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Abstract

Network contention has an increasingly adverse effect on the performance of parallel ap-
plications with increasing size of parallel machines. Machines of the petascale era are forcing
application developers to map tasks intelligently to job partitions to achieve the best perfor-
mance possible. This paper presents a framework for automated mapping of parallel appli-
cations with structured communication graphs to two and three dimensional mesh networks.
We present several heuristic techniques for mapping 2D object graphs to 2D and 3D processor
graphs and compare their performance with other algorithms in literature.

We use the hop-bytes metric to evaluate and compare across different mapping strategies
and justify that it is more important to reduce the average hop-bytes than maximum dilation.
We test our algorithms on three scientific applications, MILC, POP and WRF and present per-
formance improvements of more than 15% in some cases on IBM’s Blue Gene/P machine. The
main contribution of this paper, is the automated mapping framework for a wide class of MPI
applications with structured communication graphs. This framework will save much effort on
the part of application developers to generate mappings for their individual applications.

1 Introduction
Should application programs be written taking the interconnection topology into account? The glib
and naı̈ve answer may be “Of course, yes!”. Yet, since the mid 1980’s until just a year or two ago,
the correct answer was “no”. It is significantly more challenging (and certainly more work) to take
the interconnection topology into account; so understanding the correct answer to this question is
important. Most interconnects since the mid 1980’s have used wormhole routing or its variants:
instead of storing and forwarding the entire message, or even large packets, at each of the hops
along the route, very short flits are forwarded along a route set up by the first flit. As a result, for



a message beyond a few hundreds of bytes in size, the latency is insignificantly affected by the
number of hops it traverses. This, combined with the relatively small number of nodes used, made
it a safe assumption to ignore the interconnection topology.

With the advent of large machines with toroidal topologies, such as the IBM Blue Gene/P at
Argonne National Lab (ANL) that has 40, 960 nodes, and Cray XT4/5 (Jaguar) at Oak Ridge Na-
tional Laboratory (12, 141 nodes), a new and somewhat subtle issue has made topology important
again, at least for some applications. While the benefits of wormhole routing remain relatively
unaffected; messages that traverse a large number of hops occupy a larger fraction of the available
bandwidth, and thereby increase the chance of contention in the network. However, contention on
the network might not affect overall application performance if communication is a small fraction
of the total execution time or if the application is latency tolerant. So, contention is a second order
effect and not all applications are affected by it. But for the applications that are affected, the
impact can be dramatic. We and a few other researchers, have demonstrated this effect, and have
brought it to the attention of the community.

It is therefore necessary now to undertake a research program aimed at topology aware mapping
of tasks to processors. Even though there has been significant research in related areas in early
1980’s, it was based on the metric of longest dilation; this metric is not a good match for the current
technological context, since contention is the main issue now. This paper demonstrates the utility of
hop-bytes, a metric we have been using. Secondly, this paper takes on a specific aspect of topology
aware mapping: how to assign tasks with two-dimensional (2D) near-neighbor communication
graphs, to the prevailing three-dimensional (3D) grid and torus topologies. It presents several
algorithms, some new and some known via the literature, and compares their performance using
the hop-bytes metric.

The main contribution of the paper, is a framework for automatic mapping of a wide class of
MPI applications with structured communication graphs. From pattern recognition of communi-
cation graphs to using different heuristics in different situations for mapping solutions, everything
is handled by the framework. Parallel applications can get performance improvements using map-
ping solutions from this framework without any changes to the code base. This framework will
save much effort on the part of application developers to generate mappings for their individual
applications.

This paper is organized as follows: Section 2 expands on the introduction, motivates the work
further and places it in perspective. Hop-bytes is established as a good metric for evaluation of
quality of mapping algorithms in Section 3. The two important steps for automatic mapping are
presented in the subsequent sections: Section 4 presents algorithms for identifying communication
patterns from profiling data. Sections 5 and 6 present mapping algorithms for 2D object graphs
to 2D and 3D processor meshes. Section 7 presents results on three applications with structured
communication: MIMD Lattice Computation (MILC), Parallel Ocean Program (POP) and Weather
Research and Forecasting Model (WRF).

