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  Introduction. 
  Scalable Techniques: 
◦  Support for Analysis Idioms 
◦ Data Reduction 
◦  Live Streaming 
◦ Hypothesis Testing 

 Conclusion. 
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 What does performance analysis of 
applications with visual tools entail? 

 What are the effects of application scaling 
on performance analysis? 
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 Enlarged performance-space. 

  Increased performance data volume. 

 Reduces accessibility to machines and 
increases resource costs 
◦ Time to queue. 
◦ CPU resource consumption. 
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 Tool feature support for Scalable Analysis 
Idioms. 

 Online reduction of performance data 
volume. 

 Analysis Idioms for applications through 
live performance streaming. 

 Effective repeated performance 
hypothesis testing through simulation. 
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 Tool feature support for Scalable Analysis 
Idioms. 

 Online reduction of performance data 
volume. 

 Analysis Idioms for applications through 
live performance streaming. 

 Effective repeated performance 
hypothesis testing through simulation. 
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 Performance analysis idioms need to be 
effectively supported by tool features. 

  Idioms must avoid using tool features that 
become ineffectual at large processor 
counts. 

 We want to catalog common idioms and 
match these with scalable features. 
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 Non-scalable tool features require 
analysts to scan for visual cues over the 
processor domain. 

 How do we avoid this requirement on 
analysts? 
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 Aggregation across processor domain: 
◦ Histograms. 
◦ High resolution Time Profiles. 

 Processor selection: 
◦  Extrema Tool. 
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 Bins represent time spent by activities. 
 Counts of activities across all processors 

are added to appropriate bins. 
 Total counts for each activity are 

displayed as different colored bars. 
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 Apparent load imbalance. 
 No strategy appeared to solve imbalance. 
 Picked overloaded processor timelines.* 
  Found longer-than-expected activities. 
 Longer activities associated with specific 

objects. 
 Possible work grainsize distribution 

problems. 
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*As we will see later, not effective with large numbers of processors. 
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 Need to find way to pick out overloaded 
processors. Not scalable! 

  Finding out if work grainsize was a 
problem simply required the histogram 
feature. 
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  Shows activity-overlap over time summed 
across all processors. 

 Heuristics guide the search for visual cues 
for various potential problems: 
◦ Gradual downward slopes hint at possible 

load imbalance. 
◦ Gradual upward slopes hint at communication 

inefficiencies. 
 At high resolution, gives insight into 

application sub-structure. 
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Possible Load Imbalance After Greedy Load Balancing Strategy 
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Bigger! 



 A recurring theme in analysis idioms. 
 Easy to pick out timelines in datasets with  

small numbers of processors. 
 Examples of attributes and criteria: 
◦  Least idle processors. 
◦  Processors with late events. 
◦  Processors that behave very differently from 

the rest. 
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  Semi-automatically picks out interesting 
processors to display. 

 Decisions based on analyst-specified 
criteria. 

 Mouse-clicks on bars load interesting 
processors onto timeline. 
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 Effective analysis idioms must avoid non-
scalable features. 

 Histograms, Time Profiles and the 
Extrema Tool offer scalable features in 
support of idioms. 
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 Tool feature support for Scalable Analysis 
Idioms. 

 Online reduction of performance data 
volume. 

 Analysis Idioms for applications through 
live performance streaming. 

 Effective repeated performance 
hypothesis testing through simulation. 
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 Normally, scalable tool features are used 
with full event traces. 

 What happens if full event traces get too 
large? 

 We can: 
◦ Choose to keep event traces for only a subset 

of processors. 
◦ Replace event traces of discarded processors 

with interval-based profiles. 
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  Small files. File size is a function of 
duration of instrumentation and 
resolution of each time interval recorded. 

  Suitable for Time Profiles. 
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 What are the challenges? 
◦ No a priori information about performance 

problems in dataset. 
◦ Chosen processors need to capture details of 

performance problems. 
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 Observations: 
◦  Processors tend to form equivalence classes 

with respect to performance behavior. 
◦ Clustering can be used to discover 

equivalence classes in performance data. 
◦ Outliers in clusters may be good candidates 

for capturing performance problems. 
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  k-Means Clustering algorithm is 
commonly used to classify objects in data 
mining applications. 

 Treat the vector of recorded performance 
metric values on each processor as a data 
point for clustering. 
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 Measure similarity between two data 
points using the Euclidean Distance 
between the two metric vectors. 

 Given k clusters to be found, the goal is 
to minimize similarity values between all 
data points and the centroids of the k 
clusters. 
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 Choosing Cluster Outliers. 
◦  Pick processors furthest from cluster 

centroid. 
◦ Number chosen by proportion of cluster size. 

