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ABSTRACT
With the advent of increasingly larger parallel machines, debug-
ging is becoming more and more challenging. In particular, appli-
cations at this scale tend to behave non-deterministically, leading
to race condition bugs. Furthermore, gaining access to these large
machines for long debugging sessions is generally infeasible. In
this paper, we present a 3-step algorithm to perform what we call
“processor extraction”: a procedure to record the execution of a set
of processors from a parallel application, and replay any of them in
a controlled environment. Our technique generates very low inter-
ference in the recorded program thanks to the separation between
non-determinism elimination, and detailed processor recording. In
order to improve robustness and accuracy, we further augmented
our algorithm with a self-correction mechanism.

1. INTRODUCTION
Parallel applications tend to behave non-deterministically, es-

pecially when they contain bugs. This means that even with the
same input, the same application may produce different results over
multiple runs. This can significantly complicate debugging, even
in small scenarios. One common type of errors caused by non-
determinism are race conditions. These are bugs where the out-
come of the computation is unpredictable because it critically de-
pends on the sequence and timing of the communication between
processors.

One possibility to solve this problem is to capture the non-deter-
minism that the application manifests, and make it repeatable. This
is generally performed with a technique called “Record-Replay” [19,
22]. In order to properly work, this technique has a few require-
ments. First of all, the information recorded must be sufficient to
allow the proper replay of the application deterministically. Sec-
ondly, the recording procedure must not perturb the application
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too much. If the recording has too much overhead, such that it
makes the bug disappear, the record-replay technique becomes use-
less. For example, this happened while debugging ChaNGa [9], a
cosmological simulator developed as a joint collaboration between
the University of Washington and the University of Illinois. In this
application, we discovered that certain messages were racing, and
caused the application to crash when a particular ordering was exe-
cuted. Also, when adding print statements for debugging purposes,
the problem usually disappeared.

When the application is deployed in a production environment,
or is benchmarked on much larger configurations, other latent race
conditions may appear. Imagine the delays a network can intro-
duce when routing packets through a torus or fat-tree interconnec-
tion, especially in the presence of congestion. On a small cluster,
messages may never get out-of-order and expose a race condition.
Furthermore, other bugs may appear only on large scales. For in-
stance, the algorithm that distributes the application’s input among
the available processors may generate incorrect results when per-
forming fine grain decompositions. These kinds of problems are
very common in the early stages of production-level applications.
They are also much more challenging to track, as they may manifest
only when thousands of processors are involved in the computation,
and disappear when fewer are used.

The programmer may try using smaller input datasets and smaller
numbers of processors. Unfortunately, this is not always possible.
As many scientific applications have physical phenomena driving
the advance of the computation, using smaller input datasets may
hinder the approximation of the real world. This may render the ap-
plication not usable even for debugging. On the other hand, using
large datasets on a small number of processors may not be pos-
sible due to the amount of memory required, or because the bug
simply disappears. For example, this happened while debugging
Rocstar [10], a rocket simulation program developed by the Center
for Simulation of Advanced Rockets (CSAR) at the University of
Illinois. In this case, the problem only appeared when using more
than 480 processors, and on a fairly large input dataset.

In both the examples given, the programmer could not reduce
the number of processors if he wanted the bug to appear. While
record-replay helps in making the manifestation deterministic and
easy to follow, there is still the problem that the execution must
be followed on possibly thousands of processing units. Luckily, in
most situations, the bug appears on a specific processor in a clear
way; for example with a segmentation fault or an assertion failure.
Moreover, if the non-determinacy is captured correctly by record-
replay, the bug’s effects/causes are confined to a few processors. At
this point, the programmer does not care anymore about the rest of
the system, and desires only to focus on a few processors.



What we propose is a new technique that encompasses both the
advantages of a full record scheme, which allows a single proces-
sor to be “extracted” from the application and executed as a stand-
alone, and the advantages of a minimal record scheme, which in-
curs little overhead in the application without hiding the bug. Our
technique combines these two record-replay schemes into a simple,
yet powerful, three-step procedure that a user may follow to de-
bug his application. Furthermore, since debugging may be a long
process and access to large machines may be limited, we paid spe-
cial attention to reducing the need for large parallel machines to
the minimum. We do this by using a virtualized environment sup-
ported by a parallel emulator, which emulates the large machine
using only a limited amount of resources.

In the remainder of this paper, after a comparison with related
work, we illustrate our proposed three-step record-replay procedure
in section 3. In section 4 we introduce the environment we used for
our implementation, and in section 5 we describe the techniques
we developed to make our record-replay scheme robust. We then
proceed to illustrate the second phase of processor extraction, i.e
the full record of a processor and its execution in a controlled envi-
ronment, in sections 6 and 7. Finally, we analyze the performance
of our infrastructure in section 8, and illustrate a case study in sec-
tion 9. Remarks on future work are presented in the concluding
section.

2. RELATED WORK
In the field of debugging, record-replay techniques have been

studied extensively. Several articles [3, 21] provide broad overviews
of how this technique has been applied to parallel and distributed
debugging. Most of the literature focuses on applications written
for shared memory systems, where races are represented by threads
writing the same locations in memory. Fewer articles discuss issues
in a distributed memory environment, where message passing is the
cause of non-determinism.

Of the implementations of record-replay that treated distributed
processing, [24] and [19] were among the first. In particular, they
record the full content of all the messages exchanged in the system.
Currently, a modern tool integrated into the TotalView debugger
is ReplayEngine [6]. While these tools allow the full recording
of the system, and its later deterministic replay, they all incur a
high overhead during the recording phase, which might cause the
problem to disappear.

