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Abstract. With the advent of petascale machines with hundreds of thousands of
processors, debugging parallel applications is becoming an increasing challenge.
Aside from the complicated debugging techniques required to debug applications
at such scale, it is often difficult to gain access to these machines for a sufficient
period of time, if at all. Some existing parallel debuggers are capable of handling
these machines, but they still require the whole machine to be allocated. In this
paper, we present an innovative approach to address debugging on such extreme
scales. By leveraging the concept of object-based processor virtualization, our
technique enables debugging of even a million processor execution under a sim-
ulated environment using only a relatively small cluster. We describe the obsta-
cles we overcame to achieve this goal within two message passing programming
models: CHARM++ and MPI. We demonstrate the results using real world appli-
cations such as Molecular Dynamics and Cosmological simulation programs.

1 Introduction

Debugging a parallel application requires numerous iterative steps. Initially, the appli-
cation is tested on simple benchmarks on a few processors. At this point, many errors
due to the communication exchanges between the processes in the parallel scenarios can
be captured. Later, during production runs, the application will be deployed with larger
input datasets, and on much bigger configurations. Oftentimes, the application will not
behave as expected, and terminate abnormally. When this happens, the programmer is
left to hunt the problem at the scale where it manifests, with possibly thousands of pro-
cessors involved. If lucky, he may be able to recreate the problem on a smaller scale
and debug it on a local cluster, but this is not always possible.

One example of a bug that may not be reproduced on a smaller scale is when the
bug is located in an algorithm, and this algorithm depends on how the input data is par-
titioned among the processors. Reducing the problem size might be a solution to scale
down the problem, but the inherent physics of the problem may not allow that. Another
example is when the physics simulation output is incorrect. In this case, the problem
can derive from rare conditions that only big datasets expose. Again, the problem size
may not be reduced since otherwise the bug disappears. In all these examples, the only
alternative left to the programmer is to use the whole machine, and debug with the full
problem size on possibly thousands of processors.

Interactive sessions on large parallel machines are usually restricted to small alloca-
tions. For large allocations, batch scheduling is often required. To debug the application,



the programmer will have to launch the job through the scheduler and be in front of the
terminal when the job starts. Unless a specific allocation slot is pre-requested, this can
happen at unpredictable, inconvenient times. Furthermore, the nature of debugging is
such that it may require multiple executions of the code to track the bug, and to try dif-
ferent potential solutions. This exacerbates the problem and leads to highly inefficient
debugging experience.

Moreover, debugging sessions on large number of processors are likely to consume
a lot of allocation time on supercomputers, and significantly waste precious compu-
tation time. During an interactive debugging session, the programmer usually lets the
program execute for some time and then pauses it to inspect its data structures, then
iteratively advances it step-by-step, while monitoring some data of interest. Therefore,
processors are idle most of the times waiting for the user to make decision on what to
do next, which is a very inefficient use of supercomputers.

The innovative approach we describe in this paper is to enable programmers to
perform the interactive debugging of his application at full scale on a simulated tar-
get machine using much smaller clusters. We do this by making each processor in the
application a virtual processor, and mapping multiple virtual processors to a single
physical processor. This reduces the processor count needed for debugging. This map-
ping is transparent to the application, and only the underlying runtime system needs to
be aware of the virtualization layer. A parallel debugger connected to the running appli-
cation presents to the programmer the application running on thousands of processors,
while hiding the fact that maybe only a few dozen were actually used.

Our idea transcends the programming model used for the virtualization and how
the debugging infrastructure is implemented. However, to prove the feasibility of this
approach, we implemented it within the CHARM++ runtime system [1, 2], using the
BigSim emulation environment, and the CHARMDEBUG debugger. Thus applications
written in CHARM++ will be the main target for our debugging examples. MPI appli-
cations are supported via a virtualized MPI implementation called AMPI [3].

In the remainder of this paper, we start by describing the infrastructure of the debug-
ger, CHARMDEBUG, in Section 2 and BigSim Emulator in Section 3. We present the
object-based virtualization approach we adopted to integrate the two systems into a vir-
tualized debugger in Section 4. Section 5 further describes how we applied this method
in the context of debugging MPI applications. Sections 6 and 7 analyze our system in
terms of overhead and functionality with some examples. Related work is described in
Section 8 followed by some comments on future work in the concluding section.