2 Previous Work and Motivation
Research on topology aware mapping originated in the fields of graph embedding, circuit design
and parallel computing. Techniques that embed rectangular 2D grids into square 2D grids were
proposed to optimize VLSI circuits and significant results were obtained [1, 7, 11]. Techniques



from mathematics and circuit design are not always applicable to parallel computing. For example,
mapping research motivated by reducing the total area of circuit layouts tried to minimize the
length of longest wire [1]. As we shall show in subsequent sections, longest edge dilation might
not be the best metric for parallel machines.

In parallel computing also, the problem of mapping parallel programs onto parallel systems
has been studied extensively. Significant research was done on topology-aware mapping to restrict
communication to near-neighbors and optimize performance [14, 15, 17]. Techniques ranging from
physical optimizations to heuristic approaches were developed. Most of these techniques (heuristic
techniques especially) were developed specifically for hypercubes, shuffle-exchange networks or
array processors.

In recent times, several groups of application developers have used such techniques to improve
performance for their codes [3, 4, 5, 8, 10, 13]. The motivation for the work accomplished in
this paper is to relieve the application developers from doing the mapping. We are trying to build
an intelligent mapping framework which can automate the process of mapping of applications
to parallel machines. In this paper, we chose applications which have a structured communication
pattern. Several classes of applications in high-performance computing fall in this category ranging
from ocean simulations, weather simulations to lattice QCD simulations. The general mapping
problem is computationally equivalent to the graph isomorphism problem which belongs to NP,
neither known to be solvable in polynomial time nor NP-complete. Hence, we have developed
various heuristics to generate mapping solutions.

Another important contribution of this paper is the insight that total communication over the
network (quantified by hop-bytes) is a better metric for performance than maximum dilation of
messages on the network. Algorithms presented in this paper were developed in light of this idea.
Our work was also influenced by Yu et al. [18] and we compare the performance of our algorithms
with the ones in that paper. For completeness, we also implemented the step embedding algorithm
presented in [1] for VLSI circuits to compare with the algorithms developed by us.

3 Hop-bytes as an Evaluation Metric
The volume of inter-processor communication can be characterized by the hop-bytes metric which
is the weighted sum of message sizes where the weights are the number of hops (links) traveled by
the respective messages. Hop-bytes is an indication of the average communication load on each
link on the network. If a lot of messages travel multiple links, the total hop-bytes increase which
suggests increased likelihood of contention. Hop-bytes can be calculated by the equation,

HB =
∑n

i=1 di × bi ... (1)
where di is the number of links traversed by message i and bi is the message size in bytes for
message i and the summation is over all messages sent.

In VLSI circuit design and early parallel computing work, emphasis was placed on minimizing
the longest length of the wire which is referred to as the maximum dilation in mathematical terms.
We claim that reducing the largest number of links traveled by any message is not as critical as
reducing the average hops across all messages. An MPI benchmark was created to justify this
claim. Every pair talks with its six neighbors (two in each dimension) to create some background
communication. We then add one of these patterns: 1. Each rank sends two messages, one to a
neighbor three hops away and another to a neighbor six hops away (“avg: 1.88 max: 6” line on the
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Figure 1: Plots showing that average hops is an important factor guiding performance. Runs were
done on a 8× 8× 16 partition of BG/P

plots), or 2. Each rank sends a message to a neighbor nine hops away (“avg: 1.88 max: 9” line on
the plots). The “avg: 1 max: 1” line due to six near-neighbor messages is plotted as a baseline.

While the difference in the maximum hops between the two cases is three, the total hop bytes
is the same and hence, we expect to see similar performance. Figure 1 shows the results obtained
from running this benchmark. We ran the benchmark on ANL’s Blue Gene/P (BG/P) on 1, 024
nodes which form a 8 × 8 × 16 torus. Message size is varied from 4 bytes to 1 MB and multiple
trials are done for each point on the plot. Time for the entire communication pattern to finish is
recorded between barriers. For small messages, the max: 9 case does better than max: 6 cases
because only one message is sent in the first one whereas two are sent in the second case (alluding
to per-message overheads). For large messages, we see that the lines coincide confirming our
predictions that hop-bytes is a more important metric than dilation.

