
Patterns for Overlapping Communication and
Computation

Aaron Becker, Ramprasad Venkataraman, and Laxmikant V. Kalé

Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

{abecker3, ramv, kale}@illinois.edu

Abstract

Parallel applications commonly face the problem of sitting idle while waiting for remote data
to become available. Even for problems where plenty of parallelism is available and good load
balance is achievable, performance may be disappointing if local work cannot be overlapped
with communication. We describe three patterns for achieving the overlap of communication
with computation: overdecomposition, non-blocking communication, and speculation.

1 Introduction

Nearly every parallel application spends some of its time waiting for data to become available. For
any problem that isn’t embarrassingly parallel, there are dependencies between work done locally
and work done remotely, whether that remote work is done by another local thread, another CPU,
specialized local hardware such as a GPU, another node in a cluster, or some remote computing
resource in a grid environment. Minimizing these dependencies is an important part of creating
high performance parallel applications. However, some dependencies are inherent to the problem
decomposition and can never be eliminated. In those cases, we would like to minimize time spent
idle while waiting for remote data.

To minimize idle time, we must ensure that the work done by the parallel algorithm is evenly
distributed across the system. If some processing elements (PEs) are overloaded with work relative
to others, then the underloaded elements will inevitably have to wait for their overloaded counter-
parts to finish. Note that each part of a parallel system need not have an equal amount of work.
Rather, work should be distributed so as to minimize the maximum time taken by any resource.
Solutions with this property are referred to as load balanced.

However, even a perfectly load-balanced application may spend significant time waiting for
remote data. The actual transfer of data in a parallel system always takes time, whether it be a
over an internet connection, a fast network interconnect, or direct memory transfer across a bus.
Load balancing does nothing to hide the cost of these transfers, it only ensures that no particular
hardware resource is an unnecessary bottleneck in our computation.

To address the cost of waiting for the transfer of remote data, we must overlap this communi-
cation with local computation. If local work can be scheduled so that data transfers occur while
independent local work is performed, a substantial source of idle time can be eliminated. However,
finding enough independent local work to bridge the gap between the time when data is needed
and when it is available can be a difficult problem to solve. Fortunately, many programs that
successfully achieve overlap of communication and computation exhibit a few common patterns. In
this paper we discuss three such patterns: overdecomposition, non-blocking communication, and
speculation.

2 Overdecomposition

2.1 Intent

Enable the overlap of communication and computation without significant changes to a parallel
algorithm, by dividing the computation into more independent pieces than there are PEs and
overlapping data waits on one piece with work on other pieces.

2.2 Applicability

• Applications whose data are amenable to decomposition

• Applications whose performance is sensitive to dataflow latencies

• Parallel frameworks and runtimes that aim to enable higher processor utilization

2.3 Motivation

The most common way to develop parallel applications is to structure the computation by dividing
the problem into p parts, where p is the number of PEs in the parallel system. Each PE works on
its own portion of the problem, sending local results out to the other PEs that need them when
they become available and waiting for remote data when that data is necessary to make progress
on the local computation. Any idle time in such an application occurs when remote data is needed
but not yet available. Sometimes this idle time can be reduced by changing the parallel algorithm
to minimize communication and improve the distribution of work throughout the system. However,
often this idle time is caused by the inherent structure of communication and computation in the
application.

Regardless of the source of idle time, it is desirable to achieve a good overlap of communication
and computation with minimal changes to the algorithm. Preserving the general control flow and
communication semantics of the unoptimized code during the optimization process achieves several
desirable goals:

1. Minimizes the programmer effort needed for optimization
2. Avoids introducing bugs during the optimization process
3. Avoids obfuscating program logic in the name of optimization

Rather than attempting to overhaul the application or the algorithm, it is much easier to
find other useful work that a PE can do while waiting for remote data required to proceed with
the original computations. The objective of overdecomposition is to recapture this idle time by
performing useful work on other portions of data in an attempt to sidestep the limitations imposed
by the structure of the application.

2.4 Example

Consider a simple explicit finite element simulation on an unstructured mesh. These simulations
are commonly used in science and engineering fields to solve partial differential equations. The
mesh consists of n elements, with n >> p. The mesh is partitioned, often using a graph partitioner
such as ParMETIS [7]. On each partition, there is an interior region whose elements have only
local neighbors, and a boundary region whose elements have non-local neighbors.