2 CharmDebug

CHARMDEBUG [4] is a graphical debugger designed for CHARM++ applications. It
consists of two parts: a GUI with which a programmer interacts, and a plugin inside
the CHARM++ runtime itself. The GUI is the main instrument that a programmer will
see when debugging his application. It is written in Java, and is therefore portable to all
operating systems. A typical debugging session is shown in Figure 1. The user will start
the CHARMDEBUG GUI on his own workstation. He can then choose to start a new
application to debug, or attach to a running application manually, using the appropriate



commands available in the GUI. By default, every CHARM++ application contains a
CHARMDEBUG plugin inside. This plugin is responsible to collect information from
the running application, and to communicate with the CHARMDEBUG GUI. With this
plugin integrated in the application itself, no external tool is necessary on every compute
node. Thanks to the tight coupling between these two components of CHARMDEBUG,
the user can visualize several kinds of information regarding his application. Such infor-
mation includes, but is not limited to, the CHARM++ objects present on any processor
and the state of any such objects, the messages queued in the system, and the memory
distribution on any processor.
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Fig. 1. Diagram of CHARMDEBUG’s system.

The communication between the
CHARMDEBUG GUI and the CHARM-
DEBUG plugin happens through a high-
level communication protocol called
Converse Client-Server, or CCS [4].
This protocol has become a standard
for CHARM++, and is built into all
CHARM++ applications. It can be used
both by the user directly into his own
application, for example to enable live
streaming of images to remote clients, or
internally by the system, as in this case
by CHARMDEBUG to collect status in-
formation. The CCS server, which is the parallel application in the case of CHARM-
DEBUG, opens a single socket connection and listens to it for incoming connections.
Later, the CHARMDEBUG CCS client initiates the communication by connecting to
this socket and sending a request. This request is translated by the server (i.e. the appli-
cation), into a CHARM++ level message which is then delivered to a pre-registered rou-
tine. This routine can perform any operation it deems necessary, including operations
involving parallel computations. This leverages the message-driven scheduler running
on each processor in CHARM++: in addition to dealing with application messages, the
scheduler also naturally handles messages meant for debugging handlers. Finally, the
server can return an answer to the waiting client, if appropriate. Note that since only
one single connection is needed between the debugger and the application under exam-
ination, we avoid the scalability bottleneck of having the debugger connect directly to
each process of the parallel application. This allows CHARMDEBUG to scale to as large
a configuration as CHARM++ does.

In CHARM++, every parallel application is integrated with debugging support in the
form of a CHARMDEBUG plugin. When a program starts, this plugin registers inspec-
tion functions that the CHARMDEBUG GUI will send requests to. This initialization
happens by default during CHARM++’s startup without the user intervention. There-
fore, any program is predisposed for analysis with CHARMDEBUG. Although lack-
ing direct connection to each processor, the user can request the debugger to open a
GDB [5] session for any particular processor. This gives the user flexibility to descend
to a lower level and perform operations that are currently not directly supported by
CHARMDEBUG.



3 Bigsim Emulator

Although CHARMDEBUG as described in the previous section is implemented to be
scalable and efficient for debugging very large scale applications, in practice, its use-
fulness is greatly impaired by the constraint of large amount of resource needed for
debugging. This motivated the work in this paper to exploit a virtualized environment
called BigSim to reduce the need for the whole machine.

BigSim [6, 7] is a simulation framework that provides fast and accurate performance
evaluation of current and future large parallel systems using much smaller machines,
while supporting different levels of fidelity. It targets petascale systems composed of
hundreds of thousands of multi-core nodes. BigSim consists of two components. The
first component is a parallel emulator that provides a virtualized execution environment
for parallel applications. This emulator generates a set of event logs during execution.
The second component is a post-mortem trace-driven parallel simulator that predicts
parallel performance using the event logs as input, and supports multiple resolutions
for prediction of sequential and network performance. For example, the simulator can
(optionally) predict communication performance accurately by simulating packets of
each message flowing through the switches in detail, using a parallel discrete event
simulation technique. Since the simulator only considers the trace logs and does not
re-execute the application at the code level, it is not suitable for debugging purpose.
However, the BigSim Emulator, which supports emulation of a very large application
using only a fraction of the target machine, is useful for debugging. In the remainder of
this section, we shall focus our attention on the emulator component.