However, it is important to remember that hop-bytes is an approximate indication of the con-
tention created by an application since it does not capture the specific loads on each link. It is a
measure of the bytes the network has to deliver for an application to run to completion. So, infor-
mation about specific hot-spots on the network is not expressible through this metric. Actual load
on different links depends on the actual routing protocols used on a specific machine, hence it is
not usable as a metric to evaluate algorithms without doing actual runs.

We created an MPI benchmark to demonstrate that hop-bytes is a good metric overall but we
should still consider other factors such as routing protocols and hot-spots. In this benchmark, each
MPI rank is paired with a partner and all pairs send messages simultaneously. Both partners in a
pair call MPI Irecv, MPI Send and then MPI Wait. The pairs always have the same X and Y
coordinate on the torus. The benchmark is run in different modes depending on how the ranks are
grouped into pairs:

• avg: 1 max: 1 hop: Every rank is paired with one which is exactly one link away from it
along the Z direction.

• avg: 2 max: 2 hops: Every rank is paired with one which is exactly two links away from it
in the Z direction.

• avg: 2 max: 8 hops: Most ranks are paired with a partner which is one link away but one



Figure 2: Communication patterns along the Z dimension in the artificial benchmark
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Figure 3: Plots showing that maximum dilation can also impact performance. Runs were done on
a 8× 8× 16 partition of BG/P

pair is such that the distance between the partners is 8 links or hops. The average hops is 2.

Figure 2 shows the pairing of 16 nodes along the Z dimension. Figure 3 shows the results
from running the benchmark on 1, 024 nodes of BG/P. There are several observations to be made
from these plots. Small messages (less than 128 bytes) are not affected severely because there is
negligible contention. For messages greater than 256 bytes, a clear trend is that as the average
number of hops increases, the time increases significantly (note, the difference between avg: 1 and
avg: 2 lines and that the y-axis has a logarithmic scale). So average hop-bytes is a good indicator
of the contention created on the network.

Furthermore, when the maximum hops is different between two cases (avg: 2), the performance
worsens further. For a further diagnosis of this situation, we used the IBM Performance Monitor
library [16] to obtain information about the number of bytes passing through each node. Figure 4
shows the data obtained from BGP TORUS ZP 32BCHUNKS and BGP TORUS ZM 32BCHUNKS
which gives the number of 32 byte chunks passing through the +Z and −Z links of each
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Figure 4: HPM Counters Data for Z links

node. Since there is no communication in the
X and Y direction, counters for those are zero.
For these profiling runs, only 1, 024-byte mes-
sages were used.

The figure shows that when the maximum
hops is 8, more packets are sent along the
+Z links than the −Z links which leads to
a degradation in performance. This exercise
shows that subtle routing choices can affect
contention and lead to performance degrada-
tion. Since the maximum hops is not captured
by the hop-bytes metric, it is sometimes relevant to consider that as a factor affecting performance.
That said, since hop-bytes is still a good indicator of the communication traffic on the network, we
will use it as a basis for evaluation of mapping algorithms in the subsequent sections.

The next few sections will describe the various components of the automated mapping frame-
work. Two important steps in mapping of a parallel application are: 1. Obtaining the communica-
tion graph through profiling and identifying specific communication patterns in the communication
graph, 2. Depending on the communication patterns identified, using different heuristics in differ-
ent cases to obtain mapping solutions.

4 Identifying Communication Patterns
Automatic topology aware mapping, as we shall see in the next few sections, uses heuristics for fast
scalable runtime solutions. Since different heuristics apply to different communication scenarios,
we need to look for identifiable communication patterns, if any, in the object graph. The first step is
obtaining the communication graph for an MPI application. Nodes of this graph are the MPI ranks
or processes in the program and edges exist between two nodes if the corresponding MPI ranks
communicate through messages. The communication graph is obtained by profiling libraries in the
IBM High Performance Computing Toolkit (HPCT) [9]. A test run of the application is performed
to obtain a n×n matrix of communication bytes exchanged between different pairs where n is the
total number of MPI ranks.