The application consists of a series of timesteps, and at each timestep the simulated physical
properties of each element are updated. Each partition communicates updated information about

2

its boundaries to its neighboring partitions at each timestep to allow boundary elements to be
updated correctly. The need to wait for updated data on the neighbors of boundary elements
before continuing is a potential source of idle time.

2.5 Solution

The drawback with dividing a problem into one part per PE is that when work on that part
inevitably stalls waiting for remote data, the PE is left idle. Overdecomposition addresses this
issue by:

• Decomposing the problem into k partitions, with k > p, the number of PEs

• Assigning multiple partitions of the work to each PE

• Recapturing wait time in the work on one partition by switching to work on other partitions
on the same PE

The algorithm for solving each individual piece of the problem remains essentially unchanged.
Key to the actual implementation of patterns enabling overdecomposition is the ability to work on
and switch between different portions of the work on each PE. Such capabilities can be implemented
at different layers of the application stack:

• At a layer below the actual application code (within a parallel framework or runtime) leaving
the application largely unaffected

• As part of the application in scenarios where such support is not available from existing lower
layers

Irrespective of where such support is implemented, there may be some expectations of the ap-
plication. Chief among these is that the application structure its data to permit the existence of
multiple partitions on each PE. It seems reasonable that there be some level of data encapsulation
within the application so that multiple partitions can coexist within the same address space. Other
requirements can depend on the layer at which support is implemented and the actual implemen-
tation specifics.

2.5.1 Overdecomposition with framework support

In some parallel programming environments, support for overdecomposition is built in and trivial
to take advantage of. For example, applications built on the Charm++ parallel runtime system [6]
will have a large number (k) of independent objects, each performing a portion of the overall
computation and communicating with other such objects. Several such objects exist on each PE
and their executions are controlled by a common scheduler. Each object is given a chance to
perform work only when data meant for that object becomes available. This same functionality is
also packaged in an implementation of the MPI standard called AMPI (Adaptive MPI) [5], where
the number of MPI processes (k) is decoupled from the number of PEs (p) and it is recommended
to overdecompose the computation to achieve high performance.

2.5.2 Implementing overdecomposition support

For parallel programs which do not have support for overdecomposition built in to their program-
ming model, realizing the benefits of overdecomposition involves more effort. For example, MPI

3

applications have one process per PE, and the MPI programming model does not address the issue
of multiple threads of execution on a single PE, so any overdecomposition capabilities in traditional
MPI programs must be built up separately on top of MPI.

Typical MPI applications do not differentiate between a partition and the compute resource
(PE) that works on it as there are only as many partitions as there are PEs. To enable overde-
composition the application has to rid itself of this mindset and embrace the possibility of multiple
partitions on each PE. The application may also have to review how its computations are packaged
to clarify the data dependencies. That is, computations that depend on some remote data will
need to be identified and separated so that they can be triggered as a response to the availability
of this data.

An implementation must deal with issues such as:

• managing the partitions on each PE and performing the appropriate bookkeeping

• polling the underlying communication layers (library) for messages

• handling communication routines like barriers and reductions which still function on a per
PE basis

• implementing functionality to switch to another partition when blocked

• implementing scheduling strategies for the pieces on each PE

For these reasons, lower level support for overdecomposition is extremely beneficial. Adding
overdecomposition at the application level without any library support may require significant
experience with parallel frameworks and represent a distraction from work at the application level.

2.6 Discussion

Overdecomposition is closely related to virtualization, a process in which a single hardware or
software resource masquerades as multiple resources. Virtualization can lead naturally to overde-
composition when each virtual resource participates in an application, presenting the appearance
of more PEs than actually exist and thereby placing multiple problem pieces on each physical PE.
The terms “overdecomposition” and “virtualization” are sometimes used interchangeably, but vir-
tualization more commonly refers to the case where the apparent computing resources do not match
the physically available resources, whereas overdecomposition more broadly refers to any situation
in which the problem is broken into more pieces than PEs and the PEs can switch between multiple
pieces.