The amount of data recorded during the execution of the pro-
gram has always been of concern. In [17], the minimum amount
of information necessary to replay the system is computed at run-
time, and only this information is stored to disk. More recently,
[25] has proposed to reduce the amount of data stored by grouping
processors, and storing full content only for messages between pro-
cessors in different groups. For processors within the same group,
only the message ordering is stored. Both these approaches achieve
a significant reduction in disk space usage when compared to full
record techniques, but they still have a considerable overhead in the
recording phase.

Our approach differs from previous ones by imposing a negligi-
ble overhead during the most time critical phase of the application,
when the non-determinism is captured. In this phase, any overhead
is a potential for a Heisenbug, and can make the bug disappear.
We also succeed in minimizing the data stored by having a second
recording phase, where only processors of interest are recorded in
full detail. Even for very large executions with thousands, or po-
tentially millions, of processors involved, our scheme will record
the full content of the messages only for a few processors selected
by the user.

The replay time has also been considered and analyzed in litera-
ture. In [26], checkpoint has been combined with record-replay to
allow the replayed program to reach the failure point more quickly.
In [18], the replay time has been further analyzed to provide an
upper bound: the system automatically makes a tradeoff between
checkpoint and recorded data to meet the user-specified replay time.
Furthermore, these checkpoints have also been used to allow back-
ward movements in time, such as in [2] and [7].

Instead of having the replayed system execute in the same man-
ner as the original execution, the recorded traces have also been
used to force a different ordering during replay [15, 14]. This gives
another possible dimension in which to search for a bug. A chal-
lenge with this technique is to prevent the user, or automatic tool,
from specifying an ordering that is not feasible in the real applica-
tion. If this were to happen, the user may follow a path and correct
bugs that are not real bugs, but just caused by the infeasible order-
ing of messages.

3. THE THREE-STEP PROCEDURE
The three-step record-replay procedure we are going to propose

is based on the following two algorithms. The first algorithm is
a non-intrusive record-replay technique that records (in memory)
only the minimum amount of information necessary to eliminate
the non-determinism from the application. In particular, this record-
ing consists of the ordering in which messages are processed by
each processor. Since the amount of information is minimal, spe-
cial care needs to be taken to detect situations where the informa-
tion recorded becomes insufficient for the correct replay of the sys-
tem. A technique based on the computation of checksum of the
received messages is presented in Section 5.

The second algorithm is a more intrusive one, and records the
full content of each message processed by a selected set of proces-
sors. The generated output can be as big as a few gigabytes, and
contains enough information to replay the recorded processor by
itself as a stand-alone. Note that given the possibly high volume
of data recorded, this recording is performed only on a subset of
the processors specified by the user. Since this algorithm is more
invasive, if used alone, it has the potential to disrupt the timing of
message receipt between processors. By combining it with the first
algorithm that records only the message ordering, we can obtain
excellent results.

The three-step procedure that is based on these two algorithms
is depicted in Figure 1. In the first step, the entire application is
executed on the large target machine, and basic information about
message ordering is recorded. Optionally, the user may decide to
enable the self-correction feature provided by our technique. Note
that this step is the only one that actually requires the use of a ma-
chine with as many processors as those required by the application.

For the second step, the programmer first identifies a set of pro-
cessors to focus on. Good candidates are processors that crash,
or processors generating incorrect output. The entire application is
then executed again, and the selected processors are recorded in de-
tail. During this second execution, the message ordering recorded
from the first step is used. This guarantees the determinism of the
execution, and the more intrusive recording necessary for processor
extraction will not affect the bug appearance.

In the third step, the detailed traces recorded in step two are used
to replay a selected processor using a single processor. This re-
execution can happen either on the same machine where the traces
were recorded, or on a local machine. The possibility to move to
a local machine depends mainly on the compatibility between the
architectures of the parallel and local machines. On the replayed
program, the programmer can use traditional sequential debuggers



Execute program
recording message

ordering

Replay application
with detailed

recording enabled

Replay selected
processors as
stand-alone

Is problem
solved?

Done

Select
processors
to record

YesNo

S
te

p 
1

S
te

p 
2

S
te

p 
3

Has bug
appeared?

       Yes

No

Figure 1: Flowchart of the three-step algorithm.

like GDB [4], and follow the problem in detail, re-executing it as
many times as needed.

During the third step, the programmer may realize that some pro-
cessor that has not been recorded is now needed. For example, he
may realize that an extracted processor receives a corrupted mes-
sage from a processor that was not recorded. By repeating step
two, these missing processors may be extracted too. This estab-
lishes an iterative procedure that allows the programmer to identify
an initial set of processors of interest, and expand this set later if
necessary. Note that every time the second step is performed, the
traces recorded during step one are used. Therefore, the same or-
dering of messages is guaranteed, and the processors extracted in
different passes are compatible with the same manifestation of the
bug under inspection.

As mentioned, of the three steps, only the first one actually re-
quires a large machine to be used. Step three clearly requires only
one processor to be allocated for the replay of an individual pro-
cessor. As for step two, it can be performed using fewer physical
processors than those needed by the user, by executing the applica-
tion within a virtualized environment. This virtualized environment
can still use the traces from step one to guarantee the determinis-
tic replay of the application. Naturally, the time required by step
two may increase as the application will have fewer computational
resources available. The detailed traces generated in this virtual-
ized environment can then be used in step three as before. We will
discuss this in more detail in section 7.

Another important consideration regards optimizations performed
by compilers. Generally, during debugging, the user’s application
must be compiled with debugging symbols, and without optimiza-
tion. Debugging an optimized code can lead the debugger to not
correctly correlate the generated assembly code with the original
source code. On the other hand, optimizations can radically change

the performance of a program, and in particular its timing. Often-
times, an application that crashes when compiled with optimiza-
tion enabled may succeed when no optimization is used. This cre-
ates a big problem for standard record-replay techniques during the
recording phase, when timing is essential for the bug to appear.

