic load balancing offered by AMPI.

Acknowledgments. This work was partially supported by the Institute for
Advanced Computing Applications and Technologies (IACAT) at the Univer-
sity of Illinois at Urbana-Champaign. We used running time on Queen Bee clus-
ter (LSU) and Abe cluster (NCSA), which is under TeraGrid allocation grant
ASC050040N supported by NSF.

References

1. Bhatele, A., Kumar, S., Mei, C., Phillips, J.C., Zheng, G., Kale, L.V.: Overcoming
scaling challenges in biomolecular simulations across multiple platforms. In: Pro-
ceedings of IEEE International Parallel and Distributed Processing Symposium
2008 (April 2008)

2. Dubey, A., Reid, L.B., Fisher, R.: Introduction to flash 3.0, with application to
supersonic turbulence. Physica Scripta T132, 014046 (2008), http://stacks.iop.
org/1402-4896/T132/014046

3. ASC Center for Astrophysical Thermonuclear Flashes.
http://flash.uchicago.edu/website/home/

4. Foundation, T.E.: Eclipse - an open development platform,
http://www.eclipse.org/

5. Fryxell, B., et al.: Flash: An adaptive mesh hydrodynamics code for modeling
astrophysical thermonuclear flashes. ApJS 131, 273 (Nov 2000)

6. Huang, C., Lawlor, O., Kalé, L.V.: Adaptive MPI. In: Proceedings of the 16th In-
ternational Workshop on Languages and Compilers for Parallel Computing (LCPC
2003), LNCS 2958. pp. 306–322. College Station, Texas (October 2003)

7. Jin, H., der Wijngaart, R.F.V.: Performance characteristics of the multi-zone nas
parallel benchmarks. In: Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS) (2004)

8. Kale, L.V., Zheng, G.: Charm++ and AMPI: Adaptive Runtime Strategies via Mi-
gratable Objects. In: Parashar, M. (ed.) Advanced Computational Infrastructures
for Parallel and Distributed Applications, pp. 265–282. Wiley-Interscience (2009)

9. Kamal, H., Wagner, A.: Fg-mpi: Fine-grain mpi for multicore and clusters. In:
The 11th IEEE International Workshop on Parallel and Distributed Scientific and
Engineering Computing (PDESC). IEEE (Apr 2010)

10. Lawlor, O., Chakravorty, S., Wilmarth, T., Choudhury, N., Dooley, I., Zheng, G.,
Kale, L.: Parfum: A parallel framework for unstructured meshes for scalable dy-
namic physics applications. Engineering with Computers (September 2006)

11. Photran - An Integrated Development Environment for Fortran.
http://www.eclipse.org/photran/

12. ROSE. http://www.rosecompiler.org/
13. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics (1959)
14. Smith, L., Bull, M.: Development of mixed mode mpi / openmp applications.

Scientific Programming 9(2-3/2001), 83–98
15. SPAG. http://www.polyhedron.co.uk/spag0html
16. Tang, H., Shen, K., Yang, T.: Program transformation and runtime support for

threaded MPI execution on shared-memory machines. ACM Transactions on Pro-
gramming Languages and Systems 22(4), 673–700 (2000)

17. Zheng, G., Lawlor, O.S., Kalé, L.V.: Multiple flows of control in migratable parallel
programs. In: 2006 International Conference on Parallel Processing Workshops
(ICPPW’06). pp. 435–444. Columbus, Ohio (August 2006)