In the case of the finite element example application, overdecomposition means switching from
one mesh partition per PE to multiple partitions. Then while one partition waits for updated
values from its neighbors, another can be computing its own local values. However, this advantage
comes with a tradeoff: the amount of communication that needs to take place at each timestep is a
function of the length of all inter-partition boundaries. By increasing the number of partitions, we
increase this boundary length and therefore also increase total communication. There is a tradeoff
to be made: more partitions means more opportunities to overlap idle time on one partition with
useful work on another, but it also means more communication.

2.7 Forces

Framework support Framework support for overdecomposition can reduce adoption costs dra-
matically. Once the framework provides the basic mechanisms of managing a single compute

4

PE 1 PE 1PE 2 PE 2PE 3 PE 3

Typical Decomposition: One partition per PE Overdecomposition: Many partitions per PE

Figure 1: In a finite element application that has not been overdecomposed, each PE is responsible
for a single partition. Overdecomposition places multiple partitions on each PE, so that when one
partition must wait for remote data, another partition can be worked on.

resource for multiple partitions of the work, the requirements on the application are greatly
reduced

Changes to application code Although overdecomposition does not require any fundamental
restructuring of the parallel algorithm, it can require application changes. For example, global
variables that work perfectly well when there is only one piece per PE may no longer function
as intended if multiple pieces share the same address space. Refactoring to fix conflicts
between multiple pieces trying to use the same global variables may not be particularly
difficult, but it does impose a burden on the programmer.

Available parallelism The fundamental requirement for overdecomposition is the ability to find
enough parallelism. Overdecomposition is most useful when the problem can easily be broken
down into a large number of small, mostly-independent pieces. Even for problems that can
easily be overdecomposed, splitting the problem into a large number of pieces may prove
costly. In the case of finite element applications we saw that increasing the number of par-
titions also increases total communication. Any application in which there is a boundary
region that requires communication and an interior region which does not will experience the
same effect. In addition, there is context switching overhead associated with moving from one
overdecomposed piece to another. The exact cost of this overhead will vary based on imple-
mentation, but one must be careful to amortize any context switching overhead by ensuring
that each piece is sufficiently expensive computationally.

Data encapsulation Sometimes the assumption of one partition per PE can run very deep in the
application. Such an assumption is more difficult to overcome if the application follows certain
coding practices like putting all variables in global scope, using procedural approaches to
structuring the computation and communication throughout the application etc. Eliminating
the assumption that each PE has one and only one partition can take considerable effort
depending on the software engineering practices employed by the application.

Flexibility requirements Overdecomposition offers increased flexibility to the application user
by decoupling the problem decomposition from the hardware. For example, in situations
where the application requires a square grid of processes, overdecomposition allows the uti-
lization of all available hardware when otherwise the application would be required to use
a perfect square for the number of PEs. This flexible hardware mapping also has benefits
when trying to improve load balance. By moving pieces of work away from overloaded PEs to
underloaded PEs, load is more evenly distributed throughout the system. However, for appli-

5

cations with good static load balance and no natural dependency on the number of partitions,
these benefits are moot.

Algorithmic improvements Overdecomposition can reclaim idle time without overhauling the
underlying parallel algorithm. However, a poor algorithm that incurs unnecessary costs will
not be fixed by overdecomposition. Overdecomposition is best used to tune and improve a
good parallel algorithm rather than to fix a poorly designed one.

3 Non-blocking Communication

3.1 Intent

Perform useful computations in a parallel application without waiting for a communication process
to complete.

3.2 Applicability

• Algorithms where communication is interspersed amongst the computations

• Applications where some computations are independent of the data to be transferred

3.3 Motivation

A näıve approach to communication will produce suboptimal results in many parallel programming
environments. Blocking communication primitives, which do not complete until all data has been
successfully transferred, are often the default because of their simplicity.

Consider an application in which work that is dependent on local sends and receives is inter-
spersed with independent computations. How can we reduce the time spent waiting for the sends
and receives to complete before performing the subsequent dependent tasks?

The most direct approach to overlapping communication and computation is to explicitly iden-
tify places in the application where sends and receives could be initiated prior to doing work that
is independent of that data. These places are a natural target for overlapping communication and
computation because we have identified independent work in the structure of the application. The
difficulty arises in finding the regions where independent work exists.