In our approach, since the information recorded in step one is
independent of the particular compilation, and depends only on the
algorithm used, the user is allowed to switch between an optimized
and a non-optimized code. In particular, he can use the optimized
version in step one where timing is critical, and a non-optimized
version in steps two and three. Since our message order recording
scheme has a minimal impact on the application performance, as
we shall see in section 8, using an optimized version greatly reduces
the possibility of the bug disappearing.

When the application has to run for many hours before the bug
appears, maintaining all the logs in memory during step one be-
comes impossible. To solve this problem, we have two solutions.
One involves the application manually flushing the logs to disk at
appropriate times, when the disk I/O does not disrupt the timing.
As many scientific applications are iterative, and contain explicit
barriers between iterations, adding one phase to flush the logs syn-
chronously does not add significant overhead. Alternatively, the ap-
plication can make use of the checkpoint/restart scheme available
in CHARM++ [27] to automatically checkpoint and restart from a
point in time closer to the problem. In this way, the total amount of
log data each processor has to hold in memory is kept small.

4. BACKGROUND
We implemented the record-replay techniques proposed in the

context of the CHARM++ runtime system, although the idea is gen-
eral enough to apply to any other message-passing system. For ex-
ample, our idea is trivially applicable to MPI applications by using
the AMPI [8] implementation of the MPI standard.

4.1 Charm++
CHARM++ [13] is a C++ based parallel programming model

based on object virtualization. In this approach [12], a programmer
decomposes a problem into N migratable objects that will execute
on P processors, where ideally N»P . The application program-
mer’s view of the program is of migratable objects and their inter-
actions; the underlying runtime system keeps track of the mapping
of migratable objects to processors, and determines and performs
any remapping that might be necessary at runtime.

In CHARM++, migratable objects are known as chares. Chares
are C++ objects with special entry methods that are invoked asyn-
chronously from other chares via messages. These entry methods
may also be executed inside user-level threads. This allows an en-
try method to suspend execution, and resume it at a later time. A
special keyword, “threaded”, is reserved for this purpose. The or-
der in which entry methods are invoked, and threads are scheduled,
is determined by a processor-level scheduler, and by the priority of
each message (which can be set by the sender).

The processor-level scheduler, also called CONVERSE scheduler,
implements an infinite loop that examines different message queues
in the system, and determines the order of execution. These queues
are: (a) a network queue, which contains messages coming from
other processors via network; (b) a node level queue that contains
messages from other processors on the same SMP node; and (c) a
local queue, which contains messages that objects on a processor
send to other objects on the same processor. The messages from
these three queues are combined together, and then messages are
scheduled according to their priority.



4.2 Ordering Messages
Messages may arrive from the network in any order, and they

are placed in the network queue in the order they arrive. Messages
sent from the local processor will be picked up by the CONVERSE
scheduler sooner or later depending on the presence of messages
in the network queue. As a result, race conditions between mes-
sages may occur, and this can lead to hard-to-find application bugs.
Therefore, in order to capture the parallel behavior of an applica-
tion for debugging purposes, it is important to record the message
ordering.

A simple deterministic record and replay scheme has been avail-
able in CHARM++ for several years [11]. This scheme is based on
the assumption of piecewise deterministic execution [23]:

Definition 1. Let obj be an object in the system with associated
state s1, and msg a message sent to obj. Suppose the processing of
msg by obj causes the state of obj to transition from s1 to s2, and a
set of messages M to be sent. Then, if we deliver the same message
msg to the object obj in state s1, the object will always transition to
state s2, and will always send the set of message M.

Under this assumption, the only source of non-determinism in
the application is the order in which messages are processed. There-
fore, by recording a tuple containing the sending processor and
a per-processor unique sequence number, the system can be re-
played deterministically by re-ordering messages according to the
recorded sequence. In addition to this tuple, the original scheme
also saved the size of the message as a simple check to make sure
the messages processed are indeed the same between executions.

5. A ROBUST AND ACCURATE MESSAGE
ORDERING RECORD/REPLAY

The scheme for recording the message ordering in CHARM++
applications can be used in the first step of our proposed three-
step procedure. However, it has several problems regarding robust-
ness and accuracy. One limitation is the assumption made about
piecewise deterministic behavior. Although in general this condi-
tion should hold, some applications may not entail such determin-
ism. For example, the application may use timers. Imagine the
scenario where an entry method receives a message and, depend-
ing on the elapsed time since last invocation, performs different
operations, possibly sending different messages. In this scenario,
a different timing in the network, maybe due to a sudden conges-
tion, can modify the behavior of the application, even if the same
ordering of messages is maintained.

Capturing system-level calls, like timers, may solve the problem
for the given example. By following this path, many other sys-
tem calls, along with their return values, need to be included in
the recorded traces. Particularly voluminous may be those reading
from files. The complexity and amount of data to be stored would
rapidly increase in this scenario. This would lead to an increase
of the overhead incurred by the recording scheme, making it more
likely to disrupt the precarious timing which leads to the manifes-
tation of the bug. Therefore, to maintain the overhead to the mini-
mum, we do not record these additional information, and limit the
applicability of our technique to piecewise deterministic applica-
tions. Fortunately, the vast majority of applications do oblige to the
piecewise deterministic assumption, and for these applications, the
simple message ordering is sufficient.

The key now is to understand when the piecewise deterministic
assumption is satisfied by the application, and to detect when it is
not satisfied. The original scheme tried to do this by using only the
message size. Unfortunately, most applications tend to have many

messages with the same size, yet completely different content. In
order to guarantee the piecewise determinism, in addition to the
message ordering, we would like to include also the content of the
messages. By having available the full content of the messages, it
would be trivial to determine if all the messages processed during
the replayed execution are identical to those processed during the
recorded execution.