Many parallel applications have relatively simple and easily identifiable 2D, 3D or 4D com-
munication patterns. If we can identify such patterns, then we can apply better suited heuristic
techniques for such scenarios. We will now discuss an algorithm we have developed which takes
a communication graph as input and if it identifies a 1D, 2D, 3D or 4D communication pattern,
outputs the dimensions of the graph. We can also visualize the object graphs as we shall see in
Section 7.

We will explain the algorithm for identifying if the communication in an MPI application is a
near-neighbor stencil-like pattern with four neighbors in 2D. Algorithms for doing the same in 3D
and 4D are similar. We first begin by ensuring that the number of communicating neighbors for
each MPI rank is 5 or less. For a 2D communication pattern, a given rank would typically have four
communicating neighbors and may have some communication (through global operations) with
rank 0. If there is no wraparound, ranks on the boundaries may have fewer neighbors. Filtering
these aberrations, we choose a random rank and find its “distance” (difference between the ranks



Algorithm 1: Pseudo code for identifying structured communication graphs
begin

Data: CMn,n (communication matrix)
Result: isStrc (boolean, true if communication is structured)

dims[ ] (dimensions of the structured communication graph)

for i← 1 to n do
Find the maximum number of neighbors for any rank in CMi,n;

if max neighbors ≤ 5 then
// this might be a case of structured 2D communication
// select an arbitrary rank startpe find its distance from its neighbors
distance = difference between ranks of startpe and its top or bottom neighbor
for i← 1 to n do

// if the distance of all ranks from their neighbors is 1 or the same as
// calculated above, then
isStrc = true;
dim[0] = distance;
dim[1] = n/distance;

end

IDs) from its four neighbors. The distance from two of its neighbors (left and right) would be 1
and from its top and bottom neighbors would be one of the dimensions of the 2D grid. Then we
ensure for all other ranks that the distances from their respective neighbors are either 1 or the value
of distance obtained for the previously chosen random rank. If this holds true for all other ranks,
then the communication is indeed a uniform 2D near-neighbor pattern.

Algorithm 1 shows the pseudo code for identifying one possible 2D communication pattern.
Currently, this algorithm can only identify a stencil-like structured computation, but we plan to
enhance it, so it can identify other structured patterns such as communication with all 8 neighbors
around a rank in 2D. The code for identifying 3D and 4D near-neighbor patterns is similar. Once
the information about communicating neighbors has been extracted and identified, the mapping
algorithms can use it to map communicating neighbors on nearby physical processors.

5 2D to 2D Mapping Algorithms
This section describes different heuristics to map a 2D communication (object) graph to a 2D
processor graph (mesh). We assume that all arcs in the communication graph are of the same
weight and that the number of nodes in the two graphs is the same. Since we are targeting MPI
applications, so the number of ranks (nodes in the communication graph) is the same as the number
of processors (in the mesh) and hence the assumption. We will describe five different heuristics to
map a 2D object graph to a 2D processor graph. All of these heuristics are designed to optimize
different cases and as we shall see in the results section, they perform best for grids of different
aspect ratios.

Heuristic 1 - Maximum Overlap: This heuristic attempts to find the largest possible area of the
object graph which can overlap with the processor graph and maps it one-to-one. For the re-
maining area of the object graph and processor graph, we then make a recursive call to the



Algorithm 2: Maximum Overlap Heuristic (MXOVLP) for 2D to 2D: mapping algo1
begin

Data: objx (x dimension of the object graph)
objy (y dimension of the object graph)
procx (x dimension of the processor graph)
procy (y dimension of the processor graph)

Result: Mapobjx, objy (mapping of objects to processors)

if objx == procx then
do a one-to-one mapping and return;

if objx > procx then
map the area objy × procx;
mapping algo1(objx − procx, objy , procx, procy − objy);
copy the mapping into the main array and return;

else
map the area procy × objx

mapping algo1(objx, objy − procy , procx − objx, procy);
copy the mapping into the main array and return

end

K

L

M

N

M

L

Figure 5: Maximum Overlap (MXOVLP)

algorithm. For example, in Figure 5, an area
of M × L of the object graph can be mapped
directly to an area of the same dimensions in the
processor graph. Once this is done, a recursive
call is made for the object graph of size (K −
M) × L to be mapped onto a processor graph
of size M × (N − L). Algorithm 2 presents
the pseudo code for this heuristic (referred to as
MXOVLP in figures and tables).