Since multiple target processors are emulated on one physical processor, the mem-
ory usage on a given physical processor may increase dramatically. It may thus become
impossible to fit the whole application into the physical memory available. Interestingly,
our studies show that many real world scientific and engineering applications, such as
molecular dynamics simulation, do not require a large amount of memory. For exam-
ple, in one experiment, we were able to emulate NAMD [8] running on a 262,144-core
Blue Waters machine [9] using just 512 nodes of the Ranger cluster, a Sun Constellation
Linux Cluster at the Texas Advanced Computing Center (TACC).

For applications with large memory footprint, the physical amount of memory avail-
able per processor indeed poses a constraint. However, even in this scenario, we can
still emulate these applications by using an efficient out-of-core technique [10, 11] opti-
mized for the BigSim Emulator. Clearly, out-of-core execution, even with optimization,
incurs a much higher overhead than the pure in-memory execution, mainly due to the
constraint imposed by disk I/O bandwidth. For example, we observed a slowdown of
about 18 times in terms of the total execution time of a jacobi application in [10].

For interactive debugging, the degraded performance due to the out-of-core execu-
tion may impact the user experience with slow responsiveness especially when the user
requests involve all the virtual processors on disk. Increasing the number of emulat-
ing processors, and hence memory, helps reducing the need for extensive disk I/O in
the out-of-core execution. Even though inefficient, this is a viable debugging solution
when there is no other workaround.



4 Debugging CHARM++ Applications on BigSim

In order to combine the BigSim emulation system with CHARMDEBUG debugging
framework, several new problems had to be solved. Most arose from the fact that
CHARMDEBUG needs to deal with the virtualized CHARM++ and other virtualized
layers in the emulation environment.

Normally, CHARM++ is implemented directly on top of CONVERSE, which is re-
sponsible for low-level machine-dependent capabilities such as messaging, user-level
threads, in addition to message-driven scheduling. This is shown on the left branch of
Figure 2. When CHARM++ is re-targeted to the BigSim Emulator, there are multiple tar-
get CHARM++ virtual processors running on one physical processor, as explained in the
previous section. Therefore, all layers underneath CHARM++ must be virtualized. This
new software stack is shown in the same Figure 2, on the right branch. Specifically, the
virtualized CONVERSE layer becomes BigSim CONVERSE, which is the CONVERSE
system implemented using the BigSim Emulator as communication infrastructure. This
is equivalent to treating the BigSim Emulator as a communication sub-system.

4.1 Communicating with virtual processors

Fig. 2. BigSim Charm++ Software Stack.

One problem we had to overcome was
the integration of the CCS framework
into BigSim. CCS connects CHARM-
DEBUG and a running application in the
context of CHARM++ processors. How-
ever, in the BigSim Emulation environ-
ment, CCS is unaware of the emulated
target processors because it is imple-
mented directly on CONVERSE. There-
fore, it needs to be adapted to the emu-
lation system so that the CHARMDEBUG
client can connect to the emulated virtual
processors. To achieve this, we created a
middle layer for CCS (virtualized CCS) so that messages can reach the destination
virtual processor. The target of a CCS message becomes now the rank in the virtual
processor space. Figure 3 depicts the new control flow.

When a CCS request message is sent from CHARMDEBUG to a virtual processor,
the message first reaches the CCS host (1). From here, it is routed to the real processor
where the destination virtual processor resides (2). The processor level scheduler in
CONVERSE will pick up the request message, but not execute the message immediately.
Instead, it enqueues the message to the corresponding virtual processor, and activates
it (3). The scheduler on the virtual processor will serve the CCS request by invoking
the function associated with the request message (4), and return a response message.
Notice that the response does not need intervention from CONVERSE since the virtual
processor has direct access to the data structures stored in the common address space.
Multicast and broadcast requests are treated in the virtualized environment. While this



can add some overhead to the execution of a CCS request, it greatly simplifies the
system, and the code reuse between the emulated and non-emulated mode.

Fig. 3. Diagram of CCS scheme under BigSim
Emulation.

Some CCS request messages are not
bound to any specific virtual proces-
sor. For example, CHARMDEBUG may
send CCS requests to physical proces-
sors to query processor-wide informa-
tion such as those related to the sys-
tem architecture or the memory system.
However, since all virtual processors on
the same physical processor have access
to the processor information including
the whole memory, any of these virtual
processors can, in fact, serve the CCS
requests. Therefore, our approach is to
have CHARMDEBUG client always send
such CCS requests to a virtual processor
on a physical processor. This approach
greatly simplifies the design and implementation of the CCS protocol, since we elim-
inate the need of having to specify if the request needs to be treated at the physical
processor level, or at the virtual processor level.

