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Abstract— Large parallel machines with hundreds of thou-
sands of processors are being built. Recent studies have shown
that ensuring good load balance is critical for scaling certain
classes of parallel applications on even thousands of processors.
Centralized load balancing algorithms suffer from scalability
problems, especially on machines with relatively small amount
of memory. Fully distributed load balancing algorithms, on the
other hand, tend to yield poor load balance on very large
machines. In this paper, we present an automatic dynamic
hierarchical load balancing method that overcomes the scala-
bility challenges of centralized schemes and poor solutions of
traditional distributed schemes. This is done by creating multiple
levels of aggressive load balancing domains which form a tree.
This hierarchical method is demonstrated within a measurement-
based load balancing framework in Charm++. We present
techniques to deal with scalability challenges of load balancing at
very large scale. We show performance data of the hierarchical
load balancing method on up to 16,384 cores of Ranger (at TACC)
for a synthetic benchmark. We also demonstrate the successful
deployment of the method in a scientific application, NAMD with
results on the Blue Gene/P machine at ANL.

I. INTRODUCTION

Parallel machines with hundreds of thousands of processors
are already in use. It is being speculated that by the end
of this decade, Exaflop/s computing systems that may have
tens of millions of cores will emerge. Such machines will
provide unprecedented computing power to solve scientific
and engineering problems. Modern parallel applications which
use such large supercomputers often involve simulation of
dynamic and complex systems [1], [2]. They use techniques
such as multiple time stepping and adaptive refinements which
often result in load imbalance and poor scaling. For such
applications, load balancing techniques are crucial to achieve
high performance on very large scale machines [3], [4].

Several state-of-the-art scientific and engineering applica-
tions such as NAMD [1] and ChaNGa [5] adopt a centralized
load balancing strategy, where load balancing decisions are
made on one specific processor, based on the load data instru-
mented at runtime. Since global load information is readily
available on a single processor, the load balancing algorithm
can make excellent load balancing decisions. Centralized load
balancing strategies have been proven to work very well on
up to a few thousand processors [4], [6]. However, they face
scalability problems, especially on machines with relatively
small amount of memory. Such problems can be overcome by

using distributed algorithms. Fully distributed load balancing,
where each processor exchanges workload information only
with neighboring processors, decentralizes the load balancing
process. Such strategies are inherently scalable, but tend
to yield poor load balance on very large machines due to
incomplete information.

It is evident that for petascale/exascale machines, the num-
ber of cores and nature of the load-imbalance problem will
necessitate the development of a qualitatively different class
of load balancers. First, we need to develop algorithmically
efficient techniques because increasing machine and problem
sizes leads to more complex load balance issues. Load bal-
ancing can actually become a performance bottleneck if the
performance gain due to better load balance is offset by the
high cost of the load balancing process itself. Further, at
large scales, it might be impossible to store load information
that is used for making load balancing decisions on a single
processor. Hence, we need to develop effective techniques to
use information that is distributed over several processors. This
paper will present a load balancing strategy designed for very
large scale machines. It overcomes the scalability challenges
discussed above by exploiting a tree-based hierarchical ap-
proach.

The basic idea in our hierarchical approach is to divide
the processors into independent autonomous groups and to
organize the groups in a hierarchy, thereby decentralizing
the load balancing task. At each level, the processor at a
given node balances load across all processors in its sub-
tree and the root of the tree balances load across all the
groups. This method reduces the time and memory required
for load balancing since the groups are much smaller than
the entire set of processors. We present the following ideas
in this paper: techniques to construct the tree using machine
topology to minimize communication and improve locality; a
method that explicitly controls and reduces the amount of load
data aggregated to the higher levels of the tree; and a token-
based load balancing scheme to minimize the cost of migration
of tasks. We also demonstrate that this hierarchical approach
does not significantly compromise the quality of load balance
achieved, even though we do not have global load information
available at each load balancing group.

We demonstrate the proposed hierarchical approach
within a measurement-based load balancing framework in



CHARM++ [7], [8], which explicitly targets applications that
exhibit persistent computational and communication patterns.
Our experience shows that a large class of complex scien-
tific and engineering applications with dynamic computational
structure exhibit such behavior. To perform load balancing
on these applications, load balancing metadata (i.e. applica-
tion’s computational load and communication pattern) can be
obtained automatically by runtime instrumentation. It is also
important to note that the idea of our proposed hierarchical
approach may also apply to applications that do not exhibit
such patterns, for example, those expressed in master-workers
style, where the work load can be approximated by the number
of tasks in the task pool.