Before continuing, a word of caution is in order. Even by ex-
tending the recording to assure that communicated messages have
the same content, we cannot prevent a processor from having inter-
nal non-determinism completely. For example, the processor may
still make a decision based on the current time, and modify its local
state differently in different executions. However, since by defini-
tion all outgoing messages are the same between two executions,
and the only way to influence another processor is through explicit
message passing, the local non-determinism cannot propagate to
other processors. Therefore, while searching for a bug, the causal
relationship between processors does not change.

Clearly, having the receiving processor store (in step one) the
whole content of each message received would defeat the purpose
of our 3-step procedure which aims at a non-intrusive mechanism
during the first step. Instead, we compute the checksum of the re-
ceived messages, and store only this information into the recorded
traces. The amount of data added by the checksum is only a few
bytes per message, therefore adding little overhead, as we shall see
in section 8. Of course, our technique can only capture a difference
in the message content with high probability. If the content of a
message in two different execution is such that the computed check-
sum is identical, then our method will fail to detect the change.
Nevertheless, since this check is performed for every message pro-
cessed, the probability that the non-determinism will remain latent
as the application progresses is extremely low.

We implemented two commonly used checksums. Both of them
produce a 32-bit integer value. The first is a simple XOR of the
message data, reading four bytes at a time. This checksum is fast
to compute, but has the disadvantage that it is easy for a message
to contain differences not detected. The other is a more sophis-
ticated Cyclic Redundancy Check (CRC32) checksum. This is a
more computationally intensive algorithm, but can capture differ-
ence in the transmitted data with higher confidence. The program-
mer, during step one, can choose which of the algorithms to use.
He can also choose to altogether skip this checksum computation
to minimize the overhead.

In order for the checksum computation to yield correct results, it
is important that the message content of each message is identical
between the two executions. One problem is posed by the presence
of garbage inside a message. Consider a data structure like that in
Figure 2. In this case, the compiler has padded the data to maintain
correct alignment of the data structures, in this case of the double
type. When allocating this data structure, the padded memory re-
gion, which is shown in the light color, is not initialized, and may
contain any random garbage. To overcome this, we developed a so-
lution that makes use of the memory allocation sub-system present
in CHARM++, and make sure every newly allocated memory is al-
ways initialized to a known pattern.

In the memory sub-system implemented in the CHARM++ run-
time system, there is an interface to easily re-implement mem-
ory related functions, such as malloc and free, and place them
into a dynamically loadable library. There are three types of re-
implementation. One uses the glibc memory arena internally,
and wraps it with the new function definitions. The other two are
based on a direct usage of the memory allocator provided by the
operating system. This is done either by dynamically loading the
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Figure 2: Example of data structure padded by the compiler.

specific function pointers using dlopen, or by using the hooks
present in the operating system in the case of the GNU implemen-
tation. For our purposes, we extended an implementation created
specifically for debugging. This implementation can use all the
methods described above to link to the underlying memory system,
making it very portable. In this extension, we could easily add a
call to memset before returning the allocated memory to the user.
Note that the memory can be pre-filled with any known pattern.

Another problem that we encountered while using the original
record-replay scheme in CHARM++ was the lack of ordering of
threaded entry methods. As mentioned in section 4.1, CHARM++
programs may declare an entry method as “threaded”, thus creating
a user-level thread for the execution of each invocation of the entry
method. Since thread operations, such as suspend and resume, are
treated at the lower level of the runtime, the record-replay module
was not aware of them. This produced a lack of recorded infor-
mation for which threaded entry methods could be executed, and
resumed, without a specific ordering with respect to the other en-
try methods. This clearly was a problem. To solve it, we placed a
hook in CONVERSE’s threaded library and exposed the occurrence
of thread events to the record-replay module. This allowed these
events to be properly logged.

With the enhancements described above, the new record-replay
scheme has become a much more robust and accurate solution for
record and replay. We understand that other problems may arise in
the future, both from the introduction of new features in CHARM++
and from old features not properly treated. Should new issues arise,
we plan to expand the recording scheme accordingly, as we have
done for threaded entry methods.

6. PROCESSOR EXTRACTION
In step two, once the information we want to record is identified—

all the messages received by a processor—the extraction is rela-
tively simple. All we have to do is to record the content of the
messages processed by the user-selected processors into a file, so
that in step three a modified CHARM++ runtime system can replay
the execution of any selected processor as a stand-alone. When re-
playing a processor, the CHARM++ runtime system loads messages
from the corresponding trace file instead of receiving them from the
network, and since the processor is replayed without a network, all
outgoing messages are discarded. More important is considering
the implications involved with re-executing the application.

As we mentioned at the end of Section 3, we can always change
the executable used between steps one and two, provided the ap-
plication performs the same operations—for example by changing
the optimization level. On the other hand, the information recorded
in step two contains information that may be specific to a partic-
ular executable, and may change if the application is recompiled.
For example, in ChaNGa, several function pointers are sent through
messages between processors. During normal execution, this is ac-
ceptable since the executable is the same for all processors. Nev-

ertheless, recompiling the code means changing the placement of
these function pointers, and thus invalidating the data contained in
the messages. For ChaNGa, therefore, the same executable must
be used in steps two and three. For other applications, like Jacobi,
where the content of the sent messages will not change even if the
application is recompiled, the optimized version of the code may
still be used in step two.