Heuristic 2 - Maximum Overlap with Alignment: This is similar to Heuristic 1 but it tries to
align the longer dimension of the object graph with that of the processor graph (referred to as
MXOV+AL in figures and tables). This is done at each recursive call and yields a better mapping in
most cases. Heuristic 1 and 2 lead to dilation at each recursive call but as per our claim in Section 3,
as long as the average is low, we should obtain a good mapping. There are some optimization
possibilities in these two heuristics which will be explored in future work: After the mapping for
sub-graphs is done, at the end of each recursive call, it is possible to rotate the mapping for the
sub-graph by 180 degrees or flip it. There are several possibilities at each recursive call and it leads
to a combinatorial explosion. Hence this is out of the scope of this paper.

Heuristic 3 - Expand from Corner: In this algorithm, we start at one corner of the object grid
and enumerate all other objects by their increasing Manhattan distance from the chosen corner.
We then place these objects in the same order starting from the same corner of the processor
grid and moving in the same fashion from nearest to farthest neighbors (pseudo code for EXCO
in Algorithm 3 on the next page). The code for finding the next processor to place an object
on is fairly complicated but it is irrelevant to the discussion in this paper. Figure 6 shows how



Algorithm 3: Expand from Corner (EXCO) Heuristic for 2D to 2D mapping
begin

Data: objx (x dimension of the object graph)
objy (y dimension of the object graph)
procx (x dimension of the processor graph)
procy (y dimension of the processor graph)

Result: Mapobjx, objy (mapping of objects to processors)

int cox, coy, nox, noy, cpx, cpy, npx, npy, i;
nox = noy = npx = npy = 0;
for i← 1 to objy × objx do

cox = nox; coy = noy;
cpx = npx; cpy = npy;
Mapcox, coy = cpy × procx + cpx;
nextElem(cox, coy, objX, objY, &nox, &noy);
nextElem(cpx, cpy, procX, procY, &npx, &npy);

end
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Figure 6: Expand from Corner (EXCO)

we start from the upper left corner of the ob-
ject grid and map objects successively onto the
processor grid starting from the corresponding
corner.

Heuristic 4 - Corners to Center: This is simi-
lar to the third heuristic but in this case we start
simultaneously from the four corners of the ob-
ject grid and move towards the center (referred
to as COCE in figures and tables). This achieves
a better proximity for a larger number of objects since we start simultaneously from four direc-
tions. However, from some aspect ratios, as we move closer to the center, objects may get placed
further from their communicating neighbors.

Heuristic 5 - Step Embedding: This algorithm is an implementation of the step embedding tech-
nique (STEP) presented in [1]. Techniques in [1] were written to optimize chip layout and hence
try to minimize the length of the longest wire. Although that is not the main motivation for other
mapping algorithms, we wanted to compare our algorithms to this one in literature. Results showed
that the step embedding algorithm does well for some aspect ratios (Section 7).

5.1 Time Complexity
All the algorithms presented in the previous subsection visit each node in the object graph only
once and decide on its mapping. Hence, all of these heuristics have a time complexity of O(n)
where n is the number of objects to be mapped. In the era of petascale machines with hundreds of
thousands of cores, it is crucial to use linear running time algorithms for mapping and all presented
heuristics adhere to that.



