
Detecting and Using Critical Paths at Runtime
in Message Driven Parallel Programs

Isaac Dooley
Department of Computer Science

University of Illinois
idooley2@illinois.edu

Laxmikant V. Kale
Department of Computer Science

University of Illinois
kale@illinois.edu

Abstract

Detecting critical paths in traditional message pass-
ing parallel programs can be useful for post-mortem
performance analysis. This paper presents an effi-
cient online algorithm for detecting critical paths
for message-driven parallel programs. Initial imple-
mentations of the algorithm have been created in
three message-driven parallel languages: Charm++,
Charisma, and Structured Dagger. Not only does this
work describe a novel implementation of critical path
detection for the message-driven programs, but also
the resulting critical paths are successfully used as
the program runs for automatic performance tuning.
The actionable information provided by the critical
path is shown to be useful for online performance
tuning within the context of the message driven parallel
model, whereas it has never been used for online
purposes within the traditional message passing model.

1. Introduction

Critical paths are important paths through the exe-
cution of a parallel program. In the past, critical path
detection schemes were developed for some typical
message passing models such as PVM [4] and MPI [8].
These approaches record a distributed Program Activ-
ity Graph (PAG) as a program executes by storing
local portions of the PAG on each processor while
augmenting each message sent between processors
with information about the critical path leading up to
the message send. The critical path can be extracted
through a backwards traversal of the distributed PAG.

Although researchers have developed methods for
detecting critical paths within the message-passing
models of parallel computation, they have not pre-
viously detected critical paths at runtime within a
message-driven execution model of parallel computing.

In this work, we implement an efficient critical path
detection mechanism inside the Charm++ message-
driven distributed object system. The Charm++ pro-
gramming model has fundamental differences from the
more widely used approach of programming at the
level of communicating processors. These differences
require revisiting and adapting the known algorithms
for critical path profiling, but the differences also pro-
vide fertile new ground for novel uses of the resulting
critical path profiles. This paper describes both the
the implementation of critical path detection for the
message-driven programs and how the resulting critical
paths can be successfully used for online automatic
performance tuning and for other tasks.

We show that the critical path profiles obtained
online by our implementation can be used to auto-
matically tune the performance of a complicated real-
world quantum chemistry application, improving its
performance by 10.2%.

2. Message Driven Parallel Programs

The most widely used parallel programming model
for distributed memory systems is the message passing
model which has become standardized in MPI [3].
An alternative model is the message-driven execution
model. In this model, the programmer does not write
programs explicitly for a set of processors as is done
in MPI, but rather the programmer describes the com-
putation as a set of tasks whose computation is driven
by messages sent by other tasks. The tasks are mapped
onto the computational resources dynamically by the
runtime system.

The message driven execution model is a paradigm
that has proven to be successful for parallel program-
ming. Scientific simulation codes such as NAMD [1]
and OpenAtom [9] are written using this model. The
message driven approach could also be called data



driven because tasks are dynamically scheduled when
the prerequisite data (usually in the form of messages)
is available. Directed acyclic graphs (DAGs) can be
used to describe a program’s pattern of computation
and communication, with the edges in the graph repre-
senting the dependencies between all the computation
tasks in the parallel program. Tasks can be scheduled
in any order as long as all the dependencies for each
task have been satisfied before the task is executed. The
parallel runtime system can record the DAG when the
tasks in the program are executed.

A dynamic message driven program must therefore
include a scheduler responsible for executing tasks
once dependencies have been fulfilled. For this paper,
we focus on the Charm++ language [7] and two
languages that each extend it: Charisma and Structured
Dagger.

3. Program Activity Graph Terminology

As a parallel message-driven program executes, its
execution can be represented by a directed acyclic pro-
gram activity graph (PAG), composed of tasks and their
dependencies. This section defines specifically what a
program activity graph represents for message-driven
parallel programs. Figure 1 shows a small example
PAG composed of 8 tasks that ran on 4 processors.