Another problem appears if the two executable are compiled for
different versions of CHARM++. Changing architecture would be
desirable if the architectures of the parallel machine and of the lo-
cal machine differ (say one used LAPI, the other pure ethernet).
Unfortunately, this is not possible at the moment. In CHARM++,
a different architecture signifies a different header added to each
message. These headers are not only different in content, but also
in size. Furthermore, the content of the message stored will fol-
low the endian-ness convention of the machine where the data was
recorded, and translating messages to a different architecture is not
simple.

7. REDUCING THE NEED FOR LARGE MA-
CHINES

In our proposed three-step procedure for recording and replay-
ing a buggy application deterministically, the second step may be
performed inside a virtualized environment. As we mentioned in
section 3, this is very useful to reduce the number of physical pro-
cessors needed, and to reduce the contention on the availability of
a large machine.

This is particularly important when the bug appears only on large
processor counts. In this case, executing multiple times the buggy
application on a large parallel machine to extract different sets of
processors may introduce long delays in the debugging process.
This can easily happen when submitting jobs to a batch schedulers
on heavily used machines. By using a virtualized environment,
instead, we can perform the processors extraction operation using
a much smaller machine, and increase productivity.

7.1 BigSim Emulator
To demonstrate the feasibility of this approach, we used the Big-

Sim Emulator [28]. This is a part of the BigSim simulation frame-
work [29], a framework which provides fast and accurate perfor-
mance evaluation of current and future large parallel systems with
different levels of fidelity using much smaller machines. It targets
systems composed of possibly hundreds of thousands of multi-core
nodes, including petascale-level machines. BigSim supports the
emulation/simulation of applications written both in CHARM++
and in MPI (via the AMPI implementation of the standard).

BigSim consists of two components. The first component is a
parallel emulator that provides a virtualized execution environment
for parallel applications. This emulator generates a set of event logs
during execution. The second component is a post-mortem trace-
driven parallel simulator that predicts parallel performance using
the event logs as input, and supports multiple resolutions for pre-
diction of sequential and network performance. For example, the
simulator can optionally predict communication performance accu-
rately by simulating packets of each message flowing through the
switches in detail, using a parallel discrete event simulation tech-
nique. Since the simulator only considers the trace logs and does
not re-execute the application at the code level, it is not suitable for
debugging purposes in this paper. However, the BigSim Emulator,
which supports emulation of a very large application using only a
fraction of the target machine, is useful for debugging. In the next
section, we shall focus our attention on the emulator component.



7.2 Detailed Record-Replay in BigSim Emu-
lator

We added support in the BigSim Emulator for the detailed record-
replay scheme that stores the full content of messages similar to the
one used in the processor extraction described earlier, but under the
virtualized environment. When emulating an application, the user
may specify a subset of processors that he wants to record in detail.
During the emulation, on each of these emulated (or target) proces-
sors, the scheduler stores a copy of the message to its own trace file
before it executes the entry function associated to that message.

We incorporated the BigSim Emulator’s record-replay capability
into the proposed three-step procedure as an alternative to reduce
the need for large machines in the second step. This new three-step
scheme thus becomes: (1) execute an application on a big machine,
and record the message ordering; (2) replay the application on a
machine emulated under the virtualized environment and record the
detailed traces; (3) replay the execution of a selected target proces-
sor sequentially. Note that if step two was performed within the
emulated environment, step three must also be performed in the
same environment. This comes from the fact that BigSim Emulator
is considered by the application as another communication layer,
and at the moment we cannot change this layer between step two
and three. Nevertheless, we are considering extending the possibil-
ity to perform step three in a different scenario (say outside BigSim,
or ethernet vs. LAPI).

In this new scheme, the emulator needs to be able to read the
trace logs generated in the first step from the non-emulated execu-
tion on a full machine, and replay the application in the emulator
using a small machine. One challenge was to match the two ex-
ecutions of the application on these two totally different environ-
ments. Specifically, when the trace log tells that the next expected
message is (srcpe, msgID), where srcpe is the source processor
ID, and msgID is the message ID of that message, the message
IDs must be identical on the two environments. This is easy to
guarantee as long as the emulator emulates the CHARM++ runtime
faithfully and both systems assign msgID to each message using a
sequence number local to its sender processor. However, this be-
comes rather complicated when user-level threads are involved in
an application. This is because emulated processors themselves are
implemented as the same user-level threads. Therefore, tracing the
suspend/resume events of user-level threads will mistakenly record
the events of the emulator threads, creating mismatch of the thread
event IDs between two executions. One way to handle this is to rec-
ognize two different categories of threads in the emulator – those
created by the emulator system, and those created by the applica-
tion, and ensure that only the events of threads that are created by
the application are tracked. To do this, we used CONVERSE user-
level thread API which allows a user to insert hooks to the thread
scheduling events such as at the time of suspend and resume. When
the emulator creates user-level threads for the application, it sets
up special record-replay hooks for these threads that track thread
suspend and resume in the same way as how it is done in the non-
emulated CHARM++. When it creates internal user-level threads,
it does not set these hooks.

In Section 8.2.2, we will demonstrate how the BigSim Emulator
is useful in reducing the number of processors using a real world
application.

8. PERFORMANCE
We evaluated the overhead of the proposed record-replay scheme

for all three steps of the procedure. We used synthetic benchmarks,
as well as two real applications.

8.1 Synthetic Benchmarks
Our first test environment was Abe cluster, at the National Cen-

ter for Supercomputing Applications (NCSA). This is a cluster of
1200 Dell PowerEdge 1955 server computers, each configured with
two quad-core Intel Xeon processors, 8 gigabytes of memory, and
infiniBand interconnect.