3.4 Example

Suppose we are writing a parallel conjugate gradient solver for Poisson equations in a two dimen-
sional space. Each process is responsible for one block of a large matrix, computing the local part
of a matrix-vector product. The solver performs many iterations, and in each iteration there are
four steps:

1. Update the interior of the local matrix block by multiplication with local vector elements.
2. Compute partial results for elements on the local block border.
3. Sum partial results with partial results from neighboring blocks.
4. Evaluate the local matrix block, using the updated inner region and the summed results for

the outer region.

Step 1, which requires only local data, is independent of 2 and 3, but step 3 depends on step
2, and step 4 depends on 1-3. All four steps must be completed before the iteration can finish.

6

MPI pseudocode for this algorithm is given in listing 1. The inner and outer matrix regions are
two distinct arrays: inner and outer. The exchange of block boundary regions is done through
a blocking call to MPI Allreduce, using a communicator containing the neighbors of our matrix
block.

Listing 1: Blocking Poisson Solver

1 void update(double* inner , double* outer , double* summed_outer ,

2 MPI_Comm neighbors_comm) {

3 compute_local_inner(inner);

4 compute_local_outer(outer)

5 MPI_Allreduce(outer , summed_outer , SIZE ,

6 MPI_DOUBLE , MPI_SUM , neighbors_comm);

7 evaluate_block(inner , summed_outer)

8 }

3.5 Solution

The problem with blocking communication semantics is that the time spent waiting for the com-
munication to complete could have been spent doing useful work. Fortunately, many parallel
programming models provide non-blocking alternatives. These replace the single blocking call with
a two step process. First the communication is initiated in a call that immediately returns control
to the programmer without waiting for the data to be transferred. The programmer can later
test to see if the communication has completed or block until all transfers are complete once all
independent local computations are complete. In MPI, for example, rather than using the blocking
MPI Recv call to receive incoming data, you would use MPI IRecv, followed by MPI Test to check
for completion or MPI Wait to block until the communication has completed. The same principles
apply to collective operations, but the advantages can be even more dramatic due to the fact that
a blocking collective call must wait on all other processes, rather than just one. Here are some
techniques to exploit non-blocking communication in parallel applications:

Posting receives early A common technique for exploiting non-blocking communication is to
post a receive for any data that is expected as early as possible during the computations.
This allows the communication library underneath the application to start working as soon
as the remote data becomes available. This increases the chances that data will be ready
when it is required, eliminating idle time.

Double Buffering Often codes can be restructured to create independent work from computa-
tions with dependencies. For example, unnecessary data dependencies can be eliminated
through the use of a technique called double buffering. To use this technique, instead of per-
forming local computations on a memory buffer and then updating that buffer with remote
data, instead maintain two copies of the buffer, one communication copy and one computa-
tion copy. Data is transferred using the communication copy while local calculations proceed
on the computation copy. When both are finished, the buffers are swapped. The application
of techniques like double buffering results in an application with the appropriate structure to
take advantage of non-blocking communication.

Multiple send/receives Data sends can occur only when the data to be sent has been processed
and is ready. Sometimes, when the data to be sent is large enough, the send/receives can
be split into two or more separate transactions. Thus sending the first portion of the data

7

can be overlapped with the computations for preparing the second portion of the data and
so forth. However, this may be beneficial only if the extra overhead of more communication
transactions is offset by the overlap that can be achieved.

3.6 Discussion

The benefits of non-blocking collectives increase with the number of participating processes but
decrease with the speed of the transport mechanism, due to the reduced time spent waiting for data
transfer. For example, consider two common architectures for high performance computing clusters:
IBM Blue Gene and Cray XT4. Non-blocking collectives would be relatively less beneficial on Blue
Gene machines because they have a specialized communication network to accelerate collectives [9],
whereas on XT4 collectives do not receive special treatment. Non-blocking communication would
be less beneficial on either of these machines than on a cluster connected by gigabit ethernet due
to the increased bandwidth and reduced latency of the interconnects on XT4 and Blue Gene.

However, non-blocking communication can be an effective optimization regardless of how well
the network performs. Because some PEs will arrive at any collective operation before others, in a
blocking collective they will needlessly spend time waiting for the last PE to reach the collective.
Thus, while a high-speed interconnect may attenuate the value of non-blocking communication,
improved transfer rates can never eliminate the advantages of non-blocking communication.