Object Grid Proc Grid MXOVLP MXOV+AL EFC COCE STEP OTHER

6× 5 10× 3 296 296 352 260 284 244
8× 4 4× 8 256 208 304 272 256 208
5× 9 9× 5 392 304 432 444 432 584
14× 3 6× 7 320 292 620 432 328 304
8× 9 12× 6 692 704 848 692 708 516

Table 1: Hops for different object and processor grids using different heuristics

Figure 7: Mapping of a 6× 5 to 10× 3 grid using MXOVLP, MXOV+AL, EFC, COCE, STEP

5.2 Mapping Solutions
This section evaluates the mapping algorithms presented above. We use the hop-bytes metric to
compare across them. For simplicity, we assume that all messages are of the same size and hence,
we drop the message size term and just use the total number of hops traversed. We compare the four
heuristics with the step embedding technique (STEP) in [1] and the folding techniques (OTHER)
in [18].

Table 1 shows the total theoretical hops for the different algorithms assuming that communica-
tion is 2D near-neighbor and structured. We chose some representative object and processor grids
with different aspect ratios which cover a lot of different possible cases. The maximum overlap
with alignment heuristic (MXOV+AL) gives the best solution in most cases. The fourth heuristic,
COCE which expands from all corners towards the center, does a lot better than others for the first
and fifth case. The step embedding technique from VLSI design is worse than the at least one
heuristic that we have developed for all the cases above. The folding techniques from [18] perform
better than the new heuristics in the first and last case and we will try to incorporate those ideas
into our techniques.

Figures 7, 8 and 9 present mappings of the first three cases pictorially. The five 2D grids in
each figure are the mappings of the object graphs onto the processor graphs based on the five
heuristic algorithms: MXOVLP, MXOV+AL, EFC, COCE and STEP. The dots connected by
lines represent one row each of the object graph and how it gets mapped to the processor graph.



Figure 8: Mapping of a 8× 4 to 4× 8 grid using MXOVLP, MXOV+AL, EFC, COCE, STEP

Figure 9: Mapping of a 5× 9 to 9× 5 grid using MXOVLP, MXOV+AL, EFC, COCE, STEP

6 2D to 3D Mapping Algorithms
Some of the largest and fastest supercomputers in the top500§ list today have a 3D torus or mesh
interconnect. So, in order to use our mapping algorithms on these real machines, we need to
develop algorithms to map 2D communication graphs to 3D processor topologies. Algorithms
presented in this section use the 2D to 2D mapping algorithms developed in the previous section.
IBM Blue Gene machines allow the user to specify a mapping file with the job submission script
which can be used to explicitly place MPI ranks on processors.

We present two heuristics for mapping 2D communication graphs to 3D processor graphs. One
is more general than the other, in that it is suitable for both mesh and torus topologies.

Figure 10: Stacking and Folding

Heuristic 1: Stacking: The general idea is to
use the algorithms developed in the previous
section to map 2D object graphs to 2D topolo-
gies. We find the longer dimension of the 2D
object graph and split the object graph along
that into a number of smaller ones. The num-
ber of smaller graphs equals the smallest di-
mension of the 3D processor graph. We then

§ http://top500.org/lists/2009/06



take the first piece and map it onto a plane perpendicular to the smallest dimension of the 3D graph.
For this mapping, we use the best heuristic for mapping the specific 2D graph to the 2D grid. We
then use a simple translation to map all pieces to consecutive planes. For example if we wish to
map a 32× 8 object grid onto a 8× 8× 4 processor grid, we split the longer dimension 32 into 4
pieces (the smallest dimension of the processor graph) and then map a 8×8 object graph to a 8×8
processor graph.

Heuristic 2: Folding: If the processor topology is a 3D mesh, then in the previous heuristic, el-
ements at the boundaries of splitting are separated in the processor graph. To avoid this, we use
a more general strategy where we always fold the 2D graph like a paper and place the folded
parts perpendicular to the smallest dimension. To achieve this, once we obtain the mapping for
one plane, instead of a simple translation, we flip the mapping by 180 degrees for every alternate
plane. Figure 10 shows the stacking and folding heuristics to map a 2D graph to a 3D torus or
mesh.

7 Application Results
Using the algorithms developed in the previous sections, we attempted topology aware mapping
of a few scientific applications. The three applications we used are MILC, POP and WRF. All
performance runs were done on the IBM Blue Gene/P machines at Argonne National Laboratory
and IBM T. J. Watson Research Center.