Task: After its prerequisite dependencies have been
fulfilled, a task is executed by a scheduler on a single
processor. Each task may send messages that fulfill
dependencies for other tasks.

Task Prefix: A task prefix is the portion of a task
from its beginning to the point where a message is
sent or the task ends. There exist m+ 1 task prefixes
for each task which sends m messages. The weight of
each task prefix is the the execution time for the task
prefix.

Initial Task: Each program starts with the execution
of a single initial task.

Terminal Task: A terminal task causes the parallel
program to terminate.

Message Edge: A message edge represents a de-
pendency from a sending task prefix to the execution
of a task spawned by the message.

Program Order Edge: Other dependencies due to
sequencing requirements in the program are repre-
sented by program order edges. In a message-driven
system, these sequencing requirements could be im-
plemented as messages.

Program Activity Graph (PAG): A PAG represents
an execution of a parallel program, with one vertex
for each task prefix and a set of edges comprising the

dependencies between the task prefixes. The PAG is
therefore a directed acyclic vertex-weighted graph.

Task In-Degree: Each task is executed once a set of
messages have arrived and all other order dependencies
have been satisfied. The in-degree of a task is the
number of incoming message edges and program order
edges to the task. The in-degree for all non-initial tasks
is ≥ 1.

Task Out-Degree: Each task prefix either results
in the sending of a message, or the completion of the
task. Each message send or task completion can be the
start of a message edge or program order edge in the
program activity graph. The out-degree of each task
is the number of messages sent by the task, plus the
number of program order edges produced by the end of
the task. All non-terminal tasks have out-degree ≥ 1.

Path: A path is an alternating sequence of task
prefixes and edges in the PAG beginning with some
task prefix and ending with another task prefix, where
each task prefix is incident to both the edge that
precedes it and the edge that follows it in the sequence.

Path Duration: The path duration is the sum of the
node weights (task prefix execution durations) along
the path. The path duration represents the minimum
possible execution time of the path, with unlimited
processors and an infinitely fast network.

Critical Path (t):
For each task t in the PAG, its critical path is the

path of maximal path duration which ends at t and
starts at the initial task.

The path duration of the critical path for a phase
of an application represents a lower bound on the
execution time for the application phase. It does not
include any communication times along the path or
the computation times for other unrelated concurrent
tasks.

Critical Path Profile (t):
The critical path profile for any task t is the critical

path for t augmented with useful information about the
task prefixes comprising the path.

4. Algorithm for Determining a Critical
Path

To determine the critical path for a program exe-
cution, we use an approach similar to the approach
described in [5]. In both approaches, a distributed PAG
is constructed at runtime, but the exact details of what
is stored in the table is different. In our approach, each
processor maintains a table of all task prefixes that have
executed locally. Figure 2 shows an example of a PAG
and the local information stored on each processor. To
store the necessary information, an entry is added to



Legend

Task (Prefix)
Message

C

Processor 1

Processor 2

Processor 3

Processor 4

A

B

Time

Program Order
Dependency

Figure 1. Example timeline view of a parallel program activity graph. Task A represents an initial task that
multicasts a messages to two other processors. Task prefix B can execute once its message from A arrives.
Then task prefix B sends a message. Task C can only execute after three preceding tasks have completed.

In-Edge
(processor, 

Index)

2

Task Prefix 
Index

(2,2)
initial1

Processor 1

A

(1,1)3

In-Edge
(processor, 

Index)
Task Prefix 

Index

(1,1)
(1,1)

1
2

Processor 2

B

In-Edge
(processor, 

Index)

(3,1) or
(4,1)

1

2

Task Prefix 
Index

(1,1)

Processor 4

(1,2) or
(3,2) or

(4,2)
3

In-Edge
(processor, 

Index)
Task Prefix 

Index

(2,1)
(2,3)

1
2

Processor 3

C

Figure 2. The tables created on each of 4 pro-
cessors representing the PAG shown in Figure 3.
The specific entries for task prefixes with in degree
greater than zero depend upon the actual program
execution, but here all possibilities are shown.

the local processor’s table each time a message is sent
or when a task completes. Information that uniquely
identifies the sending task prefix is appended to each
message. Specifically, each message is augmented with
two values, one records the duration of the path that led
to the message send and a second uniquely identifies
the sender-task-prefix in the sending processor’s table.
Messages must also contain a field specifying the index
of the sending processor, but this field already exists
in all Charm++ messages.