We tested a synthetic benchmark program called kNeighbor, and
evaluated the overhead imposed by recording message orderings
with and without checksums. KNeighbor creates a certain number
of objects distributed on the parallel machine, and arranged in a 1-
dimensional array. In each iteration, each object sends 2 ∗ K + 1
messages to its nearest K neighbors on each side, plus a message
to itself. When an object receives 2 ∗ K + 1 messages, it performs
a given amount of computation, and proceeds to the next iteration.
In the following experiments, we used k = 2, and the total number
of iterations was 100.
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Figure 3: Recording overhead per message using the three
schemes. Computed using kNeighbor test (NCSA Abe cluster).

First, we measured the average overhead per message during
the recording phase in step one, varying the message size from
256 bytes to one megabyte. The results are shown in Figure 3.
As expected, we can see that the overhead of the simple scheme
remains about the same regardless of the message size. This is
because, for each message, a constant amount of data is stored.
When either XOR checksum or CRC checksum is calculated for
each message, the overhead per message increases proportionally
to the increase in message sizes. This is because the runtime needs
to traverse the whole message in order to compute the checksum.
When checksums are computed, for very small messages, specifi-
cally 256 bytes, we observe only less than three microsecond over-
head per message. However, when message size increases to one
megabytes, both checksum methods incur a much higher overhead
per message.

Next, we evaluated how this overhead affects the total execution
of the program. To measure the total execution time, we ran the test
program on a single processor. The total number of messages gen-
erated during each execution is about 5600. Again, we tested with
a varying message size. Figure 4(a) shows the results of the com-
parison when the workload is very small. We can see that when
the message size is small, 256 bytes, the total execution time is
only 1.36 seconds for 100 iterations. When message size increases,
the total execution time increases proportionally. This is due to the
fact that the program has to process the message, and traverse all
the data in it. We see that doing simple recording, without check-
sum, the execution time is not affected, even for large messages.
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(a) workload 100, Abe
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(b) workload 140, Abe
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(c) workload 200, Abe
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Figure 4: Comparison of kNeighbor total execution time with and without recording schemes (the total time includes file I/O at the
end of execution).

Even with XOR checksum enabled, there is not much overhead.
When switching to the more expensive CRC-based checksum, we
can observe a significant overhead for large messages. However,
for message sizes below 4KB, the overhead is still minimal.

When we increased the workload in Figure 4(b) (by 3 fold), and
Figure 4(c) (by 6 fold), we observe a similar behavior. However,
the results exhibit a decreasing overall affect of the CRC check-
sum computation, mainly due to the increasing computation-to-
communication ratio. Similar results were also obtained on a differ-
ent machine, called BluePrint, as shown in Figure 4(d). BluePrint
is a Blue Waters [16] interim system also at the National Center
for Supercomputing Applications (NCSA). It is a 2000-core IBM
Power 5+ system.

These experiments show that simple recording scheme performs
very well with almost no overhead to the execution time. XOR-
based checksum is a cheap solution to improve the robustness of
our scheme, and it incurs very little overhead. The more expensive
CRC checksum computation indeed adds a significant overhead for
very large messages. However, since most applications do not send
large messages often, and if they do they generally perform a large
computation thereafter, we believe this is not a problem for real-
world applications.

To study the performance of the second step, we ran the kNeigh-
bor benchmark on 256 processors of BluePrint. The results are il-
lustrated in Figure 5. In each cluster in the figure, the first bar from
the left is the total execution time without any overhead; the second
bar represents the execution time when replaying on the same ma-
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Figure 5: Total replay time in step two for kNeighbor (NCSA
BluePrint 256 processors).

chine using the traces from step one; while the third bar represents
the execution time of the benchmark both replaying the previously
recorded message ordering, and recording the detailed information
for one processor. We see that replaying on the full machine gener-
ally is slightly slower than the normal execution time for message
sizes smaller than 64K bytes. However, for very large messages,
the replay time tends to increase more drastically.

The number of processors recorded in detail during step two may



affect the replay time due to file I/O. Figure 6 illustrates the effect
on the total execution time of kNeighbor when varying the number
of recorded processors during step two on 256 processors. We can
see that for messages smaller than 1KB, the effect of recording full
traces is minimal. As expected, when the message size increases,
the overhead of recording message contents for more processors in-
creases significantly due to the file system becoming a bottleneck.
However, as we explained, this does not affect the correctness of
the replay, since the message ordering is already guaranteed. In
practice, we believe that a user does not need to extract all pro-
cessors, and only a small subset of processors is usually enough to
understand the nature of a bug.

  1.00

  2.00

  4.00

  8.00

  16.00

  32.00

  64.00

  128.00

  256.00

  512.00

  1024.00

1 4 8 16 32 64 128 256

T
o
ta

l 
E

x
ec

u
ti

o
n
 T

im
e 

(s
)

Number of processors recorded in detailed mode

256 bytes
1024 bytes
4096 bytes
16384 bytes
65536 bytes
262144 bytes
1048576 bytes

Figure 6: Comparison of kNeighbor total execution time in step
two when recording varying number of processors in full de-
tailed mode. (NCSA BluePrint 256 processors).

8.2 Scientific Applications
In addition to synthetic benchmarks, we used two production-

level scientific applications to show the performance impact of our
approach. The two applications are ChaNGa and NAMD.

8.2.1 ChaNGa
ChaNGa [9] is a cosmological application used for the simula-

tions of the evolution of the universe. It handles forces generated by
both gravitational and hydrodynamic interaction. The benchmark
we used is a snapshot of a multi-resolution simulation of a dwarf
galaxy forming in a 28.5Mpc3 volume of the universe, with 30%
dark matter and 70% dark energy. The dataset size is nearly five
million particles, with most of the particles clustered in the center
of the simulated volume. In our tests, we ran the application for
three timesteps.

