
Team-based Message Logging: Preliminary Results

Esteban Meneses, Celso L. Mendes and Laxmikant V. Kalé
Department of Computer Science

University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
{emenese2, cmendes, kale}@illinois.edu

Abstract

Fault tolerance will be a fundamental imperative in the
next decade as machines containing hundreds of thousands
of cores will be installed at various locations. In this con-
text, the traditional checkpoint/restart model does not seem
to be a suitable option, since it makes all the processors roll
back to their latest checkpoint in case of a single failure in
one of the processors. In-memory message logging is an al-
ternative that avoids this global restoration process and in-
stead replays the messages to the failed processor. However,
there is a large memory overhead associated with message
logging because each message must be logged so it can be
played back if a failure occurs. In this paper, we introduce
a technique to alleviate the demand of memory in message
logging by grouping processors into teams. These teams
act as a failure unit: if one team member fails, all the other
members in that team roll back to their latest checkpoint
and start the recovery process. This eliminates the need to
log message contents within teams. The savings in memory
produced by this approach depend on the characteristics of
the application, the number of messages sent per computa-
tion unit and size of those messages. We present promising
results for multiple benchmarks. As an example, the NPB-
CG code running class D on 512 cores manages to reduce
the memory overhead of message logging by 62%.

1. Introduction

With the advent of clusters that comprise hundreds of
thousands of cores and with the exascale era on the horizon,
where that number will reach millions, one thing becomes
obvious: we will need to deal with failures. At that scale,
designing applications, middleware and operating systems
that tolerate the loss or misbehavior of one component is a
fundamental requirement.

The traditional way to cope with processor failure in the
High Performance Computing (HPC) community has been
to use checkpoint/restart. The state of the application is

saved with a certain frequency (which typically depends on
the mean time between failures of the system) and, in case
of a failure, the application rolls back to the previous check-
point and resumes from there. Although this approach is
commonly used, it has a serious disadvantage: all the pro-
cesses have to roll back even when only one out of the mil-
lion cores failed.

Another approach, known as message logging, reduces
this cost by saving more than the state of the application.
Message logging also stores every message sent during
the execution. Traditional formulations saved the message
data in stable storage, but in our optimized implementation
the data is saved in main memory and periodically check-
pointed to disk. In the case of a failure, only the process that
failed is rolled back. All other processes in the system may
send their logged messages to the failed process and con-
tinue executing. This approach presents various benefits.
First, processors that do not fail can continue their execu-
tion until they need data from a failing processor. Second,
a processor that requires data from a failed processor may
use less energy as it waits for the data to arrive. Third, be-
cause of our virtualized infrastructure in Charm++ [8], the
activity in the failing processor can be restarted in parallel
on the remaining processors.

The main drawback of message logging is its high over-
head in terms of memory usage. Since the messages have to
be stored in main memory to avoid an I/O operation for ev-
ery message and the corresponding increase in latency, the
message log increases the memory pressure. Sharing the
same memory between the user data and the message log
might disturb the data locality of the algorithm employed
by the application. Besides, as the system memory is ex-
hausted more quickly, it forces a more frequent checkpoint-
ing.

Another problem of message logging is the potentially
expensive protocols needed to guarantee that the recovery is
correct, leaving no inconsistent processes. One way to meet
this requirement is to implement a protocol where every
message is tagged with a number specifying its reception
order, via a handshake with the receiver. Enforcing these



Figure 1. Memory overhead of higher virtual-
ization ratio.

ticket numbers increases the latency in the communication,
demanding new strategies to reduce the impact on appli-
cation performance. For instance, in AMPI [6], processor
virtualization is used to alleviate this problem. In Figure
1 we see the behavior of the NPB-CG class B benchmark
running on 32 processors on an x86-based cluster. The hor-
izontal axis presents the iterations executed by the program,
while the vertical axis at the top is the memory overhead
and at the bottom is the elapsed time. We used the AMPI
version of these benchmarks. In AMPI, every MPI process
is implemented as a lightweight user-level thread, allowing
the creating of a number of virtual processors (VP) different
from the number of physical processors. Using only 32 vir-
tual processors (VP = 32) the program executes in 232.31
seconds. If we use 64 virtual processors (VP = 64) running
on the same 32 physical cores, we manage to improve the
execution time to 183.64 seconds. However, this change
also causes an increase in memory overhead, from 97.40
MB to 216.92 MB. As a result, increasing the virtualization
ratio in NPB-CG decreases execution time, but increases the
memory pressure.