The critical path is determined for each task prior
to its execution once all incoming dependencies have
been satisfied. The path descriptors contained in all
incoming messages or dependency edges are merged
by selecting the one with maximal duration. All non-
maximal incoming paths are ignored. Keeping the

Processor 1

Processor 2

Processor 4

(1,17,7.3)

(2,12,10.5)

(4,19,9.1)

(Source Processor, 
Source Index, 

Cummulative Path Duration)

maximum duration 
incoming dependency

= (2,12,10.5)

Processor 3

Figure 3. Illustration of how three incoming mes-
sage dependencies are merged by recording only
the one with maximal path duration. Each mes-
sage contains information pointing back to a table
entry for its sending task, as well as the critical
path’s duration.

maximum incoming path maintains the invariant that
each critical path extended along a dependency edge
is maximal (critical). Figure 3 shows an example
of three incoming message dependencies for a task.
The incoming path with maximum cumulative path
duration is stored in the processor table to be able to
trace back any critical path that includes the task.

When a path is propagated forward via a message
or other dependency, the duration of extended path
is found by adding the time spent executing the task
prefix to the duration of its maximal incoming path.
The new value representing the whole path duration is
then stored in the newly prepared message.

When the critical path profile is required for a
task t, a backward traversal through the distributed
PAG is performed. At each step in the traversal, the
information about the task prefix is retrieved and then
its maximal incoming dependency edge is followed



backward.

5. Implementations

We have implemented the critical path detection
algorithm inside the Charm++ runtime system. This
implementation supports standard Charm++ programs
as well as those written using the Structured Dagger
or Charisma languages.

To implement the critical path profiling algorithm,
the following portions of the Charm++ runtime system
were modified1:

• A new module was created.
• The module’s startup routines on each processor

create a table to hold the local portion of the PAG.
• The envelope used for all Charm++ messages was

expanded to hold the critical path duration and a
reference to the sender’s table entry.

• The message send functions were modified to fill
in the envelope fields with the information about
the currently executing task, after creating a new
table entry.

• Methods for performing the backwards traversal
over the PAG were created within the new mod-
ule.

• Macros were created to simplify the storing of the
maximal known incoming edge and the compar-
ing of it with each new incoming dependency.

• Instances of the macros were added to the
Charm++ reduction methods.

To use the new critical path detection capabilities,
a Charm++ program must be modified to add macros
at each point where the program in-degree is greater
than one. Charisma or Structured Dagger programs,
however, do not require any modification because their
compilers have been adapted to automatically insert the
macro instances wherever required. Sections 5.1, 5.2,
and 5.3 provide examples of all the various places in
each of the three languages where the in-degree for a
task could be greater than one.

5.1. Charm++ Programming Model

The first language supported by the new critical path
detection scheme is Charm++. All Charm++ programs
are written mostly in C++, with a small interface
portion that is parsed by a very simple translator that
generates C++ code.

In the Charm++ language, there are two places
where in-degree is greater than 1. In one of these

1. This implementation can be found in the publicly available
development version of Charm++. The new module is located in
the src/ck-cp directory.

class myClass: public CBase_myClass {
MERGE_PATH_DECLARE(A);
...
void recvGhost(msg *m) {
buffer_msg(m);
MERGE_PATH_MAX(A);
if(recevied_all_msg()){

MERGE_PATH_RESET(A);
subsequent_task();

}
}

};

Figure 4. Multiple dependencies occur when
buffering messages prior to executing a task.

two places, the user must augment their code with
simple annotations specifying that multiple incoming
messages are dependencies for a certain task.