Figure 7 shows the performance of ChaNGa in step one, using
a varying number of processors, on the NCSA BluePrint cluster.
Each execution was repeated five times, and the average and stan-
dard deviation are plotted. As mentioned earlier, we could run the
optimized code for step one of our 3-step procedure. As a com-
parison, the black bar (to the left) represents the execution time
with a non-optimized version. The optimized code is more than
twice as fast as the non-optimized one, and the interleaving of mes-
sages potentially very different. It can be seen that even on a highly
optimized code the impact of the recording schemes is so small
that it disappears when compared to the normal time fluctuation of
ChaNGa, even when computing checksums. This re-emphasizes
the negligible perturbation caused by our recording scheme.

Subsequently, with the recorded data from step one, we pro-
ceeded to test steps two and three. These are plotted in Figure 8.
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Figure 8: Overhead during replay in steps two and three for
ChaNGa application (on NCSA BluePrint cluster).

Again, each execution was repeated five times. In this case, we had
to use the non-optimized version to be able to follow the code in
a sequential debugger. Compared to the execution without record-
replay enabled, the forced replay of the message ordering caused
an overhead between 25% and 65%. This overhead is still very
small considered to the potential that the scheme yields in terms of
allowing a deterministic debugging.

Step three is represented on the fourth bar of each cluster in Fig-
ure 8. As different processors may have a different workload (we
didn’t apply load balancing), the variation in the execution time
between different processors is very large. Surprisingly, the execu-
tion time of a single processor was greater than the time to execute
the whole application. We suspect this might depend on the sys-
tem pre-loading too many messages from the traces, and we plan
to further investigate the reasons. Nevertheless, even with the cur-
rent performance, the replay time is within a factor of two from the
basic execution.

In addition to the overhead caused during the execution of the
application, we also measured the amount of information that is
stored to disk during the various phases. Table 1 reports this infor-
mation in megabytes. As it can be seen, the amount of information
recorded per processor is quite small—less than one megabyte—



and can be easily maintained completely in memory until the appli-
cation shuts down. Therefore, flushing to disk is generally avoided
during the first step. During the second step, we can see that the
amount of data recorded is much larger. Nevertheless, this does not
create a problem since usually only few processors are recorded in
detail.

Number of processors 128 256 512 1024
Record per-proc. 0.87 0.67 0.54 0.44

total 112 173 279 453
Record+checksum per-proc. 1.49 1.14 0.92 0.75

total 190 292 473 765
Detailed record per-proc. 111 79 59 47

Table 1: Amount of data stored to disk using different record-
ing schemes for ChaNGa. All data in megabytes.

8.2.2 NAMD on BigSim Emulator
In this section, we demonstrate the utility of using BigSim to per-

form processor extraction using the 3-step procedure. The applica-
tion we chose for this is NAMD [1, 20]. NAMD is a scalable par-
allel application for Molecular Dynamics simulations written using
the CHARM++ programming model. It is used for the simulation
of biomolecules, and to understand their function. The following
experiments were done on the NCSA BluePrint system.

First, we benchmarked step one by running NAMD on 1024
processors using the Apolipoprotein-A1 (ApoA1) benchmark for
100 timesteps, and repeating using all the recording schemes. The
results are shown in Table 2. The “normal” column is the time
when running without recording for comparison. Note that the to-
tal number of messages processed during the entire execution is
about 20,000.

Mode Normal Record Rec.+XOR Rec.+CRC
NAMD Time 24.08 25.33 24.55 24.55
with I/O - 27.99 26.85 25.82

Table 2: NAMD execution time in seconds with different
recording schemes in step one, running on 1024 processors of
NCSA BluePrint. The last row is the total time with file I/O.

We see that there is virtually no overhead to the NAMD actual
execution while recording the message ordering, even when check-
sums are computed. This is because in NAMD the average message
size is relatively small, around 1KB to 2KB. For 20,000 messages
total, even the most expensive scheme using CRC checksum only
cost about 0.27 second. Therefore, we believe that by using our
recording schemes, the NAMD application behavior is not affected
significantly. Furthermore, due to cache effects, the actual overhead
of computing checksum may be even less, if the entry function trig-
gered by the receipt of the message has to traverse the message data
immediately. Similar to ChaNGa, the NAMD traces recorded for
each processor are less than one megabyte in size. The process of
flushing the traces to disk takes about 2 seconds, which increases
the total execution time, as shown in the second row of the table.
The file I/O time is constrained by the bandwidth of the file system,
and may be stressed by simultaneous writing, in this case by 1024
processors. However, since this is done only at the very end of the
execution, it does not affect the ordering of the messages during
execution.

For the second step, we ran it under the BigSim Emulator, and
we replayed NAMD using the message logs obtained from the first
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Figure 9: NAMD execution time in replay mode on 1024 emu-
lated processors using varying numbers of physical processors,
recording 16 emulated processors. The last bar is the actual
runtime in the non-emulated replay mode on 1024 processors.
(on NCSA BluePrint).

step. We instructed the emulator to emulate the same 1024 proces-
sors by using only a portion of the entire machine. While replay-
ing, we also chose 16 emulated processors for detailed recording of
message content. We measured NAMD total execution time run-
ning on the emulator using varying number of physical processors.
The results are shown in Figure 9. When 1024 physical proces-
sors are used to emulate the 1024-processor machine, we see that
replaying NAMD on the emulator is about as fast as when replay-
ing it on the real 1024 processor BluePrint machine, showing little
overhead of the emulator. Moreover, on 512 processors, NAMD
replaying in the emulation mode is even slightly faster than the ac-
tual replaying run on 1024 processors. This is due to the saving in
the startup: faster global synchronization on fewer nodes.