 Choosing Cluster Exemplars. 
◦  Pick a single processor closest to the cluster 

centroid. 

 Outliers + Exemplars = Reduced Dataset. 
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 Decisions on data retention are made 
before data is written to disk. 

 Requires a low-overhead and scalable 
parallel k-Means algorithm which was 
implemented. 
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Root Worker 

Contribute metric vector. 

Receive aggregated metric vector stats. 
Calculate normalization factors. 
Get initial cluster centroids. 
Broadcast factors and centroids. 

Normalize local metric vector. 
Find closest centroid. 
Contribute centroid modification. 

Update centroids. 
If no centroid changes,  
   Done 
Else 
   Broadcast centroids   



 Choice of metrics from domains: 
◦ Activity time. 
◦ Communication volume (bytes). 
◦ Communication (number of messages). 

 Normalization of metrics: 
◦  Same metric domain = no normalization. 
◦ Min-max normalization across different metric 

domains to remove inter-domain bias. 
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  Find minm values for each metric m over 
all processor data points. 

  Find maxd values for metrics within each 
metric domain d over all processor data 
points. 

  For each data point, re-compute each 
metric value m, where m is a member of 
domain d, as: (m – minm)/maxd 
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Metric X 

Metric Y 



Idle Time 
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 Clustering and choice heuristics 
presented us with a reduced dataset. 

 How useful is the reduced dataset to 
analysis? 

 We know least-idle processors can be 
useful for analysis. 

 How many top least-idle processors will 
show up in the reduced dataset? 

 What was the overhead? 
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Top x  
Least Idle 

5% Retention 10% Retention 15% Retention 

5 100% 100% 100% 

10 70% 90% 100% 

20 45% 70% 95% 

5% Retention = 102 processors 
10% Retention = 204 processors 
15% Retention = 306 processors 
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Percentage of Top Least Idle processors 
picked for the reduced dataset.   



Top x 
Least Idle 

5% Retention 10% Retention 15% Retention 

5 20% 40% 60% 

10 20% 40% 50% 

20 10% 20% 30% 

5% Retention = 51 processors 
10% Retention = 102 processors 
15% Retention = 153 processors 
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Percentage of Top Least Idle processors 
picked for the reduced dataset.   



Top x  
Least Idle 

2.5% Retention 5% Retention 7.5% Retention 

5 40% 100% 100% 

10 20% 70% 100% 

20 10% 45% 100% 

2.5% Retention = 102 processors 
5% Retention = 204 processors 
7.5% Retention = 306 processors 
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Percentage of Top Least Idle processors 
picked for the reduced dataset.   
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  Showed combination of techniques for 
online data reduction is effective*. 

 Choice of processors included in reduced 
datasets can be refined and improved 
◦  Include communicating processors. 
◦  Include processors on critical path. 

 Consideration of application phases can 
further improve quality of reduced 
dataset. 
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*Chee Wai Lee, Celso Mendes and Laxmikant V. Kale. Towards Scalable 
Performance Analysis and Visualization through Data Reduction. 
13th International Workshop on High-Level Parallel Programming Models 
and Supportive Environments, Miami, Florida, USA, April 2008.  



 Tool feature support for Scalable Analysis 
Idioms. 

 Online reduction of performance data 
volume. 

 Analysis Idioms for applications through 
live performance streaming. 

 Effective repeated performance 
hypothesis testing through simulation. 
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 Live Streaming mitigates need to store a 
large volume of performance data. 

 Live Streaming enables analysis idioms 
that provide animated insight into the 
trends application behavior. 

 Live Streaming also enables idioms for the 
observation of unanticipated problems, 
possibly over a long run. 
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 Must maintain low overhead for 
performance data to be recorded, pre-
processed and disposed-of. 

 Need efficient mechanism for 
performance data to be sent via out-of-
band channels to one (or a few) 
processors for delivery to a remote 
client. 
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 Charm++ adaptive runtime as medium for 
scalable and efficient: 
◦ Control signal delivery. 
◦  Performance data capture and delivery. 

 Converse Client-Server (CCS) enables 
remote interaction with running Charm+
+ application through a socket opened by 
the runtime. 
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 What kinds of performance data should 
we stream? 

 How frequently should we deliver the 
data to the client? 
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 A Utilization Profile similar to high 
resolution Time Profiles. 

 Performance data is compressed by only 
considering significant metrics in a special 
format. 