4.2 Suspending virtual processors

Another challenge was to figure out how to suspend the execution of a single virtual
processor. Notice that while a processor is suspended, we still want to deliver mes-
sages to it. For example, requests from the debugger should be honored regardless of
the processor’s state. At the same time, we do not want other virtual processors emu-
lated inside the same physical processor to be affected. In the non-virtualized environ-
ment, the technique we use to suspend a processor is to enter a special scheduler when
the processor needs to be suspended. In this mode, regular messages are placed into a
queue, and buffered in FIFO order until the processor can deliver them. This scheduler
is also in charge of driving the network, and receiving incoming messages. In this way,
commands from the debugger can still be executed. In the virtualized environment, the
scheduler that drives the network and forwards messages to the virtual processes is a
separate entity from the scheduler inside each virtual processor. In this case, it is not
possible to have each virtual processor driving the network, which will be too chaotic.

We modified our scheme to move the buffering of messages inside each individual
virtual processor. When a worker processor needs to suspend due to an explicit de-
bugger “freeze” command or due to a breakpoint, it calls its own scheduler recursively.
Since this scheduler is stateless, such a recursive scheme is feasible. This new scheduler
then starts the buffering of messages. When the processor is released by the debugger,
and is allowed to continue its normal execution, we terminate the internal scheduler,
and return control to the outer one. Buffered messages are guaranteed to be executed in
the same order as they were received while we exit from the internal scheduler. Mean-
while, the main CONVERSE scheduler remains the only one that drives the network



and receives messages. Moreover, the CONVERSE scheduler is always active, and never
enters a buffering mode.

With the techniques described, we can now debug applications in the virtualized
environment as if they were running on a real machine. We shall see an example of
using CHARMDEBUG on a real application in section 7. In the future work section, we
will outline other topics we plan to address.

5 Debugging MPI Applications on BigSim

Debugging a large scale MPI application on a smaller machine requires running mul-
tiple MPI “processes” on one processor. This can be done using existing MPI imple-
mentations, if allowed by the operating system. However, this is often infeasible for
various reasons. First, operating systems often impose hard limits on the total number
of processes allowed by a user on one processor, making it challenging to debug a very
large scale application. Secondly, processes are heavy-weight in terms of creation and
context switching. Finally, there are very few MPI implementations that support out-of-
core execution which is needed for running applications with large memory footprints.

Fig. 4. AMPI virtualization using CHARM++.

To overcome these challenges, we
adopted the same idea of processor vir-
tualization used in CHARM++: each MPI
processor is now a virtual processor im-
plemented as a light-weight CONVERSE
user-level thread. This leads to Adaptive
MPI, or AMPI [3], an implementation of
the MPI standard on top of CHARM++.
As illustrated in Figure 4, each physical
processor can host a number of MPI vir-
tual processors (or AMPI threads). These
AMPI threads communicate via the un-
derlying CHARM++ and CONVERSE layers. This implementation also takes advantage
of CHARM++’s out-of-core execution capability. Since AMPI is a multithreaded imple-
mentation of the MPI standard, global variables in MPI applications may be an issue.
AMPI provides a few solutions to automatically handle global variables [12] to ensure
that an MPI application compiled against AMPI libraries runs correctly.

Debugging MPI applications can now use any arbitary number of physical proces-
sors. For example, when debugging Rocstar [13], a rocket simulation program in MPI
developed by the Center for Simulation of Advanced Rockets (CSAR) at the Univer-
sity of Illinois, a developer was faced with an error in mesh motion that only appeared
when a particular problem was partitioned for 480 processors. Therefore, he needed to
run the application on a large cluster at a supercomputer center to find and fix the bug.
However, the turn-around time for a 480 processor batch job was fairly long since the
batch queue was quite busy at that time, which made the debugging process painfully
slow. Using AMPI, the developer was able to debug the program interactively, using
480 virtual processors distributed over 32 physical processors of a local cluster, where
he could easily make as many runs as he wanted to resolve the bug.



Fig. 5. Screenshot of GDB attached to a specific MPI rank, and displaying its stack trace.