Non-blocking communication operations are available across a wide variety of programming en-
vironments. In MPI, the most common programming model for clusters, MPI ISend and MPI IRecv

provide non-blocking semantics for point-to-point communication, and non-blocking collectives are
available as an extension to MPI-2 [9]. Unified Parallel C offers the split-phase barrier, a non-
blocking global synchronization operation [2]. Non-blocking memory transfers are a common and
highly useful technique for interfacing with floating point accelerator architectures such as GPG-
PUs and Cell, allowing data to be streamed on and off of the accelerator hardware without halting
local execution [10, 1].

Returning to our example, we can restructure our solver to overlap the independent work done
in step 1 with the communication in step 3. Step 4, which depends on the results of step 3, follows
the completion of the non-blocking communication. Listing 2 shows the updated algorithm. The
blocking MPI Allreduce call is replaced by the non-blocking alternative MPI Iallreduce. After
initiating the communication, the independent local work is completed, and then we wait until the
communication to finish using MPI Wait.

Listing 2: Non-Blocking Poisson Solver

1 void update(double* inner , double* outer , double* summed_outer ,

2 MPI_Comm neighbors_comm) {

3 MPI_Request req;

4 MPI_Status status;

5 compute_local_outer(outer)

6 MPI_Iallreduce(outer , summed_outer , SIZE ,

7 MPI_DOUBLE , MPI_SUM , neighbors_comm , &req);

8 compute_local_inner(inner);

9 MPI_Wait (&req , &status);

10 evaluate_block(inner , summed_outer);

11 }

A detailed examination of the effects of non-blocking collectives on a conjugate gradient solver
like this one was performed by Hoefler et al. [4]. They find that switching to non-blocking calls
improves scalability and gives a speedup of up to 30% over the blocking equivalent.

8

3.7 Forces

Simplicity The advantage of blocking communication over non-blocking is its simplicity. A com-
munication call that returns only when that communication is complete has similar semantics
to a function call which returns only when its value is computed. Non-blocking calls split a
send or receive, which is conceptually a single operation, into two stages which may be sepa-
rated by large amounts of intervening code. In fact, optimization will tend to push the two
stages farther apart in an effort to completely overlap the communication with computation.
This results in a non-trivial decrease in the readability of non-blocking code.

Availability In some cases, there is simply no opportunity to use non-blocking communication.
In the case of MPI collectives, there is no non-blocking option for MPI-1, and for MPI-2
non-blocking collectives are available only as a third-party library. Even where non-blocking
calls are available, their actual effectiveness can vary based on implementation quality. Again
using the example of MPI, network progress is not guaranteed on each send and receive when
multiple non-blocking communication operations are outstanding. The effectiveness of non-
blocking routines is highly dependent on hardware capabilities and the quality of the MPI
implementation used.

4 Speculation

4.1 Intent

Avoid waiting for communication to verify that a pending operation is safe to execute.

4.2 Applicability

Applications which perform computations that:

• have an irregular parallel structure

• have dynamic dependencies that are not guaranteed to be satisfied

• have dependencies that fail unforeseeably, but at a mangeably low rate

4.3 Motivation

Some parallel applications are characterized by irregular patterns of communication. Typically
these are applications that are difficult to decompose, with unpredictable patterns of dependencies.
A common theme in these applications is the need to verify that a pending operation is safe
to perform. In the case of parallel discrete event simulation (PDES), that means bounding the
minimum timestamp among outstanding events to verify that the next event to process will not
violate causality. In an unstructured meshing code it may mean acquiring locks on a region of the
mesh to be modified.

In practice, for many applications these checks almost always indicate that it is safe to proceed,
and the operation can then be completed. However, if the operations are not computationally
expensive, the cost of the checks may rival or even exceed the cost of the actual operations. Thus,
the rare occurrence of unsafe operations is imposing a high cost on the execution of every operation.

Speculation is a technique that can overlap the execution of code that is not guaranteed to be
safe with communication that will determine the safety of the code. If the code was safe, then we

9

LP 1

LP 2

e1

e2

LP 1

LP 2

simulated time

e1

e2e3

(a)

(b)

Figure 2: In (a), it is not safe for LP2 to process its earliest available event, E2. LP1 can still
create events that must be processed before E2, as shown in (b). To guarantee that E2 is safe to
process, communication with LP1 is needed.

avoid the cost of waiting for the communication. If not, then the effects of the improperly executed
code are rolled back.