7.1 Applications
A brief description of the applications and input sets used in the paper follows. MILC represents
a set of codes developed by the MIMD Lattice Computation (MILC) collaboration used to study
quantum chromodynamics (QCD), the theory of strong interactions of subatomic physics [2]. It
performs simulations of four dimensional SU(3) lattice gauge theory on MIMD parallel machines.
We used ks imp rhmc which is the Dynamical RHMC code for staggered fermions. We used an
input grid of dimensions 32× 32× 32× 32 on 256 processors.

Parallel Ocean Program (POP) [6] is an ocean circulation model developed by Los Alamos Na-
tional Laboratory to solve three dimensional fluid motion equations on a sphere under hydrostatic
and Boussinesq approximations. The input we used is similar to what is usually used in produc-
tion runs of CCSM (Community Climate System Model). The input has a horizontal resolution of
one degree (a 320 × 384 grid). This code spends a significant amount of time in communication.
At 512 processors, roughly 80% of the time is spent in communication and MPI Allreduce is
responsible for the majority of this time.

WRF is a Weather Research and Forecasting Model [12]. This code is a next-generation meso-
cale numerical weather prediction system that is being designed to serve operational forecasting
and atmospheric research. For our experiments, we used the weather data from the 12 km res-
olution case over the Continental U.S. (CONUS) domain on October 24, 2001. The benchmark
simulates the weather for 3 hours using the data from a restart file.



Figure 11: Structured Communication Graphs of POP and WRF for 256 processors

VN mode SMP mode

Application Graph XYZT TXYZ 3DMAP XYZ FOLD 3DMAP

MILC 4× 4× 4× 4 2304 2304 2304 5376 4096 5376
POP 8× 32 2208 1632 672 1120 1056 1056
POP 32× 16 4032 2176 1088 3456 2560 2200
WRF 16× 16 1728 1152 832 1856 1344 1096
WRF 32× 32 9216 4096 2688 11648 4608 4376

Table 2: Total theoretical hops for the three applications on 256, 512 and 1, 024 processors

7.2 Identifying Communication Patterns
The pattern matching algorithm was successful in identifying communication patterns for all three
applications. MILC has a 4D communication pattern and the graph is 4 × 4 × 4 × 4 on 256
processors. POP has a 2D communication graph of 8× 32 on 256 processors and 32× 16 on 512
processors. WRF also has a 2D graph, of dimensions 16 × 16 on 256 processors and 32 × 32 on
1, 024 processors. Figure 11 shows visualizations of the 2D communication graphs as output by
the pattern matching library for POP and WRF. The radial and tangential directions in the graph
show the two dimensions of the object graph.

7.3 Quality of Mapping Algorithms
The hop-bytes metric is used to evaluate the quality of mapping algorithms developed in this paper.
We compare the mappings with the default XYZT and TXYZ mapping on IBM’s BG/P and with the
results from the algorithms in [18]. This comparison is done both by calculating the hops theoreti-
cally and by using IBM’s HPCT profiling tools [9] to get actual values by running the applications.
Table 2 shows the theoretical values of the total hops obtained for the various algorithms assuming
near-neighbor communication: XYZT is the default mapping on BG/P, TXYZ is the other layout
possible on BG/P, 3DMAP refers to the techniques developed in this paper and FOLD refers to the
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Figure 12: HPCT data for actual hops per byte for MILC, POP and WRF

algorithms presented in [18]. FOLD does not provide solutions for multiple cores per node and
hence we could only compare with it, in SMP mode.

Runs on BG/P were done both in the VN (using 4 cores per node) and SMP (using 1 core per
node) mode. Figure 12 shows the actual weighted hops (hops per byte averaged over all MPI ranks)
obtained from profiling data for MILC, POP and WRF. We can see that they correlate exactly with
the calculated theoretical hops. It is clear that topology aware mapping of MPI ranks to physical
processors is successful in decreasing the average hops per rank for all the applications. In case of
POP, we see an reduction of 63% in average hops from XYZT to 3DMAP in VN mode. WRF was
only run in the SMP mode because it uses OpenMP to create threads on each node. The average
hops for WRF reduce by 64% on 1, 024 and 2, 048 nodes which is quite significant and should lead
to a dramatic drop in the load on the network.