This demonstrates that in terms of the time-cost, it is feasible to
replay an application in a virtualized environment under the emu-
lator using fewer processors. Although it takes much longer (17
times slowdown) to replay NAMD under the emulator when using
only 8 physical processors, being able to replay an application on
a much smaller machine, and generate detailed trace logs, greatly
reduces the need for large machine during interactive debugging.

In the third step, the detailed NAMD trace logs recorded in the
second step were used to replay a selected processor using a single
processor. Figure 10 shows the last few lines of screen output of re-
playing processors number 0 and 960 on the emulator respectively.
For this benchmark, each detailed trace log was about one to two
megabytes, as shown in the output. The replay time of processor 0
on the emulator finished in about 23.8 seconds, which matches the
total execution time of 24 seconds when running NAMD in normal
parallel execution. The replay time of processor 960, however, took
much less time (only 5.5 seconds). This is because during NAMD
start-up, most of the work is done by processor 0, and the other
processors are mostly idle. Since this is a short simulation that has
only 100 timesteps, most time was spent in the start up. On 1024
processors, the start-up time is measured around 19 seconds.

In summary, this example of NAMD on the BigSim emulator
demonstrates that it is feasible to use an emulator in the second step
as an alternative way of replaying an application using the message
ordering logs obtained from the previous step, and producing de-
tailed trace logs to be used in the third step. This approach incurs
reasonably low overhead, and the overhead itself can be considered



BgReplay> Emulation replay finished at 25.304625

due to end of log.

BgReplay> Replayed 12288 local records and 7891

remote records, trace log is of 14539488 bytes.

(a) Processor 0

BgReplay> Emulation replay finished at 5.690778

due to end of log.

BgReplay> Replayed 19714 local records and 10822

remote records, trace log is of 24904148 bytes.

(b) Processor 960

Figure 10: Screen outputs from replaying two different processors under the emulator.

../charmrun +p16 ../ChaNGa cube300.param +record +recplay-crc

../charmrun +p16 ../ChaNGa cube300.param +replay +recplay-crc +record-detail 7

gdb ../ChaNGa

» run cube300.param +replay-detail 7/16

Figure 11: 3-step procedure used for debugging ChaNGa.

proportional to the reduced number of physical processors used for
emulation.

9. CASE STUDY
To assess the usability of our technique, we used the ChaNGa

application, and searched for the bug we mentioned in the intro-
duction. This bug has already been fixed using standard techniques,
such as print statements, and a tedious process given that the bug
often disappeared after code modifications. We re-introduced it in
the application temporarily. We ran the application using a rel-
atively small dataset (a simulation of a LCDM concordance cos-
mology large volume with 483 particles and 300 Mpc on a side).
The bug did not appear on eight processors, but started to appear
on sixteen processors or more. The manifestation was intermittent,
sometimes right at the beginning, sometimes after a few timesteps
of the application. Also, the processor in which an assertion failed
kept changing from execution to execution.

According to our 3-step procedure, we first executed the applica-
tion with the message ordering recorded. We used CRC checksum
as robustness protection. In the execution we recorded, processor
seven triggered the assertion. At this point we re-executed the ap-
plication in replay mode, and recorded the faulty processor. We
also repeated the execution in replay mode a few times to confirm
that processor seven was always the culprit. With the detailed trace
of processor seven, we executed ChaNGa sequentially under GDB,
and followed the problem. To track the bug we had to repeat the
sequential execution a couple of times, each time setting a few dif-
ferent breakpoints in the code. Compared to the way the original
bug was hunted, this new procedure allowed for the parallel prob-
lem to be transposed into a sequential one, without compromising
the timing of the application, and without allowing the problem it-
self to disappear. The commands we used in the different steps of
our analysis are reported in Figure 11.

10. CONCLUSIONS AND FUTURE WORK
In this paper, we described a new procedure to extract proces-

sors from a parallel application, and replay any of them on a local
cluster. This procedure is based on an extension of record-replay
techniques, and it generates minimal interference in the application
while capturing the non-determinism in the application, as we have
seen both with benchmarks and real applications. This was possible
thanks to the separation of the recording phase into two sub-phases:
the first one were only minimal information—message ordering—
is collected, and the second one where more information—full con-
tent of the messages—is recorded for a few selected processors.
During the execution, checksums are also used to assert that the

mechanism has really captured the non-determinism of the applica-
tion. We have also seen that our approach does not require the use
of large machines in steps other than one, since processor extrac-
tion can be performed using an emulated environment. Moreover,
in step one, the code used can be fully optimized by the compiler
to avoid a change in the message interleaving.

We have several research directions for the future. One regards
the possibility to use different executables for steps two and three.
In particular, the possibility to change the underlying communica-
tion layer of CHARM++. Another direction is to detect other infor-
mation that our current scheme is lacking, and include that into the
recorded traces. For example, the creation of single chares in the
system may not be fully deterministic if a chare is inserted in an un-
derloaded processor. When replaying the system, these chares will
have to be inserted in the same processors as the original execution.

The record-replay scheme presented is stand-alone, and is not
tied to any particular debugger. For step three, while doing in-
depth debugging, the user can choose any sequential debugger. In
CHARM++, the de-facto standard debugger is CHARMDEBUG [5].
This parallel debugger can show the user information pertinent to
the CHARM++ programming model, such as messages in queue
and chare objects. While an expert user can retrieve this infor-
mation also using a common sequential debugger, CHARMDEBUG
can greatly simplify the lookup of relevant information. The simple
scheme of recording the message ordering, including the checksum
contribution, can already be used with CHARMDEBUG seamlessly.
On the other hand, CHARMDEBUG can not be used in step three,
as the application is run sequentially without the parallel infras-
tructure. We are planning to incorporate also this step into the
CHARMDEBUG debugger, and allow the user to conduct his de-
bugging as if he was running the full application.
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