The remainder of the paper is organized as follows: Sec-
tion II discusses existing work for scalable load balancing
strategies. Section III describes CHARM++ and its load bal-
ancing framework, which is the infrastructure on which the
proposed hierarchical load balancers are implemented. Design
and implementation of the hierarchical load balancing method
is presented in Section IV. Performance results using the
hierarchical load balancers for a synthetic benchmark and
for a production scientific application, NAMD are provided in
Section V. Section VI concludes the paper with some future
plans.

II. RELATED WORK

Load balancing is a technique of distributing computational
and communication load evenly across processors of a parallel
machine so that no single processor is overloaded. It is a
challenging problem and has been studied extensively in the
past. Load balancing strategies can be divided into two broad
categories – those for applications where new tasks are created
and scheduled during execution (i.e. task scheduling) and those
for iterative applications with persistent load patterns.

Much work has been done to study scalable load balancing
strategies in the field of task scheduling, where applications
can be expressed through the use of task pools (a task is
a basic unit of work for load balancing). This task pool
abstraction captures the execution style of many applications
such as master-workers and state-space search computations.
Such applications are typically non-iterative.

Neighborhood averaging schemes present one way of solv-
ing the fully distributed scalable load balancing problem [9],
[10], [11], [12], [13], [14]. In these load balancing schemes,
each processor exchanges state information with other proces-
sors in its neighborhood and neighborhood average loads are
calculated. Each processor requests work from the processor
with the greatest load in its neighborhood, to achieve load
balance. Although these load balancing methods are designed
to be scalable, they tend to yield poor load balance on
extremely large machines or tend to take much longer time
to yield good solutions due to a great degree of randomness
involved in a rapidly changing environment [15].

Randomized work stealing is yet another distributed dy-
namic load balancing technique, which is used in some run-
time systems such as Cilk [16]. Recent work in [17] extends

this work using the PGAS programming model and RDMA to
scale work stealing to 8192 processors for three benchmarks.
ATLAS [18] and Satin [19] use hierarchical work stealing
for clusters and grids, both supporting JAVA programming on
distributed systems.

Several other hierarchical or multi-level load balancing
strategies [15], [20] have been proposed and studied. Ahmad
and Ghafoor [15] propose a two-level hierarchical scheduling
scheme which involves partitioning a hypercube system into
independent regions (spheres) centered at some nodes. At the
first level, tasks can migrate between different spheres in the
system; while at the second level, the central nodes schedule
within their individual spheres. Although our work shares a
common purpose with such work, we deal with scalability
issues of load balancing encountered at very large scale in the
context of production applications running on supercomputers.
Most of the previous work presents results via simulation
studies using synthetic benchmarks.

In the above load balancing srategies in the field of task
scheduling, it is often assumed that the cost associated with
migrating tasks is small, and once a task is started, it must be
able to execute to completion. This assumption is to avoid the
need to migrate a partially executed task when load balancing
is needed [17]. This assumption holds true for divide and
conquer and state-space search type of applications but not
for iterative scientific applications. For scientific applications,
a different class of load balancers is needed such as those in
CHARM++ [8], [21] and Zoltan [22]. These load balancers
support the migration of a task and associated data during
the lifetime of the task. Unlike the task scheduling problem,
migration of tasks and their data can be costly especially when
user data is large and migration occurs frequently. Therefore,
to reduce the excessive migration of tasks, these strategies
typically invoke load balancing in a “phase-based” fashion,
that is, load balancing happens periodically when needed.
These load balancing schemes are suitable for a class of iter-
ative scientific applications such as NAMD [1], FEM [23] and
climate simulation, where the computation typically consists of
a number of time steps, a number of iterations (as in iterative
linear system solvers), or a combination of both. Phase-based
load balancing strategies for iterative applications are the main
focus of this paper.