Now, it remains to be seen if the reduction in hops leads to an improvement in performance.
Let us study this on a per application basis. There is a reduction of 20% in the average hops per
rank for MILC in SMP mode and we see a corresponding reduction of 15% in the communication
time. This can be attributed to the reduction in time for MPI Wait. Communication forms only
5% of the execution time of MILC at this scale and hence, we do not see an improvement in overall
performance. Although there is more than 60% reduction in the hops for POP in VN mode from
XYZT to 3DMAP, we do not see an improvement in POP’s performance. Communication accounts
for 80% of the total execution time in POP. However, most of it is spent in MPI Allreduce
which cannot be optimized by a simple rearrangement of ranks on the torus. Optimizing this
requires optimization of the implementation of such global operations in MPI.

For the third application, WRF, using topology aware mapping, we were able to bring the
average hops per rank close to 1 (Figure 12). This suggests that most MPI ranks are sending
messages only 1 hop away and we should see performance improvements. When running on 256
nodes, we were able to reduce the average hops by 35% and the time spent in MPI Wait by 4%.
This leads to a 2% reduction in overall communication time. This does not lead to any overall
performance improvement. The results on 512 nodes are similar in spite of the reduction in hops.
However, when we ran WRF on 1, 024 nodes, average hops per rank diminished by 64% and
communication time reduced by 45% (attributed to reduction in time for MPI Bcast by 95%).
At 1, 024 nodes, communication is roughly 45% of the total time and hence we see an overall
performance improvement of 17%. On 2, 048 nodes, there is similar improvement in hops but
the communication time increases by 12%. We still obtain a performance improvement of 8%,
probably due to better utilization overall. Such performance improvement scan be quite significant



for the overall completion time of long running simulations. We expect that the gains when running
WRF on large installations will be even more.

It is important to reiterate the point made in Section 1 that the performance of a parallel ap-
plication is a complex function of various factors. The routing protocols, latency tolerance of the
application and fraction of time spent in communication can affect performance in various degrees.
Hence, a reduction in hop-bytes and a corresponding improvement in the communication behavior
of an application may not always lead to an overall performance improvement. However, learning
from the WRF results, we expect that as we run on larger partitions, communication time will be a
significant fraction of the overall execution time and hence the benefits from topology aware map-
ping will increase. We hope to have more scaling performance results to large processor counts for
the final version of the paper.

8 Conclusion
This paper presents a framework for automatic mapping of parallel applications with structured
communication graphs onto parallel machines with 3D mesh and torus networks. The two steps
involved in automating the process are: 1. obtaining the communication graph and identifying 2D,
3D or 4D patterns, 2. intelligent and fast heuristic solutions for mapping such graphs. We presented
several heuristic techniques which are comparable to and often better than other techniques in
literature. They also work on newer machines with multiple cores per node.

This paper makes several important contributions. We claim, aided by micro-benchmark results
that hop-bytes is a good evaluation metric for mapping algorithms. Maximum dilation which was
considered as the more important metric in VLSI design and early parallel computing work is
not as important on parallel machines though it can still impact performance in certain cases.
Several heuristic techniques for mapping 2D object graphs to 2D and 3D processor graphs have
been developed. These heuristics along with pattern identification techniques form a framework
for automatic mapping of a wide class of MPI applications with structured communication graphs.
This framework will save much effort on the part of application developers to generate mappings
for their individual applications.

Currently, we do not consider the actual amount of bytes communicated between ranks in
when designing our mapping heuristics which will be considered in the future. Of course, the
quest for better heuristics for near-optimal mapping is never-ending. The class of applications
which has not been targeted in this paper is that with unstructured communication. Examples of
such applications are molecular dynamics codes and unstructured mesh applications. We plan to
build on the framework developed in this paper by including techniques for mapping applications
with irregular communication.
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