Techniques in Scalable and Effective Performance Analysis

By Chee Wai Lee
Overview

- Introduction.
- Scalable Techniques:
 - Support for Analysis Idioms
 - Data Reduction
 - Live Streaming
 - Hypothesis Testing
- Conclusion.
Introduction

• What does performance analysis of applications with visual tools entail?

• What are the effects of application scaling on performance analysis?
Effects of Application Scaling

- Enlarged performance-space.

- Increased performance data volume.

- Reduces accessibility to machines and increases resource costs
 - Time to queue.
 - CPU resource consumption.
Main Thrusts

- Tool feature support for Scalable Analysis Idioms.
- Online reduction of performance data volume.
- Analysis Idioms for applications through live performance streaming.
- Effective repeated performance hypothesis testing through simulation.
Main Thrusts

- Tool feature support for Scalable Analysis Idioms.
- Online reduction of performance data volume.
- Analysis Idioms for applications through live performance streaming.
- Effective repeated performance hypothesis testing through simulation.
Scalable Tool Features: Motivations

- Performance analysis idioms need to be effectively supported by tool features.
- Idioms must avoid using tool features that become ineffectual at large processor counts.
- We want to catalog common idioms and match these with scalable features.
Scalable Tool Feature Support (1/2)

- Non-scalable tool features require analysts to scan for visual cues over the processor domain.

- How do we avoid this requirement on analysts?
Scalable Tool Feature Support (2/2)

- Aggregation across processor domain:
 - Histograms.
 - High resolution Time Profiles.

- Processor selection:
 - Extrema Tool.
Histogram as a Scalable Tool Feature

- Bins represent time spent by activities.
- Counts of activities across all processors are added to appropriate bins.
- Total counts for each activity are displayed as different colored bars.
Case Study:

- Apparent load imbalance.
- No strategy appeared to solve imbalance.
- Picked overloaded processor timelines.*
- Found longer-than-expected activities.
- Longer activities associated with specific objects.
- Possible work grainsize distribution problems.

*As we will see later, not effective with large numbers of processors.
Case Study: Validation using Histograms
Effectiveness of Idiom

- Need to find way to pick out overloaded processors. Not scalable!
- Finding out if work grainsize was a problem simply required the histogram feature.
High Resolution Time Profiles

- Shows activity-overlap over time summed across all processors.
- Heuristics guide the search for visual cues for various potential problems:
 - Gradual downward slopes hint at possible load imbalance.
 - Gradual upward slopes hint at communication inefficiencies.
- At high resolution, gives insight into application sub-structure.
Case Study: Using Time Profiles

Possible Load Imbalance

After Greedy Load Balancing Strategy

Bigger!
Finding Extreme or Unusual Processors

- A recurring theme in analysis idioms.
- Easy to pick out timelines in datasets with small numbers of processors.
- Examples of attributes and criteria:
 - Least idle processors.
 - Processors with late events.
 - Processors that behave very differently from the rest.
The Extrema Tool

- Semi-automatically picks out interesting processors to display.
- Decisions based on analyst-specified criteria.
- Mouse-clicks on bars load interesting processors onto timeline.
Using the Extrema Tool
Scalable Tool Features: Conclusions

- Effective analysis idioms must avoid non-scalable features.
- Histograms, Time Profiles and the Extrema Tool offer scalable features in support of idioms.
Main Thrusts

- Tool feature support for Scalable Analysis Idioms.
- Online reduction of performance data volume.
- Analysis Idioms for applications through live performance streaming.
- Effective repeated performance hypothesis testing through simulation.
Data Reduction

- Normally, scalable tool features are used with full event traces.
- What happens if full event traces get too large?
- We can:
 - Choose to keep event traces for only a subset of processors.
 - Replace event traces of discarded processors with interval-based profiles.
Interval-Based Profiles

- Small files. File size is a function of duration of instrumentation and resolution of each time interval recorded.
- Suitable for Time Profiles.
Choosing Useful Processor Subset (1/2)

- What are the challenges?
 - No a priori information about performance problems in dataset.
 - Chosen processors need to capture details of performance problems.
Choosing Useful Processor Subsets (2/2)

- Observations:
 - Processors tend to form equivalence classes with respect to performance behavior.
 - Clustering can be used to discover equivalence classes in performance data.
 - Outliers in clusters may be good candidates for capturing performance problems.
Applying k-Means Clustering to Performance Data (1/2)

- k-Means Clustering algorithm is commonly used to classify objects in data mining applications.