4.4 Example

Parallel discrete event simulation (PDES) is a technique that applies to a wide variety of simula-
tions. A discrete event simulation models some real system that is composed of distinct interacting
processes. Each of these physical processes is modeled by a logical process (LP), with interactions
between physical processes modeled by sending messages between the LPs. The work done by each
LP consists of a series of events, each of which occurs at a particular simulated time, indicated by a
timestamp. These events update local state variables and may create new dependent events either
locally or on another LP. Each LP must process all of its events in timestamp order to prevent
causality violations.

This application seems naturally suited for a parallel implementation. Each PE can be respon-
sible for one or more LPs, processing local events in order and sending the messages generated by
local LPs to remote LPs when needed. However, processing the earliest available local event is not
necessarily safe. The processing of an event on a remote LP can generate an event with an earlier
timestamp, as shown in figure 2. This violates causality, and cannot be allowed.

Because an LP cannot determine whether or not its earliest available event is safe to execute
based on purely local information, some synchronization must take place between LPs to ensure
correctness. In conservative synchronization, events which are not guaranteed to be safe must block
until communication with other LPs that determines a lower bound on timestamp of messages
that can be completed safely. Depending on the structure of the simulated system, the cost of
synchronization may be high relative to the amount of work done in an event, leading to large
amounts of time spent in communication when no local work is being done. This synchronization
operation cannot be easily overlapped with local computation, because only events that were already
proven safe to execute in the previous synchronization phase can be safely processed.

10

4.5 Solution

Since waiting for verification that each operation is safe to execute is too costly, we apply the
philosophy of “it is easier to ask for forgiveness than permission”. For each operation we begin by
initiating all communication needed to verify safety. We then perform the operation without any
guarantee of safety, overlapping the computation of the operation with the communication needed
for the safety guarantee. We then wait for the outcome of the safety check. If the operation was
safe to perform, then we can simply continue on. Otherwise, we should not have performed the
operation and must undo it.

There are two major approaches to undoing operations: checkpointing and anti-code. Check-
pointing is a general technique for reverting a program to a known good state, and is used widely
outside the context of speculation. It works by recording all relevant local state information prior
to performing the operation. Rolling back an operation is simply a matter of restoring all state
from the checkpoint. If the operation does not need to be rolled back, the checkpoint information
can simply be discarded. Checkpointing is generally quite simple to implement, but it imposes
memory overhead equal to the size of the program state that is being modified.

Anti-code is a less general technique than checkpointing, but it avoids the memory overhead
of storing pre-operation state. To implement an anti-code approach, the programmer creates an
anti-operation counterpart for each operation function that can be rolled back. The anti-operation
undoes all of the operations performed by the original operation, leaving the program state as it
was before the operation was initiated. Because the initial state of the program does not need
to be recorded, anti-code techniques avoid the memory overhead of checkpointing. However, this
technique forces the programmer to write an additional function for each operation to undo the
actions of that operation. In general, it may not be possible to create an anti-operation for each
operation, or the anti-operation may be prohibitively costly. In these cases checkpointing is the
preferred approach. However, even checkpointing is not a general purpose solution. The operation
may perform actions that cannot be rolled back, such as controlling the physical movements of an
attached robotic arm. In these cases, rollback is impossible regardless of the technique used, and
so speculation cannot be applied.

In the case of PDES, the alternative to conservative synchronization is called the Time Warp
algorithm, which uses speculation to avoid some of the costs of conservative synchronization. In
Time Warp, each LP optimistically assumes that processing its earliest available event will not
produce any causality errors. Therefore, each PE remains busy as long as there is some local
LP with unprocessed events. Messages to spawn events on remote LPs are overlapped with local
execution because the safety checks that ensure that causality constraints are satisfied have been
eliminated.

To ensure correctness, Time Warp allows for rollback when causality violations occur. Each LP
keeps its events in a queue ordered by timestamp. Rather than discarding events after they are
processed, the state of the local LP is saved, and any messages the event generated are recorded.
Then the next event in the queue is processed. Whenever the LP receives a message from another
LP, the event is placed into the local queue. If the new event’s timestamp comes after all locally
processed events, then execution proceeds normally. Otherwise, a causality violation has occurred,
and the LP needs to roll back. The LP rolls back its causality-violating events in reverse order,
restoring its local state and sending a rollback message for each remote event that the causality-
violating event generated. Once all of these events have been rolled back, execution can start up
again. For a detailed description of the mechanics of both conservative synchronization and Time
Warp PDES, see Fujimoto [3].