Hierarchical phased-based load balancing strategies are also
studied in the context of the iterative applications. Zoltan
toolkit web site [24] describes a hierarchical partitioning and
dynamic load balancing scheme, where different balancing
procedures are used in different parts of the parallel envi-
ronment. However, it mainly considers machine hierarchy of
clusters that consist of a network of multiprocessors, and
does not consider the performance issues involved when load
balancing on very large parallel machines.

In this paper, we focus on a hierarchical load balancing
scheme that is designed to scale on existing petascale ma-
chines. We aim at scientific and engineering applications that
exhibit persistent computational and communication patterns,
even in dynamically evolving simulations, such as those in



molecular dynamics applications or iterative solvers. The new
hierarchical load balancing scheme adopts an object migra-
tion approach when migrating encapsulated data and tasks
between processors. It takes advantage of the existing work
in CHARM++ for supporting object migration.

III. OBJECT-BASED LOAD BALANCING IN CHARM++
In our design of the hierarchical load balancing scheme,

we consider a petascale application as a massive collection of
migratable objects communicating via messages, distributed
on a very large number of processors. Migrating objects and
their associated work from an overloaded processor to an
underloaded processor helps in achieving load balance. Our
implementation takes advantage of the existing CHARM++
load balancing framework that has been implemented based
on such an object model [8].

Many load balancing strategies in CHARM++ are based on a
heuristic known as the principle of persistence. It posits that,
empirically, for certain classes of scientific and engineering
applications, when they are expressed in terms of natural
objects (as CHARM++ objects or threads), the computational
loads and communication patterns tend to persist over time,
even in dynamically evolving computations. This has led to the
development of measurement-based load balancing strategies
that use the recent past as a guideline for the near future. These
strategies have proved themselves to be useful for a large class
of applications (such as NAMD [4], ChaNGa [5], Fractogra-
phy3D [25]), up to thousands of processors. In measurement-
based load balancing strategies, the runtime automatically
instruments the computational load for each object and its
communication patterns and records them in a load “database”
on each processor. The advantage of this method is that
it provides an automatic application-independent method to
obtain load information without users giving hints or manually
predicting the load.

The run-time assesses the load database periodically and
determines if load imbalance occurs. Load imbalance can be
computed as:

σ =
Lmax

Lavg
− 1 (1)

where Lmax is the load of the most overloaded processor, and
Lavg is the average load of all the processors. Note that even
when load imbalance occurs (σ > 0), it may not be profitable
to start a new load balancing step due to the overhead of
load balancing itself. In practice, the load imbalance threshold
can be chosen based on a heuristic. Let us assume that the
load of the most overloaded processor after load balancing
is L′max. The gain from load balancing is equal to Lmax −
L′max. Load balancing should be done if the gain from load
balancing (Lmax − L′max) is greater than the estimated cost
of load balancing (Clb). That is:

Lmax − L′max > Clb (2)

When the run-time determines that load balancing would be
profitable, the load balancing decision module uses the load
database to compute a new assignment of objects to physical

processors and informs the run-time to execute the migration
decisions.

Most of the existing load balancing strategies used in
production CHARM++ applications are based on centralized
schemes. We have demonstrated the overheads of centralized
load balancing in the past in a simulation environment [8]. A
benchmark that creates a specified number of tasks, n on a
number of processors, p (where n >> p) was used. In the
benchmark, tasks communicate in a two-dimensional mesh
pattern. The load balancing module collects load informa-
tion for each task on every processor. Information per task
includes the task ID, computation time, and data for each
communication edge including source and destination task
ID, communication times and volume. Processor level load
information is also collected for each processor, including
number of tasks on each processor, processor’s background
load and idle time.

We measured the memory usage on the central processor
for various experimental configurations. The results are shown
in Table I. The memory usage reported is the total memory
needed for storing the task-communication graph on the cen-
tral processor. The intermediate memory allocation due to the
execution of the load balancing algorithm itself is not included.

No of tasks 128K 256K 512K 1M

Memory (MB) 61 117 230 457

TABLE I
MEMORY USAGE (IN MB) ON THE CENTRAL PROCESSOR FOR

CENTRALIZED LOAD BALANCING WHEN RUNNING ON 65, 536 CORES
(SIMULATION DATA)

As the results show, the memory overhead of storing the
load information in a centralized load balancing strategy
increases significantly as the number of tasks increases. In
particular, for an application with 1 million tasks running
on 65, 536 processors, the database alone requires around
450 MB of memory, which is non-trivial for machines with
relatively low memory. This clearly becomes a bottleneck
when executing a realistic load balancing algorithm on a
million core system with even more task units.