  Special reduction client merges data from 
multiple processors. 
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512 1024 2048 4096 8192 

With instrumentation,  
data reductions to root 
with remote client 
attached. 

0.94% 0.17% -0.26% 0.16% 0.83% 

With instrumentation, 
data reductions to root 
but no remote client 
attached. 

0.58% -0.17% 0.37% 1.14% 0.99% 
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% Overhead when compared to baseline system: 
Same application with no performance 
instrumentation. 



For bandwidth consumed when streaming 
performance data to the remote 
visualization client. 
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 Adaptive runtime allowed out-of-band 
collection of performance data while in 
user-space. 

 Achieved with very low overhead and 
bandwidth requirements. 
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*Isaac Dooley, Chee Wai Lee, and Laxmikant V. Kale. Continuous 
Performance Monitoring for Large-Scale Parallel Applications. 
Accepted for publication at HiPC 2009, December-2009. 



 Tool feature support for Scalable Analysis 
Idioms. 

 Online reduction of performance data 
volume. 

 Analysis Idioms for long-running 
applications through live performance 
streaming. 

 Effective repeated performance 
hypothesis testing through simulation. 
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 Large-Scale runs are expensive: 
◦  Job submission of very wide jobs to 

supercomputing facilities. 
◦ CPU resources consumed by very wide jobs. 

 How do we make repeated but 
inexpensive hypothesis testing 
experiments? 
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 Capture event dependency logs from a 
baseline application run. 

  Simulation produces performance event 
traces from event dependency logs. 
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 The time and memory requirements at 
simulation time are divorced from 
requirements at execution time. 

  Simulation can be executed on fewer 
processors. 

  Simulation can be executed on a cluster 
of workstations and still produce the 
same predictions. 
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 BigSim emulator captures: 
◦ Relative event time stamps. 
◦ Message dependencies. 
◦  Event dependencies. 

 BigSim emulator produces event 
dependency logs. 
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 BigSim simulator uses a PDES engine to 
process event dependency logs to predict 
performance. 

 BigSim simulator can generate 
performance event traces based on the 
predicted run. 
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 Hypothetical Hardware changes: 
◦ Communication Latency. 
◦ Network properties. 

 Hypothetical Software changes: 
◦ Different load balancing strategies. 
◦ Different initial object placement. 
◦ Different number of processors with the 

same object decomposition. 
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  Study the effects of network latency on 
performance of seven-point stencil 
computation. 
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 Load Balancing Strategies make decisions 
as object-to-processor maps based on 
object load and inter-object 
communication costs. 

 How do we make the simulator produce 
predictions about new load balancing 
strategies without re-executing the 
original code? 
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 Record object-load and communication 
information of baseline run. 

 Different Load Balancing strategies create 
different object-to-processor maps. 

 A log transformation tool I wrote, 
transforms event dependency logs to 
reflect new object-to-processor mapping. 
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Baseline Load Imbalance: Half the processors perform 
twice the work with 2 objects per processor. 
Greedy Strategy: Objects balanced across processors 
perfectly. 
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 BigSim emulator can emulate k 
processors on p physical processors 

 Ratio of k to p can be increased by 
memory aliasing where appropriate. 
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  Flexible repeated performance hypothesis 
testing can be achieved via trace-based 
simulation. 

 No analytical models need to be 
constructed for each application to enable 
software changes such as load balancing 
strategies. 
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 Can the techniques described in this 
thesis be adopted by other tools quickly? 

 This was investigated through the results 
of a collaboration with the TAU group*. 

  Flexible Performance call-back interface in 
Charm++ enabled an easy mechanism for 
a popular tool like TAU to record and 
process key runtime and application 
events. 
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*Scott Biersdorff, Chee Wai Lee, Allen D. Malony and Laximkant V. Kale. 
Integrated Performance Views in Charm++: Projections Meets TAU. 
ICPP-2009, Vienna, Austria, September 22-25, 2009. 



  Scalable TAU tools features can be used 
to grant different performance insights 
into Charm++ applications. 

 TAU can make use of the adaptive 
runtime for live streaming of TAU data. 

 TAU can make use of BigSim for repeated 
hypothesis testing. 
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  Identified and developed scalable tool 
feature support for performance analysis 
idioms. 

  Showed the combination of techniques 
and heuristics effective for data reduction. 

  Showed how an adaptive runtime can 
efficiently stream live performance data 
out-of-band in user-space to enable 
powerful analysis idioms. 
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  Showed trace-based simulation to be an 
effective method for repeated hardware 
and software hypothesis testing. 

 Highlighted importance of flexible 
performance frameworks for the 
extension of scalability features to other 
tools.  
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