We propose a new method to decrease the memory foot-
print of message logging by grouping the processors into
teams that will act as a unit when logging messages and dur-
ing recovery. The main idea is that only messages that go
across teams are stored in the log, while all the messages in-
ternal to the team are only ticketed to get their reception or-
der, but are never logged, i.e. only their metadata is stored.
Also, if one of the processors in the team fails, all the pro-

cessors in the team roll back and start the recovery. Thus,
this scheme represents a significant improvement over the
original message logging approach: while there is a slightly
higher roll back overhead in case of a failure, there is also a
concrete memory usage reduction in the forward path.

This paper starts by presenting a review of message log-
ging strategies in Section 2. In Section 3, we introduce the
fundamentals of team-based message logging and describe
what data structures are required to provide a correct re-
covery. The results of several experiments are offered in
Section 4. Finally, conclusions and future developments are
left for the final section.

2. Background

Message logging has been a very well known fault toler-
ance strategy since several decades ago. In this section we
survey the main contributions to this area.

The seminal paper by Strom and Yemini [10] presented
a recovery protocol for distributed systems based on mes-
sage logging and dependency tracking. Their protocols
avoid the undesirabledomino effect (which causes multi-
ple processors to roll back after the failure of another pro-
cessor) while asynchronously allowing computation, com-
munication, checkpointing and committing. They also
introduced the Piecewise Deterministic (PWD) assump-
tion, which states that all non-deterministic events can be
recorded in a log (along with the data for those events) and
this is enough to recreate these events in the same order
during recovery. In this way, the failed processor can be
brought up to date to a consistent state.

Johnson and Zwaenepoel [7] introduced the concept of
sender-based message logging, where every sent message is
logged involatile memory on the sender’s machine. Their
paper describes the data structures required to secure the
correctness of the protocols. All these structures revolve
around two different tickets associated with every message:
the send sequence number and the receive sequence num-
ber. These two numbers conform the metadata associated
with a particular message. They presented two basic proto-
cols and discussed the issues aboutorphan processes. We
say a process becomes orphan if during recovery its state is
not consistent with the rest of the processes anymore.

Manetho [5] was the implementation of these ideas in a
system that was able to reduce the protocol overhead (in the
case of a failure-free execution), providing at the same time
limited rollback and fast output commit. One key compo-
nent of this system was theantecedence graph, which was
in charge of recording the happens-before relationship be-
tween certain events in the computation.

Alvisi and Marzullo [1] described the three big families
of message logging algorithms: pessimistic, optimistic and
causal. A message logging algorithm is said to be pes-



simistic if a particular message is sent whenever there is
certainty that the message and all previously delivered mes-
sages have been logged. This restriction increases the la-
tency to send messages, since sending a message becomes
more cumbersome. On the other hand, an optimistic algo-
rithm does not wait until the message is logged to send it,
creating the possibility of having orphan processes during
recovery. This type of algorithm offers better performance
in the fault-free case but may have to cascade back during
recovery, potentially leading to unbound rollbacks and re-
quiring multiple past checkpoints to be stored. The third
group is the causal family, which does not create orphans
during recovery and does not need the process to wait to
send a message. However, its implementation is much more
complicated.

Several implementations of message logging protocols
over Message Passing Interface (MPI) library have been
developed by Cappelloet al. [2, 3, 9]. The well known
MPICH-V included the three different protocols (pes-
simistic, optimistic and causal) into the same library and
it was one of the first fault tolerant distributions of MPI.

3. Team-based Approach

In this section we describe a new method to reduce the
memory consumption of message logging schemes called
team-based message logging.

3.1. Basic Method

In Charm++, Chakravorty and Kalé [4] implemented
a pessimistic sender-based message logging scheme.
Charm++ is an object oriented parallel programming lan-
guage based on C++ classes. It provides a methodology
in which the programmer decomposes the data and com-
putation in the program without worrying about the num-
ber of physical processors on which the program will run.
The runtime system is in charge of distributing those objects
among the processors. The message logging protocol is also
implemented at the runtime level. Each object stores all the
messages it sends and keeps track of metadata using two
structures. TheSequenceTable stores the number of
messages the object has sent to every other object in the sys-
tem. To guarantee the execution of the messages in order,
every message has to have a ticket number, assigned by the
receiver. So, every objectγ also keeps aTicketTable
that logs which ticket is associated with a combination of
sender and sequence number for each message sent toγ.