Since AMPI is implemented on top of CHARM++, the basic techniques for debug-
ging as decribed in Section 4 work on AMPI programs automatically. In addition, if the
user desires to perform more in-depth analysis on a specific MPI rank, he can choose
to start a GDB sequential debugger attached to that rank. This GDB process is shown
in Figure 5 for a simple test program. In this example, the user has set a breakpoint on
MPI Scatterv function, and when the breakpoint was hit, he printed the stack trace.

6 Debugging Overhead in the Virtualized Environment

In this section, we study the debugging overhead using a synthetic Jacobi benchmark
and a real application NAMD, running on the modified BigSim emulator with CHARM-
DEBUG support.

Our test environment is Blue Print, a Blue Waters interim system at National Center
for Supercomputing Applications (NCSA). It is a 2,000-core IBM Power 5+ system.
There are 107 compute nodes actually available for running a job, and each node has
16 cores (i.e. 1712 cores total).

We first tested a Jacobi3D program written in CHARM++ on 1024 virtual proces-
sors on a varying number of physical processors with CHARMDEBUG enabled, and
measured the execution time per step. Figure 6(a) shows the results of the execution
time with varying number of physical processors, from 8 to 1024. The last bar in the
figure is the actual execution time of the same code on the 1024 processors with normal
CHARM++. We can see that by using exactly same number of processors, Jacobi un-
der BigSim runs as fast as the actual execution in normal CHARM++, showing almost
no overhead of the virtualization in BigSim CHARM++. When we use fewer physical
processors to run the same Jacobi emulation on 1024 virtual processors, the total ex-
ecution time increases as expected. However, the increase in the execution time is a
little less than the time proportional to the loss of processors. For example, when using
1024 physical processors, the execution time is 0.25s, while it takes only 23.96s when
using only 8 physical processors. That is about 92 times slower (using 128 times fewer
processors). This is largely due to the fact that most communication becomes in-node
communication when using fewer number of nodes.
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Fig. 6. Jacobi3D execution time with varying number of physical processors.

As a stress test, we ran the same Jacobi3D program on one million (1,048,576)
emulated processors, while trying to use as fewer number of physical processors as
possible. Figure 6(b) shows the execution time when running on 400, 800, and 1712
physical processors. These experiments show that it is feasible to debug an application
in a virtualized environment for very large number of target processors using a much
smaller machine.

To test how much time typical operations take from the debugger point of view, we
used a similar Jacobi3D program, this time written in MPI. Table 1 reports timings for
starting the MPI application, loading the list of messages queued on a given processor,
and perform a step operation (deliver a single message) on all virtual processors. The
latter two operations perform in an almost identical amount of time in all scenarios,
including the case when the application is run in the non-virtualized environment.

We also studied the BigSim overhead on a real application. NAMD [14, 8] is a
scalable parallel application for Molecular Dynamics simulations written using the
CHARM++ programming model. It is used for the simulation of biomolecules to un-
derstand their structure. In these experiments, we ran NAMD on a 1024 emulated pro-
cessors with Apolipoprotein-A1 (ApoA1) benchmark for 100 timesteps. We measured
the total execution time of each run (including startup and I/O) using a varying num-
ber of physical processors, from 8 to 1024. This is illustrated in Figure 7(a). Same as
for Jacobi, we ran NAMD also in non-emulated mode using 1024 physical processors.
The total execution time is shown in the last bar of the figure. We can see that NAMD
running on the BigSim Emulator is only marginally slower (by 6%) compared to the
normal execution on 1024 physical processors, showing little overhead of the emula-
tor. On 512 processors, however, NAMD running in the emulation mode is even slightly
faster than the actual run on 1024 processors. This is due to savings in the NAMD initial
computation phases: faster global synchronization on fewer nodes.

8 16 32 64 128 256 512 1024 original
Startup (seconds) 11.60 11.63 13.34 13.12 15.86 14.41 16.45 17.71 17.85
Load a message queue (ms) 398 399 399 400 400 399 399 379 379
Single step, all pe (ms) 131 99 213 66 41 118 67 118 114

Table 1. Time taken by the CHARMDEBUG debugger to perform typical operations, using MPI
Jacobi3D application with 1024 emulated processors on varying number of physical processors.
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Fig. 7. NAMD on emulated 1024 processors using varying number of physical processors. The
last bar is the actual run on 1024 processors.

Overall, this demonstrates that in terms of the time cost, debugging in a virtualized
environment using much smaller number of processors is possible. Although it takes
a little longer time (19 times slower from 1024 to 8 processors) to run the applica-
tion, debugging on a much smaller machine under a realistic scenario is not only easily
accessible and convenient, but also simpler for setting up debugging sessions.