This motivated the work in this paper to design a hier-
archical load balancing scheme that allows the scaling of
load balancing strategies to very large number of processors
without sacrificing the quality of the load balance achieved. We
hope and expect that the techniques we present are of use to
other phase-based load balancing systems to solve scalability
challenges in load balancing.

IV. HIERARCHICAL LOAD BALANCING

The basic idea in our hierarchical strategy is to divide
the processors into independent autonomous groups and to
organize the groups in a hierarchy, thereby decentralizing the
load balancing task. For example, a binary-tree hierarchical
organization of an eight-processor system is illustrated in
Fig. 1. In the figure, groups are organized in three hierarchies.



At each level, a root node of the sub-tree and all its children
form a load balancing group.

Fig. 1. Hierarchical organization of an eight processor system

Generalizing this scheme, an intermediate node at level li
and its immediate children at level li−1 form a load balancing
group or domain, with the root node as a group leader. Group
leaders are in charge of balancing load inside their domains,
playing a role similar to the central node in a centralized load
balancing scheme. Root processors at level li also participate
in the load balancing process controlled by their group leaders
at level li+1. Processors in the subtree of the group leaders at
level li do not participate in the load balancing process at level
li+1.

During load balancing, processors at the lowest level of the
tree send their object load information to their domain leaders
(root processors) respectively. At each level, load and commu-
nication data are converted such that domain leaders represent
their entire sub-domains. In particular, load data are converted
so that it appears as if all objects belong to the domain leader,
and all “outgoing message” records from senders inside the
domain are now represented as messages from the domain
leader. With the aggregated load and communication database,
a general centralized load balancing strategy can be applied to
each individual sub-domain by its domain leaders.

When the tree is uniform for a domain leader, the size of
its load balancing sub-domains (i.e. the number of processors
in its subtrees) is the same. The centralized load balancing
strategy then distributes the load evenly to its sub-domains.
However, when the tree is not balanced for a domain leader,
every sub-domain should receive work proportional to its size.
This is done by assigning normalized CPU speeds to each
sub-domain (the sub-domain leader acts as a representative
processor of its domain) such that a smaller sized sub-domain
is represented by a slower CPU speed. CHARM++ centralized
load balancing strategies take these CPU speeds into account
when making load balancing decisions.

Our design goal for the hierarchical load balancing scheme
is to focus on the optimizations that reduce communication,
minimize memory usage, and limit data migration. We now
discuss these optimizations.

Topology-aware Tree Construction: The tree can be built in

several ways to take advantage of the topology characteristics
of the architectures. In particular, a tree can be built according
to the machine’s network topology to minimize communi-
cation overhead. The CHARM++ runtime has capabilities to
obtain information about the physical topology for some
classes of supercomputers such as IBM Blue Gene and Cray
XT machines [26]. This can be used to optimize the tree
construction for reducing communication. For example, for
a three-dimensional (3D) torus topology, the load balancing
domain can be constructed at the lowest level by simply slicing
the 3D torus along one dimension. The advantage of topology-
aware tree construction is in minimizing network contention
since processors are topologically close to each other in a
domain and the algorithms tend to reassign the work within
the domain as much as possible.

Load Data Reduction: As load information propagates to
a node at a higher level, the amount of load data increases
considerably since the domain size increases. Hence, much
larger memory is required on the higher level nodes to store the
integrated load database. Therefore, it is necessary to shrink
load data while propagating it to higher levels. Based on the
physical memory available on a processor and the application
memory requirements, we can calculate a limit on the memory
available for the load balancer (M̄ ). The amount of memory
needed for storing the load database can be calculated as:

m = N ∗ sizeof (ObjData) + C ∗ sizeof (CommData) (3)

where N is the total number of objects, C is the number of
communication records, ObjData is the data structure which
records the load data per object and CommData is the data
structure which records the communication data.

