is global (and static) variables.

Automatic MPI to AMPI Program Transformation

Stas Negara', Kuo-Chuan Pan?, Gengbin Zheng', Natasha Negara®,
Ralph E. Johnson!, Laxmikant V. Kalé!, Paul M. Ricker?

'Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
{snegara2, gzheng, rjohnson, kale } @illinois.edu

2Department of Astronomy
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
{kpan2, pmricker} @illinois.edu

3Department of Computing Science
University of Alberta
Edmonton, Alberta T6G 2E8, Canada
negara@ualberta.ca

Abstract

Adaptive MPI is an implementation of the Message Pass-

ing Interface (MPI) standard. AMPI benefits MPI programs
with features such as dynamic load balancing, virtualiza-
tion, and checkpointing. AMPI runs each MPI process in
a user-level thread, therefore causing problems when an
MPI program has global variables. Manually removing the
global variables in the program is tedious and error-prone.
In this paper, we present a tool that automates this task with
a source-to-source transformation that supports Fortran.
We evaluate our tool on a real-world large-scale FLASH
code and present preliminary results of running FLASH on
AMPI. Our results demonstrate that the tool makes it easier
to use AMPIL.

1. Introduction

Adaptive MPI [5] is an adaptive implementation and ex-

tension of MPI with migratable threads. AMPI includes a
powerful run-time support system that takes advantage of
the freedom of mapping virtual MPI processes (VPs) onto
processors. With this run-time system, AMPI supports such
features as automatic adaptive overlap of communication
and computation and automatic load balancing. It can also
support other features such as checkpointing [8] without ad-
ditional user code, and the ability to shrink and expand the
set of processors used by a job at runtime.

One obstacle for switching an MPI application to AMPI
These variables in the

MPI code cause no problem with traditional MPI imple-
mentations, since each process image contains a separate
copy. However, they are not safe in AMPI’s multi-threading
paradigm. AMPI VPs are executed as user-level threads,
many of which can run on one processor. Therefore, AMPI
run-time needs to ensure thread safety of the global vari-
ables in the MPI code by privatizing the global variables.
One approach is to manually remove global variables at
source code level. However, this process is mechanical and
sometimes cumbersome. In addition to this, there are sev-
eral other changes required to transform the original MPI
code to support dynamic load balancing in AMPI. For ex-
ample, a pack/unpack subroutine needs to be written to se-
rialize heap allocated user data so that it can be transfered to
a different processor. Another change is to rename the main
PROGRAM in Fortran to AMPI’s MPI_MAIN, which is used
as the entry point for an AMPI thread. In this paper, we
will present a source-to-source transformation tool for For-
tran programs that automatically does the above mentioned
tasks by parsing the original source files and transforming
them to run on AMPIL.

2. MPI to AMPI Transformation

Our tool automates the global variables privatization,
and other required changes for AMPI. It operates on MPI
programs written in Fortran 90 programming language. In
section 2.1 we describe code transformations required to
privatize global variables in a Fortran 90 program. Sec-
tion 2.2 presents a high level overview of how our tool is
implemented.

PROGRAM MyProgram
include ’"mpif.h’

MODULE GeneratedModule

TYPE GeneratedType
INTEGER :: counter = 0
END TYPE GeneratedType

END MODULE GeneratedModule

SUBROUTINE MPI_Main

USE GeneratedModule

INTEGER :: ierr include "mpif.h’
CALL MPI_Init (ierr) INTEGER :: ierr
CALL count_calls TYPE (GeneratedType) : var
CALL count_calls CALL MPI_Init (ierr)
CALL MPI_Finalize (ierr) CALL count_calls (var)
END PROGRAM MyProgram CALL count_calls (var)
CALL MPI_Finalize (ierr)
SUBROUTINE count_calls END SUBROUTINE MPI_Main
INTEGER :: counter = 0
counter = counter + 1 SUBROUTINE count_calls (var)
print %, 'I was called ’, counter, ’ times.’ USE GeneratedModule
END SUBROUTINE count_calls TYPE (GeneratedType) :: var

varscounter = var%counter + 1

print %, "I was called ’, var%counter, ' times.’

END SUBROUTINE count_calls

Figure 1. Example of the code transformation that privatizes the “saved” local variable counter of
the subroutine count_calls. The original code of an MPI program is on the left; the transformed
code, which can be executed on AMPI, is shown on the right.