1) Reductions from multiple objects to a single
destination entry method result in an in-degree
greater than one. The reduction framework in
Charm++ has been modified to correctly com-
pute the maximal incoming paths along any
reduction tree, so the user does not need to
modify anything to handle the dependencies that
arise due to reduction calls.

2) The user can buffer incoming messages
explicitly until all necessary messages have
arrived, at which point the execution of some
task is performed. Each time the user buffers a
message, a new implicit dependency is created
and the in-degree of the task increases. Figure 4
shows an example of such explicit buffering. To
correctly handle the critical paths, the user must
augment the Charm++ program with macros
specifying that there are multiple incoming
message dependencies. To do this, the user must
add three macros to declare, merge, and reset
the paths: MERGE_PATH_DECLARE(t),
MERGE_PATH_MAX(t), and
MERGE_PATH_RESET(t). After all
dependencies have arrived, the stored path
information is reset for possible use in a
future iteration. Each macro takes a parameter
that distinguishes between multiple sets of
dependencies that could be declared within
the same scope in the source code. For
example, if a single class has two tasks,
each with multiple incoming dependencies,
then MERGE_PATH_DECLARE(A) and
MERGE_PATH_DECLARE(B) could be used to
create data structures that store the two different
incoming maximal paths.



overlap {
when recvLeft(msg *l)

atomic { processLeft(l); }
when recvRight(msg *r)

atomic { processRight(r); }
}
atomic { subsequentTask(); }

recvLeft processLeft

Time

subsequentTaskrecvRight processRight

Figure 5. In a Structured Dagger program, the
task following an overlap block will depend upon
program order edges produced by each of the
overlapped tasks.

5.2. Structured Dagger Programming Lan-
guage

The Structured Dagger language is an extension to
Charm++. It allows a programmer to express a com-
plicated control flow with various dependency patterns
easily. In Structured Dagger programs, messages are
buffered automatically until all input dependencies for
an object have arrived, at which point the object’s
entry method is invoked. The dataflow patterns and
all associated dependencies in the program are clearly
expressed in the language, so the programmer does not
need to add extra annotations to the program.

For clarity and to help implementers of similar
languages, described below are the types of depen-
dencies that must be handled for languages simi-
lar to Structured Dagger. Structured Dagger provides
language constructs that impose ordering restrictions
between the ends of some tasks and the beginnings of
other tasks. Structured Dagger also provides language
constructs for message sending and receiving.

1) All concurrent tasks specified inside an
overlap block must complete before any
subsequent task begins. Thus there are program
order dependencies from the ends of the
overlapped tasks to the beginning of the
subsequent task. Figure 5 shows an example of
this pattern.

2) Each when clause requires that one or more
messages have been delivered prior to executing
the following statement. Additionally, it requires
that the preceding statement has also finished
executing. Figure 6 shows an example of this
pattern with two message dependencies and one
program order dependency.

atomic { previousTask(); }
when recvLeft(msg *l),

recvRight(msg *r)
atomic { process(l,r); }

recvLeft

Time

previousTask recvRight process

Figure 6. In this Structured Dagger example, the
process task depends upon 2 messages as well
as the program order dependency from the task
preceding the when statement.

5.3. Charisma Programming Model

The Charisma language [6] is built upon Charm++.
It allows a programmer to express various static
dataflow and producer-consumer patterns easily. The
dataflow patterns and all associated dependencies in
the program are clearly expressed in the language, so
programmers do not need to modify their programs for
use with out the critical path detection scheme.

For clarity and to help implementers of similar
languages, we will describe the types of dependencies
that must be handled for languages such as Charisma.
Charisma provides language constructs that impose or-
dering restrictions between the ends of some tasks and
the beginnings of other tasks. Charisma also provides
language constructs for producing and consuming mes-
sages.

There are two places in Charisma programs where
tasks can have in-degrees exceeding one. The Charisma
compiler has been modified to record the proper critical
path information for these types of dependencies.