The runtime uses a memory usage estimator to monitor the
load data memory usage. When m > M̄ , load data needs to be
shrunk to fit in memory. Two strategies to reduce the memory
usage have been explored:
• At each level, communication data can be shrunk by

deleting some trivial communication records between ob-
jects. The heuristic applied is that it is more important for
the load balancing algorithm to optimize communication
of the most heavily communicating objects.

• When the amount of load data is prohibitively large at
a certain level, a dramatic shrinking scheme is required.
In this case, only the total load information (sum of all
object loads) is sent to the higher level and load balancing
at this domain switches to a different mode — “semi-
centralized load balancing”.

In the semi-centralized scheme, a group leader of a domain
does not make detailed migration decisions about which object
migrates to which processor. It only makes decisions on the
amount of load of a sub-domain to be transferred to another
sub-domain. It is up to the group leaders of each sub-domain to
independently select objects to migrate to other sub-domains
according to the decisions made by the parent processor.

Token-based Load Balancing: In the hierarchical load bal-



ancing scheme, one of the challenges is to balance load across
multiple domains, while at the same time, minimizing data
migration. Some hierarchical load balancing schemes (such
as [14]) balance the domains from bottom up. This method
incurs repeated load balancing effort when ascending the tree.
Even when each sub-tree is balanced, a higher level domain
will re-balance all the domains in its sub-tree. This behavior
can lead to unnecessary multiple hops of data migration across
domains before the final destination is reached, which is not
efficient.

Fig. 2. Hierarchical token-based load balancing scheme

Our load balancing scheme overcomes this challenge by us-
ing a top down token-based approach. As shown in Fig. 2, the
actual load balancing decisions are made starting from the top
level, after load statistics are collected and coarsened at the top
level. A refinement-based load balancing algorithm is invoked
to make global load balancing decisions among the domains.
When load balancing decisions are made, lightweight tokens
that carry only the objects’ workload data are created and sent
to the destination group leaders of the sub-domains. The tokens
represent the movement of objects from an overloaded domain
to an underloaded domain. When the tokens that represent the
incoming objects arrive at the destination group leader, their
load data are integrated into the existing load database on that
processor. After this phase, the load database of all the child
group leaders at the lower level domains are updated, reflecting
the load balancing decisions made on the higher level – new
load database entries are created for the incoming objects from
other domains, and load database entries corresponding to the
outgoing objects are removed from the database. This new
database can then be used to make load balancing decisions
at the current level. This process repeats until load balancing
reaches the lowest level.

At this point, all load balancing decisions have been made
when load balancing from the highest to the lowest level.
Tokens representing a migration of an object may have traveled
across several load balancing domains, therefore its original
processor needs to know which final destination processor the
token has traveled to. In order to match original processors
with their tokens, a global collective operation is performed
on the tree.

Deciding the number of levels: The general problem of

determining an optimal tree depends on factors such as the
use of varying branching factors and different load balancing
algorithms at different levels of the tree. For illustration,
we use a simplified example, where we assume that the
branching factor of the tree is same across all levels, and
a refinement load balancing algorithm (RefineLB) is applied
at each level of the tree. RefineLB uses an algorithm that
strives to reduce the cost of migration by moving only a few
objects from overloaded processors to underloaded ones so
that load of all processors gets close to the average. This is
done by examining every object on an overloaded processor
and looking for the best choice of an underloaded processor
to migrate the object to. For simplicity, we assume that there
are only a small number of overloaded processors in each
load balancing domain. The complexity of this algorithm is
O(GlogG+ Ni

G logG), where Ni is the number of migratable
objects at level i and G is the number of processors in the
domain. In this formula, O(GlogG) is the time it takes to
build an initial max heap of processor loads for overloaded
processors and O(Ni

G logG) is the time it takes to examine
objects on overloaded processors and update the max heap
with the decision of where the object moves.