We further studied the memory overhead under the virtualized environment. Using
the same NAMD benchmark on 1024 virtual processors, we gathered memory usage
information for each processor. Figure 7(b) shows the peak memory usages across all
physical processors. Again, the last bar is with the non-emulated CHARM++. Note that
in emulation mode, the total memory usage is the sum of the application’s memory
usage across all emulated processors, plus the memory used by the emulator itself. It
can be seen that there is no difference in memory usage between the emulation mode
and non-emulation mode when using 1024 physical processors. When the number of
processors decreases to 512, or even 256, the memory usage remains about the same.
This is because NAMD has some constant memory consumption that dominates the
memory usage (for example, read-only global data such as molecule database, which
is replicated on each node), and the emulator itself tends to use less memory when
the number of processors decreases. However, when the number of physical proces-
sors keeps reducing, each physical processor hosts a much larger number of emulated
virtual processors whose memory usage starts to dominate, therefore the total memory
usage increases significantly. Nevertheless, when the number of physical processors is
down to 8, the peak memory usage reaches about 1GB, which is still very feasible on
machines nowadays. Note that this is an increase of only about 7 fold compared to the
1024 processor case, due to the sharing of the global read-only data at the process level.

In summary, we have demonstrated that debugging under virtualized environment
incurs reasonably low overhead, considering the overhead proportional to the loss of
processors. This makes it feasible to debug applications running on a large machine
using only a portion of it.

7 Case Study

To demonstrate the capabilities of our technique, we used a few examples of complex
applications, and debugged them in the virtualized environment. It is not the purpose



(a) Launching scenario (b) Attach scenario

Fig. 8. Screenshots of CHARMDEBUG parameter window.

of this section to describe actual bugs that were found with this technique, but rather
illustrate how the user has available all the tools that he has in a normal scenario. With
those tools, the user can search for the bug as he seems fit. Some applications have
been described in section 6 while considering the overhead our technique imposes to
the application under debugging. In this section, we use another real world application
as an example.

CHANGA [15] is a production code for the simulation of cosmological evolution,
currently in its second release. It is capable of computing standard gravitational and hy-
drodynamic forces using Barnes-Hut and SPH approaches respectively. This application
is natively written in CHARM++, and it uses most of the language abstractions provided
by the runtime system. While most of the computation is performed by CHARM++ ar-
ray elements, which are not bound to the number of processors involved in the sim-
ulation, the application also uses CHARM++ groups and nodegroups for performance
reasons. These groups have the characteristic of having one entity per processor, thus
modifying the application behavior when scaling to larger number of processors. The
complexity of this application is one reason why we chose it over other examples.

After the user has built the CHARM++ runtime system with support for BigSim
emulation, and compiled the CHANGA program over the virtualized CHARM++, he
can start CHARMDEBUG’s GUI. Figure 8(a) shows the dialogue box for the application
parameters. In here, the user will indicate the location of his executable, the arguments,
and the number of processors he wants to run on. The only difference with a standard
non-virtualized execution is the presence of a checkbox to enable the virtualization. In
general, the user will input the number of desired processors in the “Number of Proces-
sors” textfield and confirm. In this case, “Number of Processors” refers to the number of
physical processors CHARMDEBUG will allocate on the machine. The number of pro-
cessors the user wants to debug on has to be specified in the field named “Number of
Virtual Processors”. These fields are highlighted in the Figure. At this point the user can
confirm the parameters, and start the execution of the program from CHARMDEBUG’s
main view.

If the machine to be used for debugging requires jobs to be submitted through a
batch scheduler (or if the user desires to start the application himself), only the fields
regarding executable location and CCS host/port connection need to be specified. These
are highlighted in Figure 8(b). When the attach command is issued from the main view,
the CHARMDEBUG plugin will automatically detect the number of processors in the
simulation, and if the execution is happening in the virtualized environment.



Fig. 9. Screenshot of ChaNGa debugged on 4,096 virtual processors using 32 real processors.