Speculation can be applied to any problem domain where rollback is possible and where opera-

11

tions must be guaranteed safe before they can proceed. The Galois system [8] provides a software
framework for speculative execution and rollback for such systems, and has proven effective for
problems with amorphous parallelism such as Delaunay mesh refinement and BK image segmenta-
tion.

4.6 Forces

The critical question when evaluating speculative algorithms like Time Warp is whether the benefits
of avoiding safety checks outweigh the costs of rolling back incorrect speculation.

Cost of correctness Speculation is only worthwhile when there are large penalties associated
with ensuring correctness. In cases where there is ample parallelism available and plenty of
work that is known to be safe, then the benefits of speculation are small. Typically the gains
offered by speculation must be very large so that they overwhelm the cost of performing
rollbacks and provide a net benefit to the application.

Frequency of failures Speculation is only beneficial when the benefits of optimistic execution
outweigh the costs of rolling back on failures. The failure rate of speculative operations must
be low enough that the rollback cost does not overwhelm any gains from speculation.

Cost of rollback Together with the frequency of failures, this defines the cost of speculation. This
cost is felt both in time spent in rollback and the space required to store checkpointed state
for possible rollbacks. The larger the state of the application, the more expensive speculation
will be. This cost is not offset by a low failure rate, as the amount application state that
must be stored does not depend on whether or not the stored state will ever be used.

5 Conclusion

Once an application has been effectively parallelized, identifying opportunities to overlap commu-
nication with local computation is an important part of the optimization process. Without this
overlap, even applications with ample parallelism and good load balance may perform poorly due
to excessive time spent idle while waiting for the results of communication. We have presented
three approaches to allow local work to proceed while communication completes: overdecomposi-
tion, non-blocking communication, and speculation. These approaches are used in a broad range of
high-performance parallel applications, and can reduce the costs associated with waiting for remote
data in a variety of contexts.

References

[1] S. Che, M. Boyer, J. Meng, D. Tarjan, and J. Sheaffer. A performance study of general-purpose
applications on graphics processors using cuda. Journal of Parallel and Distributed Computing,
Jan 2008.

[2] W. Chen, C. Iancu, and K. Yelick. Communication optimizations for fine-grained upc appli-
cations. Parallel Architectures and Compilation Techniques, Jan 2005.

[3] R. M. Fujimoto. Parallel and distributed simulation systems. page 300, Jan 2000.

[4] T. Hoefler, P. Gottschling, A. Lumsdaine, and W. Rehm. Optimizing a conjugate gradient
solver with non-blocking collective operations. Parallel Computing, Jan 2007.

12

[5] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé. Performance evaluation of adaptive MPI. In
Proceedings of ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming 2006, March 2006.

[6] L. V. Kalé. Performance and productivity in parallel programming via processor virtualization.
In Proc. of the First Intl. Workshop on Productivity and Performance in High-End Computing
(at HPCA 10), Madrid, Spain, February 2004.

[7] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irregular graphs.
Supercomputing ’96: Proceedings of the 1996 ACM/IEEE conference on Supercomputing
(CDROM, Nov 1996.

[8] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Casçaval. How much parallelism
is there in irregular applications? PPoPP ’09: Proceedings of the 14th ACM SIGPLAN
symposium on Principles and practice of parallel programming, Feb 2009.

[9] J. Moreira, G. Almasi, C. Archer, and R. Bellofatto. Blue gene/l programming and operating
environment. IBM Journal of Research and Development, Jan 2005.

[10] J. Sancho and D. Kerbyson. Analysis of double buffering on two different multicore archi-
tectures: Quad-core opteron and the IEEE International Symposium on Parallel and
Distributed . . . , Jan 2008.

13

	Introduction
	Overdecomposition
	Intent
	Applicability
	Motivation
	Example
	Solution
	Overdecomposition with framework support
	Implementing overdecomposition support

	Discussion
	Forces

	Non-blocking Communication
	Intent
	Applicability
	Motivation
	Example
	Solution
	Discussion
	Forces

	Speculation
	Intent
	Applicability
	Motivation
	Example
	Solution
	Forces

	Conclusion