- Treat the vector of recorded performance metric values on each processor as a data point for clustering.
Applying \(k \)-Means Clustering to Performance Data (2/2)

- Measure \textit{similarity} between two data points using the Euclidean Distance between the two metric vectors.

- Given \(k \) clusters to be found, the \textit{goal is to minimize similarity} values between all data points and the centroids of the \(k \) clusters.
Choosing from Clusters

• Choosing Cluster Outliers.
 ◦ Pick processors furthest from cluster centroid.
 ◦ Number chosen by proportion of cluster size.

• Choosing Cluster Exemplars.
 ◦ Pick a single processor closest to the cluster centroid.

• Outliers + Exemplars = Reduced Dataset.
Applying k-Means Clustering Online

- Decisions on data retention are made before data is written to disk.
- Requires a low-overhead and scalable parallel k-Means algorithm which was implemented.
Parallel k-Means

<table>
<thead>
<tr>
<th>Root</th>
<th>Worker</th>
</tr>
</thead>
</table>
| Receive aggregated metric vector stats.
Calculate normalization factors.
Get initial cluster centroids.
Broadcast factors and centroids. | **Contribute** metric vector. |
| Update centroids.
If no centroid changes,
Done
Else
Broadcast centroids | Normalize local metric vector.
Find closest centroid.
Contribute centroid modification. |
Important k-Means Parameters

- Choice of metrics from domains:
 - Activity time.
 - Communication volume (bytes).
 - Communication (number of messages).

- Normalization of metrics:
 - Same metric domain = no normalization.
 - *Min-max* normalization across different metric domains to remove inter-domain bias.
Min-Max Normalization for Multiple Metric Domains

- Find \min_m values for each metric m over all processor data points.
- Find \max_d values for metrics within each metric domain d over all processor data points.
- For each data point, re-compute each metric value m, where m is a member of domain d, as: $(m - \min_m)/\max_d$
k-Means Clustering

Metric Y

Metric X
Clustering Nuances

Idle Time
Evaluating the technique

- Clustering and choice heuristics presented us with a reduced dataset.
- How useful is the reduced dataset to analysis?
- We know least-idle processors can be useful for analysis.
- How many top least-idle processors will show up in the reduced dataset?
- What was the overhead?
Results (2048 Processors NAMD)

Percentage of Top Least Idle processors picked for the reduced dataset.

<table>
<thead>
<tr>
<th>Top x Least Idle</th>
<th>5% Retention</th>
<th>10% Retention</th>
<th>15% Retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>10</td>
<td>70%</td>
<td>90%</td>
<td>100%</td>
</tr>
<tr>
<td>20</td>
<td>45%</td>
<td>70%</td>
<td>95%</td>
</tr>
</tbody>
</table>

5% Retention = 102 processors
10% Retention = 204 processors
15% Retention = 306 processors
Results (1024 Processors NAMD)

Percentage of Top Least Idle processors picked for the reduced dataset.

<table>
<thead>
<tr>
<th>Top x Least Idle</th>
<th>5% Retention</th>
<th>10% Retention</th>
<th>15% Retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>20%</td>
<td>40%</td>
<td>60%</td>
</tr>
<tr>
<td>10</td>
<td>20%</td>
<td>40%</td>
<td>50%</td>
</tr>
<tr>
<td>20</td>
<td>10%</td>
<td>20%</td>
<td>30%</td>
</tr>
</tbody>
</table>

5% Retention = 51 processors
10% Retention = 102 processors
15% Retention = 153 processors
Results (4096 Processors NAMD)

Percentage of Top Least Idle processors picked for the reduced dataset.