2.1. Fortran Global Variables Privatization

Global variables are those variables that can be accessed
by more than one subprogram! (including several calls of
the same subprogram) and are not passed as arguments of
these subprograms. In Fortran 90 global variables are mod-
ule variables, variables that appear in common blocks, and
local variables that are saved (i.e. local variables that keep
their values between subprogram calls like static vari-
ables in C).

Privatizing global variables means giving every process
its own copy of these global variables. This happens auto-
matically in most MPI implementations, where each MPI
process is a separate operating system process, while AMPI
requires that it be ensured by the programmer. One way
to do this is, essentially, to put all of the global variables
into a large object (a derived type in Fortran, or struct
in C), and then to pass this object around between sub-
programs. Each process can be given a different copy of
this object. Figure 1 presents an example of privatizing the
global variable counter, which is the only global variable
in the original program (according to the Fortran standard,
the local variable counter is implicitly a save variable
because its declaration includes an initializer).

I'There are two kinds of subprograms in Fortran 90: subroutines and
functions. The main difference between them is that functions return val-
ues, while subroutines do not. Although we distinguish subroutines from
functions in the implementation of our tool, the differences between them
do not affect the concept of global variables. Therefore we refer to both
these entities by the same word - subprograms.

A more detailed description of the global variables pri-
vatization procedure implemented by our tool is as follows.
First, a new derived type is declared in a new module. This
derived type contains a component for every global variable
in the program. Every MPI process has its own instance of
this type. A pointer to this type is passed as an argument to
every subprogram. Throughout the program, every access
to a global variable is replaced with an access to the corre-
sponding field of the derived type. Finally, the declarations
of global variables are removed from the program.

2.2. High Level Tool Overview

We implemented global variables privatization for For-
tran using the refactoring infrastructure in Photran, an
Eclipse-based [2] Integrated Development Environment
(IDE) for Fortran [6]. Although the tool is intended to
be used as a preprocessor immediately before compilation
(so the programmer never sees the privatized version of
the program), it is also accessible as a code transforma-
tion within the IDE. The privatization procedure proceeds
in four passes:

1. Stubs are generated for the derived type and the mod-
ule that contains this type. Their names should not
conflict or shadow names of other entities in the pro-
gram.

2. Subprograms are processed. An extra parameter is
added to each subprogram and each call site within

1300 T T
J’\ ‘Without Migration ——

With Migration ---»---
X \
1250 Y

1200

Computation time (sec)

1150 | 4

1100 | 8

.

1050 - L L
3 4 5

Vinual processors/ physical processors

0.09 T T

0.08

0.05 | / -

Improvement (%)

0.04 |- / |

0.03 4 b

0.02 - L L
3 4 5

Vinual processors/ physical processors

Figure 2. Left: Computation time versus the virtual processors to physical processors ratio. Right:
The improvement by object migration versus the virtual processors to physical processors ratio.

its body. Components for save variables are inserted
into the derived type, accesses to these variables are
replaced with accesses to the corresponding derived
type components, and finally, the save variables are
deleted from the subprogram.

3. Common blocks are eliminated in a manner similar to
save local variables.

4. Module variables are eliminated similarly.

5. Packing/unpacking subroutine is generated to enable

migration of MPI processes between processors?.

3. Evaluation

We evaluated our tool on the large-scale project
FLASH [3]. FLASH is a parallel, multi-dimensional code
used to study astrophysical systems, including compressible
hydrodynamics, magneto-hydrodynamics (MHD), or spe-
cial relativitistic hydrodynamics (RHD) [4, 1]. Many astro-
physical environments are highly turbulent, e.g. star form-
ing molecular clouds, accretion disks, etc., and have struc-
ture on scales varying from large scale, like galaxy clus-
ters, to small scale, like active galactic nuclei, in the same
system. Thus, load balance issue becomes critical in re-
cent computational astrophysics research, which makes it
an ideal case for AMPI and its dynamic load balancing ca-
pability.

The FLASH code is written mainly in Fortran 90 and
parallelized using MPIL. It is essentially a collection of

2Current version of our tool does not generate code to migrate complex
types (e.g. linked lists).

code pieces, which are combined in different ways to pro-
duce different simulation problems. For example, FLASH
provides two types of grid structures that can be used
for different geometries: a uniform grid and a block-
structured adaptive mesh refinement (AMR) grid based on
the PARAMESH library. We applied our tool on individual
simulation problems (e.g. Sedov-Taylor), which are gener-
ated by a Python setup script that makes part of the FLASH
distribution. Our tool works on a “pure” Fortran code, i.e.
the code should not contain preprocessor directives. There-
fore, before applying our transformation tool, we ran a pre-
processor on the source code of the considered simulation
problem. In particular, we transformed a simulation prob-
lem, Sedov-Taylor explosion, to AMPI and evaluated it on
the Abe cluster at the National Center for Supercomputing
Applications (NCSA).