At a certain level i from the top, the number of objects at
that level, Ni = N/Gi. Thus, the total cost of the hierarchical
load balancing algorithm is the summation of the cost on each
level of the tree (except the lowest level where there is no load
balancing):

O(
L−2∑
i=0

(GlogG+
N

Gi+1
logG)

where the number of levels, L = logGP + 1.
Compared to the computational cost, the communication

cost of the hierarchical load balancing algorithm is minimal, as
it involves only two rounds of tree reductions and broadcasts.
Therefore, this formula is useful to determine the optimal
number of levels of the tree for this particular case. As an
example, Fig. 3 shows a plot of computational overhead for
load balancing an application that has 1 million parallel objects
on 65, 536 processors for varying number of levels of the tree.
We can see that, with a three-level tree, the execution time of
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the algorithm is the lowest.
In practice, however, there are many factors that affect the

choice of number of levels as mentioned earlier. This general
problem of determining the optimal tree is beyond the scope
of this paper. However, intuitively, when the tree has fewer
levels, the quality of load balancing tends to be better since,
with increasing sub-domain size at lower levels, more global
information becomes available. In particular, when the tree
comes down to two levels (i.e. depth of one), hierarchical
load balancing becomes equivalent to the centralized load
balancing, however losing the benefits of multi-level load
balancing. Therefore, to achieve good load balance that is close
to the centralized load balancing algorithm, the heuristic for
building the tree is to maximize the branching factor at the
lower level to the point that the cost of the algorithm is just
affordable. This allows us to exploit the advantages of the
centralized load balancing algorithm to the extent possible at
the lowest level. In our experiments, we found a three-level
tree with high branching factor at the lowest level is generally
good.

V. PERFORMANCE RESULTS

One question that remains to be answered is whether
these benefits of decrease in memory usage and increase in
efficiency are attained by sacrificing the quality of the load
balance achieved. To answer this question, we compare the
hierarchical and centralized load balancing schemes using a
synthetic benchmark and a production application, NAMD. In
the next two sections, we show that the hierarchical load bal-
ancing strategy does not compromise application performance,
despite the fact that there is lack of global load information.

A. Synthetic Benchmark

This section offers a comparative evaluation between hi-
erarchical and centralized load balancers using a synthetic
benchmark. This benchmark provides a scenario where it is
possible to control load imbalance. We will call the benchmark
“lb test”. It creates a given number of objects, distributed
across all the processors. The number of objects is much larger
than the number of processors. The work done by each object

in each iteration is randomized in a parameterized range. At
each step, objects communicate in a ring pattern with neigh-
boring objects to get boundary data and do some computation
before entering the next step. All objects are sorted by their
load or computation time and this ordering is used to place
them on all processors assigning equal number of objects to
each. This placement scheme creates a very challenging load
imbalance scenario that has the most overloaded processors at
one end, and least overloaded processors at the other end.

Our test environment is a Sun Constellation Linux Cluster
called Ranger installed at the Texas Advanced Computing
Center. It is one of the largest computational resources in the
world. Ranger is comprised of 3, 936 16-way SMP compute
nodes providing a total of 62, 976 compute cores. All Ranger
nodes are interconnected using InfiniBand technology. The
experiments were run on 16, 384 cores, where a three-level
tree is optimal. Specifically, the tree for 16, 384 cores is built
as following: groups of 512 processors form load balancing
domains at the first (lowest) level and 32 such domains form
the second level load balancing domain. The same branching
factor of 512 at the lowest level is also used for building
three-level trees for 4, 096 and 8, 192 core cases. We use
a greedy-based load balancing algorithm at the first level
and a refinement-based load balancing algorithm (with data
shrinking) at the second level.

We first measured the peak memory usage for the load
database across all the group leaders for various experimental
configurations and compared with the centralized load balanc-
ing scheme. In these tests, the lb test program creates a total
of 1 million objects on varying number of processors. The
results are shown in Fig. 4 (left plot). Comparing with the
memory usage in a centralized load balancing strategy, the
memory usage of the hierarchical load balancer (HybridLB)
is significantly reduced. Furthermore, the maximum memory
usage of HybridLB decreases as the number of processors
increases, while the memory usage in case of centralized load
balancing remains almost the same. This is because with the
fixed problem size in these tests, when the number of processor
doubles, each domain has half the number of objects, and the
size of the object load database on each group leader reduces
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accordingly. In the case of centralized load balancing, however,
all object load information is collected on the central processor
regardless of the number of processors. Therefore, the size of
the load database in that case is about the same.