1) A statement can consume multiple input
parameters:
workers[i].compute(lb[i+1],
rb[i-1]);

2) A reduction results in multiple dependencies
flowing into a single task:
(+error) <- workers[i].getData();

6. Overhead

The overhead of using the critical path detection
mechanism is small. Figure 7 plots the overhead for
a simple benchmark program. The benchmark pro-
gram was created to measure the costs associated
with recording the table entries on each processor
and the increased size of each message. Two versions
of the benchmark program are run, and their results
are compared to determine the overhead. In the first



1000 10000
Tasks Per Second

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
O

ve
rh

ea
d 

of
 R

ec
or

di
ng

 P
AG

 (P
er

ce
nt

ag
e)

Figure 7. Overhead of recording critical path infor-
mation for varying computational granularities in a
ring benchmark program.

version, the critical path functionality is disabled. The
envelopes are not augmented with critical path table
references, nor are the critical path tables allocated.
The second version is compiled against a version
of Charm++ containing the critical path mechanisms
described in section 5. The benchmark program sends
a small message around a ring of Charm++ objects.
Each object, upon receipt of the message, performs
some amount of CPU work, and then sends a copy
of the message to the next object in the ring. The
amount of work performed by each object is varied
to simulate various computational granularities. If the
amount of work is small, the ring proceeds faster,
while if the amount of work is greater, the ring
proceeds more slowly. Each of the ring executions is
timed, and the granularity of the program is calcu-
lated: tasks per second = number of hops in ring

ring execution time . The
benchmark results shown in Figure 7 correspond to an
execution of the benchmark with 40,000 hops around
the ring for each granularity sample to amortize away
perturbations.

Ultimately, the overhead for a program executing
10,000 task prefixes per second on each processor
will incur an overhead of about 1% by recording the
information necessary to reconstruct a critical path
profile, as seen in figure 7. That is, each task executes
for about 100µs with an overhead of 1µs.

7. Using Critical Path Profiles

In related work, critical path profiles were gathered
in online or semi-online manners, but the resulting
critical path profiles were only used for offline perfor-

mance analysis. One novel contribution of this work is
to show that critical path profiles can be used both for
automatic online performance tuning and for offline
manual performance analysis.

There are already multiple uses of the new critical
path detection mechanisms in the Charm++ runtime
system. Section 7.1 describes a simple online au-
tomatic task prioritization scheme that improves a
complicated real-world application’s performance by
10.2%. Section 7.2 describes some initial work in using
critical paths at runtime to reduce the volume of perfor-
mance trace data that is gathered for use in offline post-
mortem performance analysis tools. Finally, sections
7.3 and 7.4 describe the uses of the critical paths
offline in a more traditional manner to guide manual
performance analysis.

7.1. Automatically tuning task priorities

One of the most obvious uses of critical path profiles
at runtime is to automatically adjust the scheduling pri-
orities for tasks. In many Charm++ programs, message
priorities are hand tuned using both the programmer’s
intuition and experimental runs testing different con-
figurations. Such manual tuning is time consuming and
not portable for all applications.

An automatic message prioritization scheme was
created in the Charm++ runtime system. The scheme
extracts a list of types of tasks from a critical path
profile. The autoprioritization mechanism then mod-
ifies message priorities when outgoing messages are
prepared by the runtime system just prior to being
sent. In the current implementation, only messages
allocated with priority bits are modified. The priorities
on the messages are set based on whether or not the
destination task type is found within a critical path
profile. Messages destined for critical path task types
are given a high priority while messages destined for
non-critical path task types are given a low priority. All
other messages will retain a default medium priority.
Using this simple autoprioritization scheme, speedups
can be observed in real applications.

The developers of the OpenAtom quantum chem-
istry application [2] have found that by manually
tuning message priorities, the application performance
varies by about 10%. Unfortunately, the manually
chosen priority configurations that work well on one
parallel machine and input problem do not work well
on other machines or with other input problems. Thus
if the priorities could be automatically tuned, the per-
formance of the application would improve for many
of its users and the effort required to manually tune
the program would be eliminated. Our test shows that



indeed an automatic message prioritization scheme is
useful.