<table>
<thead>
<tr>
<th>Top x Least Idle</th>
<th>2.5% Retention</th>
<th>5% Retention</th>
<th>7.5% Retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>40%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>10</td>
<td>20%</td>
<td>70%</td>
<td>100%</td>
</tr>
<tr>
<td>20</td>
<td>10%</td>
<td>45%</td>
<td>100%</td>
</tr>
</tbody>
</table>

2.5% Retention = 102 processors
5% Retention = 204 processors
7.5% Retention = 306 processors
Overhead of parallel k-Means

Time to Perform K-Means Clustering

Seconds

Number of Processor Cores
Data Reduction: Conclusions

- Showed combination of techniques for online data reduction is effective*.
- Choice of processors included in reduced datasets can be refined and improved
 - Include communicating processors.
 - Include processors on critical path.
- Consideration of application phases can further improve quality of reduced dataset.

Main Thrusts

- Tool feature support for Scalable Analysis Idioms.
- Online reduction of performance data volume.
- Analysis Idioms for applications through live performance streaming.
- Effective repeated performance hypothesis testing through simulation.
Live Streaming of Performance Data

- Live Streaming mitigates need to store a large volume of performance data.
- Live Streaming enables analysis idioms that provide animated insight into the trends application behavior.
- Live Streaming also enables idioms for the observation of unanticipated problems, possibly over a long run.
Challenges to Live Streaming

- Must maintain low overhead for performance data to be recorded, pre-processed and disposed-of.
- Need efficient mechanism for performance data to be sent via out-of-band channels to one (or a few) processors for delivery to a remote client.
Enabling Mechanisms

- Charm++ adaptive runtime as medium for scalable and efficient:
 - Control signal delivery.
 - Performance data capture and delivery.
- Converse Client-Server (CCS) enables remote interaction with running Charm++ application through a socket opened by the runtime.
Questions

- What kinds of performance data should we stream?
- How frequently should we deliver the data to the client?
Live Streaming System Overview

A) Gathering Performance Data in Parallel Runtime System:

1. Broadcast Request for Utilization Profiles Once Per Second

Root Processor

Periodic Requests

(3) Buffer Utilization Profiles

Trace Module

Processor

Trace Module

Processor

Trace Module

(2) Reduction Merges Compressed Utilization Profiles

B) Visualizing Performance Data:

1. Send Request via TCP using CCS protocol

Visualization Client

(4) Update Display

(1) Send Request via TCP using CCS protocol

CCS Handler

(3) CCS Reply Contains Utilization Profile

(2) Retrieve a Buffered Utilization Profile

Root Processor
What is Streamed?

- A Utilization Profile similar to high resolution Time Profiles.
- Performance data is compressed by only considering significant metrics in a special format.
- Special reduction client merges data from multiple processors.
Visualization
Overheads (1/2)

% Overhead when compared to baseline system: Same application with no performance instrumentation.

<table>
<thead>
<tr>
<th></th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>4096</th>
<th>8192</th>
</tr>
</thead>
<tbody>
<tr>
<td>With instrumentation, data reductions to root with remote client attached.</td>
<td>0.94%</td>
<td>0.17%</td>
<td>-0.26%</td>
<td>0.16%</td>
<td>0.83%</td>
</tr>
<tr>
<td>With instrumentation, data reductions to root but no remote client attached.</td>
<td>0.58%</td>
<td>-0.17%</td>
<td>0.37%</td>
<td>1.14%</td>
<td>0.99%</td>
</tr>
</tbody>
</table>
Overheads (2/2)

For bandwidth consumed when streaming performance data to the remote visualization client.
Live Streaming: Conclusions*

- Adaptive runtime allowed out-of-band collection of performance data while in user-space.
- Achieved with very low overhead and bandwidth requirements.