Fig. 4 (right plot) compares the load balancing time spent
in HybridLB and a greedy heuristic based centralized load
balancing strategy (CentralLB) for the same sized problem
with 1 million objects running on up to 16, 384 cores. The
results show that the hierarchical load balancer is very efficient
compared with the centralized load balancer. This is largely
due to the fact that given much smaller load balancing domains
and a smaller load balancing problem for each sub-domain to
solve, the load balancing algorithms run much faster. Further,
HybridLB exploits more parallelism by allowing execution of
load balancing concurrently on independent load balancing
domains.

We also compared the performance of lb test when using
the hierarchical and centralized load balancers and the results
are shown in Fig. 5. The first bar in each cluster shows the time
per step of lb test without load balancing. The other two bars
in each cluster represent the time per step after applying the
centralized and hierarchical load balancers, respectively. We
can see that HybridLB performs comparably to CentralLB.

B. NAMD

NAMD [1], [4] is a scalable parallel application for
molecular dynamics simulations written using the CHARM++
programming model. The load balancing framework in
CHARM++ is deployed in NAMD for balancing computation
across processors. Load balancing is measurement-based –
a few time-steps of NAMD are instrumented to obtain load
information about the objects and processors. This information
is used in making the load balancing decisions. Two load
balancers are used in NAMD:

1) A comprehensive load balancer is invoked at start-up
which does the initial load balancing and moves most
of the objects around.

2) A refinement load balancer is called several times
during the execution to refine the load by moving load

from overloaded processors and bringing the maximum
load on any processor closer to the average.

A greedy strategy is used in both load balancers, where we
repeatedly pick the heaviest object and find an underloaded
processor to place it on. This is repeated until the load of the
most overloaded processor is within a certain percentage of
the average. More details on the load balancing techniques
and their significance for NAMD performance can be found
in [6], [21].

Traditionally, the load balancers in NAMD have been cen-
tralized where the load balancing statistics are collected on a
certain processor (typically, processor 0) and this processor
is in charge of making the decisions. This is becoming a
bottleneck for very large simulations using NAMD on large
supercomputers. Load balancing can sometimes take as long
as a thousand time steps of the actual simulation. Fig. 6 shows
the time processor 0 takes to calculate load balancing solutions
in the centralized case. As we scale from 256 to 2, 048
processors, the time for refinement load balancing increases
by 275 times!
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Fig. 6. Increase in time for load balancing of NAMD as we scale to large
number of cores on Blue Gene/P (for comprehensive and refinement strategies)

The main driver, from the point of view of the NAMD user,
to deploy the hierarchical load balancing scheme, has been
to reduce the time for load balancing. We now describe the
process of using the hierarchical load balancing schemes in
this production code. For the hierarchical case, we build a tree
with three levels and eight sub-domains. The final selection of
the number of levels in the tree and the number of sub-domains
may seem arbitrary, but we observed good results with this
particular combination. To form each sub-domain, we simply
group consecutive processors together, using the processor ID
assigned by the CHARM++ runtime.

Since our hierarchical load balancing scheme applies cen-
tralized strategies within each sub-domain of the tree, this
allows NAMD to still use its optimized centralized load bal-
ancing algorithms, but within a much smaller sub-domain. We
still need to extend the existing comprehensive and refinement
algorithms so that they work well with a subset of processors
and relatively incomplete global information. Cross-domain
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Fig. 7. Comparison of time to solution for centralized and hierarchical load balancers for NAMD on Blue Gene/P

load balancing is done according to the semi-centralized load
balancing scheme described in Section IV. The root of the tree
makes global load balancing decisions about the percentages
of load to be moved from overloaded sub-domains to under-
loaded ones. The group leaders of overloaded sub-domains
make detailed load balancing decisions about which objects
to move.

To evaluate our new hierarchical load balancing strategy,
we ran NAMD with the standard molecular system used by
biophysicists for benchmarking, Apolipoprotein-A1 (ApoA1)
with PME enabled and a 2AwayXYZ decomposition. This
decomposition leads to approximately 113, 000 objects under
the control of the load balancer. All the runs were executed
on Intrepid, a Blue Gene/P installation at Argonne National
Laboratory. Intrepid has 40 racks, each of them containing
1024 compute nodes. A node consists of four PowerPC450
cores running at 850 MHz.