To test the effectiveness of the automatic message
prioritization scheme, we made two minor sets
of modifications to the OpenAtom source code.
The first modification was to add macros to
mark the multiple incoming dependencies for
certain tasks. These changes required adding
the MERGE_PATH_DECLARE and corresponding
MERGE_PATH_MAX and MERGE_PATH_RESET
macros in 6 locations within 3 different classes in the
source code. The second modification was to add a call
to useThisCriticalPathForPriorities()
after a specific iteration to start traversing the
critical path and request that it be used for message
prioritization. All of these changes were easy to make.

To run the program, we used the water 32 70 system
and ran the program on 64 processors of the Cray
XT5 machine, Kraken, at NICS. The configuration
files were modified to enable the prioritization of three
types of messages, of which only two are enabled by
default. We did not modify any of the specific message
priority coefficients. Then the application was run for
40 application iterations. The first half of the iterations
used the default message priorities while the second
half used the automatic message prioritization scheme
based upon the critical path gathered at iteration 20.
The iteration timings output by the program were
analyzed to determine the benefits of the automatic
prioritization scheme relative to the default message
priorities. Specifically, two startup iterations and the
two fastest and slowest iterations for each case were
ignored, resulting in 15 remaining iteration times for
each case.

The resulting performance of the automatically pri-
oritized portion of the application’s execution was
10.2% faster than the other portion that used the default
priorities. In both portions of the execution, the critical
path algorithm is enabled, so any overheads associated
with the critical path detection are present in both
portions.

7.2. Performance Analysis Data Reduction

A second use of critical path profiles is to reduce the
volume of data produced for post-mortem performance
analysis at runtime. The critical path profile itself can
be used online for filtering trace data produced by
parallel programs run on many processors. At the end
of the program, the critical path profile is produced
and broadcast to all processors. The processors use this
resulting critical path profile to determine how to filter
their local performance trace logs before writing them

Figure 8. The critical paths can enhance visual-
izations of performance analysis in post-mortem
analysis tools. This shows a timeline view of 6
processors of a Charm++ program simulating the
2-D wave equation. The task prefixes along the
critical path are displayed as dark blue bars above
on top of each processors’ tasks.

to disk. The volume of performance data that needs
to be analyzed offline is much smaller. Such savings
are significant for large program runs on hundreds of
thousands of processors.

To use this feature in the current implementation, the
parallel program can simply make a call near the end of
its computation to traceCriticalPathBack().
This call will trace the critical path back to its origin
at which point the entire path will be broadcast to all
processors. The recipients of the broadcast will instruct
the performance log tracing framework to not output
the log files to disk if the processor is not found
along the critical path tasks. Thus any uninteresting
processors, namely those not along the critical path,
will not write to disk their potentially large trace
logs. The exact savings in data volume are program
dependent.

7.3. Post-Mortem Performance Analysis

Critical paths can be displayed in a post-mortem per-
formance analysis tool to help visually identify features
of the program’s execution in a timeline view. Our
system provides the ability to generate the necessary
trace log data from a critical path profile. Figure 8
shows such a performance analysis visualization of a
Charm++ program that solves the wave equation over
a 2-d grid. Each processor contains 2 partitions of the
2-D problem domain. Thus about half of the program’s
execution time is spent along the critical path. There is
a neighbor communication of ghost values each step,
and each worker task is augmented with code that
merges the incoming paths as described in section 5.1.



0 200 400 600 800 1000 1200 1400 1600
Number of Tasks along Path

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Ti

m
e 

To
 F

in
d 

Re
pe

at
ed

 S
ub

pa
th

s 
(s

ec
on

ds
) Minimum Support = 3

Minimum Support = 6

Figure 9. Time to compute frequently repeated
sub-paths for varying lengths of input critical paths.
The minimum support level is the number of times
a sub-path must appear for it to be considered
frequent.

7.4. Phase Detection

A final use of critical paths is to automatically detect
repeating phases in a parallel application’s execution.
If the application’s behavior is relatively static and the
program executes a large number of iterations, which
is common in most scientific computations, then the
critical path should reflect the repeated phases of the
program. Searching for phases in complete trace data
would likely take longer than searching for phases in
the much simpler critical path through the program’s
execution.