3.1. The Sedov-Taylor Problem

The Sedov-Taylor explosion [7] is a common test prob-
lem for strong shocks and non-planar symmetry. The prob-
lem is set up using a delta function initial pressure pertur-
bation in an uniform medium. For the first test, only two-
dimensional fluids are considered.

3.2. Preliminary Results

With the automatically transformed code that has all
global varaibles removed, the program runs fine on AMPI
with more than one virtual processor on a physical proces-
sor, and produces correct physics output. We further tested
the performance by applying AMPI’s load balancing. We
varied the ratio of virtual processor to physical processor

%)

Usage Percent (

Time for object migration

0-50 50-100 100-150 150-200 200-250 250-300 300-350 350-400 400-450 450-500 500-550 550600 600650 650-700 700-750 750-800 800-B50 850900 900-950 950-1000 1000-1050 1050-1100 1100-1150 1150-1200 1200-1250 1250-1277
Time (sec)

Figure 3. The overall CPU utilization over time. CPU utilization is averaged by every 50 s and traced
by Projections. Object migration routine is called for every hundred steps in total 576 steps, and
the corresponding time is marked by gray lines. The first load balancer is GreedyLB, others are
RefineLB. The significant usage increment after the first load balancing is observed at 240 s.

and compared the performance with and without load bal-
ancing. The highest AMR level is set to 8 and run with
16 physical processors on NCSA Abe cluster for 483 steps.
Figure 2 shows the computation time and the improvement
with load balancing. In our experiments, we changed the
virtual processors to physical processors ratio from 3 to 5
and monitored the computation time in the evolution stage
of the Sedov-Taylor problem. A load balancer is called for
every hundred steps. The first load balancer used is the
Greedy load balancer which aggressively rebalances load
by mapping AMPI threads to processors from scratch, and a
refinement-based load balancer is used in the following load
balancing steps. As shown in figure 2 (right plot), the im-
provement increased from 3% to 8% when the virtual pro-
cessor to physical processor ratio is increased to 4.

Figure 3 shows the overall CPU utilization across all pro-
cessors in one simulation. In this simulation on 16 physical
processors, each processor has four AMPI virtual proces-
sors. The program calls the load balancing for every hun-
dred steps. A significant improvements is observed at the
time right after the first load balancing as shown in figure 3.
The overal CPU utilization is increased from 55% to 66%,
and remains stable throughout the rest of the run.

4. Future work

We plan to extend our tool such that it automatically gen-
erates the complete packing/unpacking subroutine for load
balancing (currently it does not handle complex types like
linked lists). Also, we would like to minimize the computa-
tional overhead introduced in the transformed code. We are
going to continue our performance evaluation. In particular,
we would like to consider more complex and larger prob-
lems, which are expected to be inherently more load imbal-
anced, and, consequently, could benefit more from dynamic
load balancing offered by AMPI. Additionally, we are go-

ing to employ more sophisticated load balancers that could
further improve the resulting performance.

Acknowledgments

This work was partially supported by the Institute
for Advanced Computing Applications and Technologies.
FLASH was developed largely by the DOE-supported
ASC/Alliances Center for Astrophysical Thermonuclear
Flashes at the University of Chicago.

References

[1] A.Dubey, L. B. Reid, and R. Fisher. Introduction to flash 3.0,
with application to supersonic turbulence. Physica Scripta,
T132:014046, 2008.

[2] Eclipse Foundation. http://eclipse.org.

[3] ASC Center for Astrophysical Thermonuclear Flashes.
http://flash.uchicago.edu/website/home/.

[4] B. Fryxell et al. Flash: An adaptive mesh hydrodynamics
code for modeling astrophysical thermonuclear flashes. ApJS,
131:273, Nov 2000.

[5] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé. Performance
evaluation of adaptive MPL. In Proceedings of ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Pro-
gramming 2006, March 2006.

[6] Photran - An Integrated Development Environment for For-
tran. http://www.eclipse.org/photran/.

[7]1 L. 1. Sedov. Similarity and Dimensional Methods in Mechan-
ics. 1959.

[8] G. Zheng, C. Huang, and L. V. Kalé. Performance evaluation
of automatic checkpoint-based fault tolerance for ampi and
charm++. ACM SIGOPS Operating Systems Review: Oper-
ating and Runtime Systems for High-end Computing Systems,
40(2), April 2006.