Fig. 7 (left plot) presents a comparison of the time spent in
load balancing between the centralized and the hierarchical
approach for the comprehensive load balancers. The load
balancing time in the centralized case does not increase
necessarily with the increase in number for cores because
heuristic techniques are being used. We can see that the hierar-
chical strategy outperforms the centralized scheme by a large
margin on all core counts (Note: the y-axis has a logarithmic
scale). For instance, on 2, 048 cores, the centralized approach
takes 173.71 seconds to balance the load. In contrast, the
hierarchical load balancer takes 32.23 seconds, which is a
speedup of 5.4. Larger the core count, higher is the speedup.
On 8, 192 cores, the hierarchical load balancers are faster by
145 times! The results for the refinement load balancing phase
are similar. Fig. 7 (right plot) compares the centralized and
hierarchical balancers for the refinement load balancer. The
highest absolute reduction in load balancing time occurs at
2, 048 cores, where the time taken reduces from 215.19 to
34.74 seconds, giving a speedup of 6.2. On 8, 192 cores, we
obtain the maximum speedup of 145.

We further demonstrate that the hierarchical load balancing
strategy performs no worse than the centralized strategy in
balancing the load in NAMD. Fig. 8 shows the time per step
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Fig. 8. Comparison of NAMD’s performance when using centralized versus
hierarchical load balancers (on Blue Gene/P)

performance of NAMD when the centralized and hierarchical
load balancers are used. On 512 cores, the simulation time
is 19.77 ms per step for the centralized load balancing and
19.89 ms per step for the hierarchical load balancing case,
showing negligible slowdown. Very similar results can be
observed from 1, 024 to 8, 192 cores. This shows that the
hierarchical load balancing strategy performs equally well in
balancing the load compared to the centralized load balancers,
while using less memory and taking significantly less time
in computing the load balancing decisions. We note that the
performance at 8, 192 cores is worse than that on 4, 096 cores
for both strategies. However, this is orthogonal to the issue of
load balancing and its discussion is out of the scope of this
paper.

VI. CONCLUSION

Load balancing for parallel applications running on tens of
thousands of processors is a difficult task. When running at
scale, running time for the load balancing algorithm and mem-
ory requirements for the instrumented data become important
considerations. It is impractical to collect information on a
single processor and load balance in a centralized fashion. In
this paper, we presented a hierarchical load balancing method
which combines the advantages of centralized and fully dis-



tributed schemes. The proposed load balancing scheme adopts
a phase-based load balancing approach that is designed for
iterative applications that exhibit persistent computational and
communication patterns. This hierarchical method is demon-
strated within a measurement-based load balancing framework
in CHARM++. We discussed several techniques to deal with
scalability challenges of load balancing which are found at
very large scale in the context of production applications.

We presented results for a synthetic benchmark and a
scientific application, NAMD on up to 16, 384 and 8, 192
cores respectively. Using hierarchical schemes, we were able
to considerably reduce the memory requirements and the
running time of the load balancing algorithm for the synthetic
benchmark. Similar benefits were obtained for NAMD and the
application performance was similar for the hierarchical and
centralized load balancers. In the future, we would like to
deploy the hierarchical load balancers in other applications.
We also plan to extend our hierarchical load balancing algo-
rithms to provide interconnect topology aware strategies that
map the communication graph on the processor topology to
minimize network contention. This is especially useful for
current supercomputers such as IBM Blue Gene and Cray XT
machines.
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[7] L. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent Object
Oriented System Based on C++,” in Proceedings of OOPSLA’93,
A. Paepcke, Ed. ACM Press, September 1993, pp. 91–108.

[8] G. Zheng, “Achieving high performance on extremely large parallel
machines: performance prediction and load balancing,” Ph.D. disserta-
tion, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2005.

[9] A. Corradi, L. Leonardi, and F. Zambonelli, “Diffusive
load balancing policies for dynamic applications,” in IEEE
Concurrency, 1999, pp. 7(1):22–31. [Online]. Available:
http://polaris.ing.unimo.it/Zambonelli/PDF/Concurrency.pdf

[10] A. Ha’c and X. Jin, “Dynamic load balancing in distributed system using
a decentralized algorithm,” in Proc. of 7-th Intl. Conf. on Distributed
Computing Systems, April 1987.
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