Main Thrusts

- Tool feature support for Scalable Analysis Idioms.
- Online reduction of performance data volume.
- Analysis Idioms for long-running applications through live performance streaming.
- Effective repeated performance hypothesis testing through simulation.
Repeated Large-Scale Hypothesis Testing

- Large-Scale runs are expensive:
 - Job submission of very wide jobs to supercomputing facilities.
 - CPU resources consumed by very wide jobs.

- How do we make repeated but inexpensive hypothesis testing experiments?
Trace-based Simulation

- Capture event dependency logs from a baseline application run.
- Simulation produces performance event traces from event dependency logs.
Advantages

• The time and memory requirements at simulation time are divorced from requirements at execution time.

• Simulation can be executed on fewer processors.

• Simulation can be executed on a cluster of workstations and still produce the same predictions.
Using the BigSim Framework (1/2)

- BigSim emulator captures:
 - Relative event time stamps.
 - Message dependencies.
 - Event dependencies.
- BigSim emulator produces event dependency logs.
Using the BigSim Framework (2/2)

- BigSim simulator uses a PDES engine to process event dependency logs to predict performance.

- BigSim simulator can generate performance event traces based on the predicted run.
Examples of Hypothesis Testing Possible

- Hypothetical Hardware changes:
 - Communication Latency.
 - Network properties.

- Hypothetical Software changes:
 - Different load balancing strategies.
 - Different initial object placement.
 - Different number of processors with the same object decomposition.
Example: Discovering Latency Trends

- Study the effects of network latency on performance of seven-point stencil computation.
Latency Trends –
Jacobi 3d 256x256x192 on 48 pes

Simulated Impact of Latency Variation on Performance (3D Jacobi 256x256x192)

- Virtualization Factor 1
- Virtualization Factor 4
- Virtualization Factor 8
- Virtualization Factor 16

Avg Time per Step (us)
0 2000 4000 6000 8000 10000

Latency (us)
0 1000 2000 3000 4000 5000 6000
Testing Different Load Balancing Strategies (1/2)

- Load Balancing Strategies make decisions as object-to-processor maps based on object load and inter-object communication costs.
- How do we make the simulator produce predictions about new load balancing strategies without re-executing the original code?
Testing Different Load Balancing Strategies (2/2)

- Record object-load and communication information of baseline run.
- Different Load Balancing strategies create different object-to-processor maps.
- A log transformation tool I wrote, transforms event dependency logs to reflect new object-to-processor mapping.
Example: Load Balancing Strategies

Baseline Strategy: Objects of the processors perform perfectly with 2 objects per processor.
Reduction of Processors during Emulation

- BigSim emulator can emulate \(k \) processors on \(p \) physical processors.
- Ratio of \(k \) to \(p \) can be increased by memory aliasing where appropriate.
Hypothesis Testing: Conclusions

- Flexible repeated performance hypothesis testing can be achieved via trace-based simulation.
- No analytical models need to be constructed for each application to enable software changes such as load balancing strategies.
Extending Scalability Techniques

- Can the techniques described in this thesis be adopted by other tools quickly?
- This was investigated through the results of a collaboration with the TAU group*.
- Flexible Performance call-back interface in Charm++ enabled an easy mechanism for a popular tool like TAU to record and process key runtime and application events.

*Scott Biersdorff, Chee Wai Lee, Allen D. Malony and Laximkant V. Kale.
Integrated Performance Views in Charm++: Projections Meets TAU.
Benefits of Extension of Capabilities

- Scalable TAU tools features can be used to grant different performance insights into Charm++ applications.
- TAU can make use of the adaptive runtime for live streaming of TAU data.
- TAU can make use of BigSim for repeated hypothesis testing.
Thesis Contributions (1/2)

- Identified and developed scalable tool feature support for performance analysis idioms.
- Showed the combination of techniques and heuristics effective for data reduction.
- Showed how an adaptive runtime can efficiently stream live performance data out-of-band in user-space to enable powerful analysis idioms.
Thesis Contributions (2/2)

- Showed trace-based simulation to be an effective method for repeated hardware and software hypothesis testing.
- Highlighted importance of flexible performance frameworks for the extension of scalability features to other tools.