Figure 2 shows the process to produce the metadata be-
fore sending a message. In this case, an object living on
processor A has to send a message to another object on pro-
cessor B. Before the actual send, a ticket is requested from
A and generated by B. Once the ticket has been received

Figure 2. Pessimistic sender-based message
logging.

by A, the object on A is able to send the message. This
increase in the latency of communication is the price one
pays for correctness in case of a failure. During recovery,
the messages are processed in the same order as they were
ticketed.

3.2. Reducing Memory Overhead

The intuition of the proposed method is very simple:
group the processors intoteams and avoid logging intra-
team messages. Only messages across teams will be logged.
However, if there is a failure in one processor of a particu-
lar team, all the members of that team have to roll back to
their previous checkpoint. In this way, we trade a reduction
in the message log size for an increase in work at recovery
time.

As straightforward as it seems, there are many complex-
ities to consider in the implementation of this method. Be-
fore sending a message from one object to another, we have
to ask for a ticket number, regardless of the team affinity
of the two parts involved. This ensures that messages are
replayed in the same sequence during recovery. Metadata
is always stored, even for messages within a team, but the
message itself might not be stored depending on what teams
the sender and receiver belong to. Along with all the data
structures described above, we included an extra data struc-
ture to keep all the information regarding intra-team com-
munication. We named this structure theTeamTable.

TheTeamTable stores metadata of messages to mem-
bers of the same group. It has the same architecture as the
TicketTable, i.e., it associates a combination of object
and sequence number with a ticket number. Moreover, the
TeamTable is also sender-based. This means that the in-
formation stored in this data structure corresponds to the
intra-team messagessent by the object. For instance, if
object α in processorA sends a message to objectβ in
processorB, and both A and B belong to the same team,
then objectα will store the tuple[< β, S >, T ] in the
TeamTable, whereS andT are the associated sequence
and ticket number for that particular message.



Figure 3. The team-based message logging
approach.

Saving these tuples is necessary to be able to make a cor-
rect recovery. Since the only source of non-determinism in
Charm++ is the message reception order, we need to guar-
antee that after a crash, the resent messages are processed
in the same order as before. Figure 3 depicts the different
cases that occur in practice. In the figure we see two teams,
X andY . ProcessorsA, B andC belong to teamX, while
processorD belongs to teamY . The messages represented
by solid arrows will be logged, since they cross the team
boundary. All other messages depicted by dotted arrows
are not logged because they are exchanged by objects on
processors of the same team. Now, suppose the processors
checkpoint and then a few messages are sent before proces-
sor C crashes. All types of messages, fromI to VIII need to
be replayed. Let us consider them case by case.

SinceA, B andC are all part of the same team, afterC

crashesA andB return to their previous checkpoint. As-
suming spare processors,C is also restarted from its last
checkpoint. Given thatC crashed, all its team information
is lost. The good news is all the other members of the team
roll back with it but maintain theTeamTable intact. This
means that metadata about messagesII andV is available
at processorsB andA, respectively. MessageI is regen-
erated during the recovery and its metadata is kept in both
A andB. A special case appears with messageV I, which
is a local message. All local messages save their metadata
in another processor, known as thebuddy. Thus, every pro-
cessor has a buddy processor that stores its checkpoint and
metadata related to local messages.

On the other hand, messages across groups are sent
again. MessageV II is stored in the log of processorD,
as is messageV III. MessagesIII and IV are regener-
ated during recovery and theTicketTable in processor
D contains all the metadata to make sure these messages
are ignored once they are received byD during recovery.

We keep the team size constant throughout the execution
of the application. Givenp processors, we divide them into

Figure 4. Memory overhead in Jacobi with dif-
ferent team sizes.

teams oft processors each. Thus, the team size in the team-
based approach offers a tradeoff between the checkpoint-
restart mechanism and the traditional message-logging. For
instance, ift is equal top we are in front of the checkpoint-
restart approach, whereas ift equals 1 then we are dealing
with the traditional message logging scheme.