Once the program has been started, and CHARMDEBUG has connected to it, the user
can perform his desired debugging steps, oblivious of the fact that the system in using
fewer resources internally. Figure 9 shows the CHANGA application loaded onto four
thousand virtual processors. Underneath, we allocated only 32 processors from four
local dual quad-core machines. In the bottom left part of the view, we can see all the
messages that are enqueued in the selected processor (processor 3,487 in the Figure).
Some messages have a breakpoint set (7th message, in orange), and one has actually
hit the breakpoint (1st message, in red). In the same message list, we can see that some
messages have as destination “TreePiece” (a CHARM++ array element), while others
have as destination “CkCacheManager”, one of the groups mentioned earlier. One such
message is further expanded in the bottom right portion of the view (10th message).

When joining multiple processes inside the same address space, the behavior of the
system might be altered. First of all, one virtual processor could corrupt the memory
belonging to another one. To solve this problem, the techniques described in [16] can
be used. Another problem regards the kind of bugs that can be detected, in particular
race conditions. By reducing the amount of physical processors available, a race condi-
tion might not appear anymore. A solution is to use record-replay techniques to force
the execution of a particular message ordering. This is already available in the virtual-
ized environment, as described in [17]. The other possibility is to force the delivery of
messages in the virtualized environment in a different order each time.



8 Related Work

In the realm of parallel debugging, there are several tools that a programmer can use
to understand why his program is misbehaving and correct the problem. Widely used
commercial products are TotalView [18] from TotalView Technologies, and DDT [19]
from Allinea. At least one of these tools is generally available in the majority of par-
allel supercomputers. Within the Open Source community, a tool worth mentioning
is Eclipse [20]. Several Eclipse plugins have been developed to address parallel com-
puting, in particular the Parallel Tools Platform (PTP) [21]. All these debuggers tar-
get applications written both in C/C++ and Fortran languages, and using MPI and/or
OpenMP [22] as programming models. None of them supports the CHARM++ pro-
gramming model natively. They all could manage CHARM++ programs if CHARM++
were built with MPI as its underlying communication layer. In this case, though, users
would be exposed to the CHARM++ implementation, rather than their own program.
Most importantly, while all the tools mentioned can scale to large number of proces-
sors, they all require the whole set of processors to be allocated. If the users desires to
perform his debugging using one hundred thousand processors, then a big machine has
to be used and occupied for long periods of time for the debugging to happen.

Virtualization for High Performance Computing has been claimed to be impor-
tant [23]. Nevertheless, no tool known to the authors does, at present, provide a debug-
ging environment tailored to thousands of processors or more, while utilizing only the
few processors that a local cluster can provide. A few techniques have been developed
in contexts other than High Performance Computing leveraging the concept of virtual-
ization. These target the debugging of embedded systems [24], distribute systems [25],
or entire operating systems using time-travel techniques [26, 27]. All of them target vir-
tual machines (such as Xen [28] or IBM Hypervisor [29]) where the entire operating
system is virtualized. Using virtual machines may pose problems for a normal user as
the installation and configuration of such virtual environments require administration
privileges, and most supercomputers do not provide them by default. Our technique,
instead, resides entirely in the user space, and does not suffer from this limitation.

9 Conclusions and Future Work

In this paper, we presented an innovative technique to address the issue of debugging
applications on very large number of processors without consuming large amount of
resources. In order to do this, we extended and integrated CHARMDEBUG, a debugger
for CHARM++ applications, with BigSim, an emulator for large machines. By combin-
ing these two systems, and solving the resultant challenges in scaling and integration,
we were able to provide the user a seamless debugging approach that uses much fewer
processors than those requested by the user. This is accomplished by internally allo-
cating multiple virtual processors inside each physical processor. We demonstrated the
feasibility of this approach by studying the virtualization overhead with real world ap-
plications. We showed examples of the debugger used on many processors, displaying
information about objects, breakpoint, and the content of each virtual processor. Fur-
thermore, we also extended this technique to applications written in MPI, one of the
most popular parallel programming model.



With the co-existence of multiple virtual processors inside the single address space
of a physical processor, some memory operations have been disabled. For examples,
searching for memory leaks. This and other operations require the debugger to disam-
biguate which virtual processor allocated the memory. One approach would be to use
the same memory tagging mechanism described in [16] and cluster memory allocation
by virtual processor.

Another future work regards MPI. As we described in section 5, currently CHARM-
DEBUG focuses primarily on applications written in CHARM++. While it can debug
MPI applications using the AMPI implementation of the MPI standard, we realize that
for a programmer debugging his application there may be unnecessary overhead. For
the future, we are considering possible extensions to provide a more natural debugging
also for MPI programs.
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