To make the problem of finding phases in the critical
path easier, a critical path can be translated into a
string over an alphabet of different types of tasks.
The problem of finding repeating phases of execution
along the critical path is the same as the problem of
finding frequently repeated substrings. A preliminary
implementation has been created using a dynamic
programming technique to quickly build up the sets
of frequently occuring substrings. This implementation
arbitrarily requires that the frequently used substrings
must have a minimum support level of 6, meaning
that any candidate substrings must appear at least six
times in the whole string. The higher the minimum
support level, the faster the algorithm runs, but very
long infrequent strings might not be observed.

The final output from the technique is the
substring with maximal weighted coverage in
the whole string. The weighted coverage is
calculated to be number of substring instances ×
(substring length)2. This weighted coverage
measurement favors frequently occurring repeated
substrings while especially favoring substrings with

long lengths.
The execution time for the frequent sub-path tech-

nique is shown in figure 9. The method appears to have
execution time ofO(n) for the trace string produced by
a run of OpenAtom, with some beneficial cache effects
for small strings. The actual worst-case performance is
data dependent. With a minimum support level of 6,
it takes about 0.1 seconds to extract the frequent sub-
path from an OpenAtom critical path profile of length
1721.

References

[1] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng,
and L. V. Kale. Overcoming Scaling Challenges in
Biomolecular Simulations across Multiple Platforms. In
Proceedings of IEEE International Parallel and Dis-
tributed Processing Symposium 2008, April 2008.

[2] E. Bohm, A. Bhatele, L. V. Kale, M. E. Tuckerman,
S. Kumar, J. A. Gunnels, and G. J. Martyna. Fine
Grained Parallelization of the Car-Parrinello ab initio
MD Method on Blue Gene/L. IBM Journal of Research
and Development: Applications of Massively Parallel
Systems, 52(1/2):159–174, 2008.

[3] M. P. I. Forum. MPI-2: Extensions to the
message-passing interface, 1997. http://www.mpi-
forum.org/docs/mpi-20-html/mpi2-report.html.

[4] J. Hollingsworth. Critical path profiling of message
passing and shared-memory programs. Parallel and
Distributed Systems, IEEE Transactions on, 9(10):1029–
1040, Oct 1998.

[5] J. K. Hollingsworth. An online computation of critical
path profiling. In SPDT ’96: Proceedings of the SIG-
METRICS symposium on Parallel and distributed tools,
pages 11–20, New York, NY, USA, 1996. ACM.

[6] C. Huang and L. V. Kale. Charisma: Orchestrating
migratable parallel objects. In Proceedings of IEEE In-
ternational Symposium on High Performance Distributed
Computing (HPDC), July 2007.

[7] L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth, and
G. Zheng. Programming Petascale Applications with
Charm++ and AMPI. In D. Bader, editor, Petascale
Computing: Algorithms and Applications, pages 421–
441. Chapman & Hall / CRC Press, 2008.

[8] M. Schulz. Extracting critical path graphs from mpi
applications. Cluster Computing, 2005, pages 1 – 10,
Sep 2005.

[9] R. V. Vadali, Y. Shi, S. Kumar, L. V. Kale, M. E.
Tuckerman, and G. J. Martyna. Scalable fine-grained
parallelization of plane-wave-based ab initio molecular
dynamics for large supercomputers. Journal of Compta-
tional Chemistry, 25(16):2006–2022, Oct. 2004.


	Introduction
	 Message Driven Parallel Programs
	Program Activity Graph Terminology
	Algorithm for Determining a Critical Path
	Implementations
	Charm++ Programming Model
	Structured Dagger Programming Language
	Charisma Programming Model

	Overhead
	Using Critical Path Profiles
	Automatically tuning task priorities
	Performance Analysis Data Reduction
	Post-Mortem Performance Analysis
	Phase Detection

	References