Although we implemented the team-based approach us-
ing a pessimistic sender-based message logging, here we
claim it can be adapted to any other message logging
scheme. The intuition is to make the recovery unit not a
single processor, but a set of processors. Even if the proto-
col uses an optimistic or causal model, teams are suitable to
decrease the memory overhead.

4. Experimental Results

We start this section by presenting the different bench-
marks used in the experiments and describing the machine
where all the runs were made. Following that, we show sev-
eral results obtained with the new approach.

4.1. Benchmarks

We used the Abe cluster at NCSA (National Center for
Supercomputer Applications) to run all our experiments.
Abe consists of 1200 blades Dell PowerEdge 1955, each
blade having 8 cores for a total of 9600 cores. Every blade
(or node) is comprised of two Intel 64 (Clovertown) 2.33
GHz dual socket quad core chips. A total of 8 GB is avail-
able per node (1 GB per core). Although Abe has both
Infiniband and Ethernet interconnects, we only used Eth-
ernet: the available software layers supporting Infiniband
are not convenient for fault-tolerance experiments, because



Figure 5. Memory overhead in NPB-CG and NPB-MG with two team sizes.

they automatically kill the entire job when one of the pro-
cesses goes down.

Three different applications were selected as bench-
marks for this project. The first is a Jacobi relaxation
program, which is a stencil computation. It is written in
Charm++ and uses a three dimensional space. In every iter-
ation, each cell will update its value according to the values
of the six neighboring cells. The number of iterations is
specified by the user. We use a division of the matrix into
blocks and assign blocks to different processors. The two
parameters for this benchmark aren, the size of one side of
the matrix, andb, the size of the block.

Thanks to the ability of Charm++ to execute MPI pro-
grams using the Adaptive-MPI (AMPI) extension [6], we
were able to test some of the NPB benchmarks. Two dif-
ferent programs were tested for the experiments, CG and
MG. The Conjugate Gradient (CG) benchmark estimates
the largest eigenvalue of a sparse symmetric matrix using
an iterative method. On the other hand, Multi Grid (MG)
approximates the solution of a discrete three dimensional
Poisson equation. The class D problem was tested for both
codes.

4.2. Results

Using the Jacobi benchmark, we obtained the results in
Figure 4. The test was conducted on Abe withp = 256
processors. The configuration for the Jacobi problem was
n = 1536 andb = 64, which means the array of objects
had dimensions(24, 24, 24). The plot shows three different
team sizes, ranging from 1 to 16. We see that there is a ben-
efit in using teams, but that improvement is very similar in
the cases of team sizes 2, 4 and 8. The memory overhead
goes from 485 MB to 451 MB, which is a reduction of 8%.
However, if we use a team size of 16 then the memory foot-

print reduces even further to 298 MB, meaning a reduction
of 39%. The reason for this sudden change in the mem-
ory consumption is that the default mapping in Charm++
uses a particular distribution of the blocks into processors
that is not aware of the communication network and does
not cluster together, necessarily, objects that exchange alot
of messages. In this case, after crossing the threshold of
16 processors, the benefits become more evident, since the
nearest neighbor communication pattern of Jacobi and the
object distribution makes a higher fraction of the messages
to be transferred in the same team. Studying the effects of
different object assignments is part of our ongoing work.

Figure 5 presents at the left the results with the NPB-CG
benchmark class D. In this case, 512 cores were reserved
on Abe to run 512 different MPI processes. In other words,
the virtualization ratio is 1. Two different team sizes were
used in this case. Going from a team size of 1 to 16 makes a
huge difference for this benchmark. The memory overhead
of message logging plummets from 666 MB to 256 MB, for
a savings of 62%. Part of the big reduction comes from the
fact that NPB-CG is known to be communication bound and
then it makes a lot of sense to use the team-based approach
since it will save a significant amount of memory.

The NPB-MG benchmark was also run and produced a
significantly different results than NPB-CG. The right hand
side of Figure 5 corresponds to the NPB-MG memory over-
head. As NPB-MG is computation bound, the total reduc-
tion of the memory overhead came down from 77 MB to
67 MB, for a reduction of just 13%. This is not a substan-
tial reduction, and it illustrates that the utility of the team
approach depends on the characteristics of the benchmark.
Particularly, NPB-MG does not allow for a big reduction,
given its communication pattern.

Finally, the last experiment was designed to measure the
recovery time after a crash. Using the Jacobi application



Figure 6. Recovery time in Jacobi for different
team sizes.

with 64 processors, we inserted a processor failure after the
first checkpoint and measure how much time was required
to recover the failed processor. Figure 6 presents the re-
covery time for three different group sizes. When using no
teams at all, the program recovers in 3.73 seconds. When
using teams of 4 processors, the recovery is slower with
4.10 seconds and growing the team size to 16 increases the
recovery time to 4.86 seconds. These numbers illustrate
the tradeoff in the team-based approach: bigger teams de-
creases memory overhead but increases recovery time.

5. Conclusions and Future Work

We presented a modification to the traditional message
logging scheme that is able to reduce the memory pressure.
The tradeoff is a lower memory overhead for an increased
recovery time. Since the results are promising, we see sev-
eral opportunities to further improve this proposal.

First of all, we would like to group the processors into
teams using a more clever strategy. We could use the first
iterations of the application to profile the communication
pattern and create the teams accordingly. Objects exchang-
ing a lot of messages can be assigned to processors in the
same group. However, there is also a tradeoff between this
intelligent strategy and load balancing. We want to mini-
mize the number of messages logged, but we also want to
keep the load balanced to avoid hurting the performance of
the application.

Another focus of our future work will be the improve-
ment of performance for the recovery phase. Integrating the
parallel restart strategy [4] will more likely accomplish this
goal.

Besides reducing the memory footprint of message log-
ging, we are also interested in reducing the increased la-

tency due to the pessimistic model. Using a causal protocol
would bring a faster transmission time. We will combine
the two approaches to make a more efficient protocol that
can minimize the latency overhead of message logging.

Acknowledgments

This research was supported in part by the US De-
partment of Energy under grant DOE DE-SC0001845 and
by a machine allocation on the Teragrid under award
ASC050039N. The idea of partitioning the set of processors
to reduce the memory overhead in message logging came
first from a suggestion of Greg Bronevetsky.

References

[1] L. Alvisi and K. Marzullo. Message logging: pessimistic,
optimistic, and causal.Distributed Computing Systems, In-
ternational Conference on, 0:0229, 1995.

[2] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak,
C. Germain, T. Herault, P. Lemarinier, O. Lodygensky,
F. Magniette, V. Neri, and A. Selikhov. Toward a scalable
fault tolerant MPI for volatile nodes. InProceedings of SC
2002. IEEE, 2002.

[3] A. Bouteiller, P. Lemarinier, G. Krawezik, and F. Cappello.
Coordinated checkpoint versus message log for fault tolerant
mpi. Cluster Computing, IEEE International Conference on,
0:242, 2003.

[4] S. Chakravorty and L. V. Kale. A fault tolerance protocol
with fast fault recovery. InProceedings of the 21st IEEE In-
ternational Parallel and Distributed Processing Symposium.
IEEE Press, 2007.

[5] E. N. Elnozahy and W. Zwaenepoel. Manetho: Transparent
roll back-recovery with low overhead, limited rollback, and
fast output commit.IEEE Trans. Comput., 41(5):526–531,
1992.

[6] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé. Perfor-
mance evaluation of adaptive MPI. InProceedings of ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming 2006, March 2006.

[7] D. B. Johnson and W. Zwaenepoel. Sender-based mes-
sage logging. InIn Digest of Papers: 17 Annual Interna-
tional Symposium on Fault-Tolerant Computing, pages 14–
19. IEEE Computer Society, 1987.

[8] L. Kalé. The Chare Kernel parallel programming language
and system. InProceedings of the International Conference
on Parallel Processing, volume II, pages 17–25, Aug. 1990.

[9] P. Lemarinier, A. Bouteiller, T. Herault, G. Krawezik, and
F. Cappello. Improved message logging versus improved
coordinated checkpointing for fault tolerant mpi.Cluster
Computing, IEEE International Conference on, 0:115–124,
2004.

[10] R. Strom and S. Yemini. Optimistic recovery in distributed
systems.ACM Trans. Comput. Syst., 3(3):204–226, 1985.


