Techniques in Scalable and

Effective Performance Analysis
Thesis Defense - |1 1/10/2009

By Chee Wai Lee

BREOOEEER

> @/~ [@j8® @20

Lowest / Max. Depth ¢
10/13 4

Cumulativebx... ¥

IsLoG-2
Do
01
D2
[AE

[ParaProt visualizer: Appiication 13, Trial 57.

D4

File Options Windows Help

Triangle Mesh)
® Bar Plot
Scatter Plot
Height Metric
Inclusive
Color Metric

Inclusive

Function

Os
DOs
D7

O utilization

Zoom Level Global Min Time_ View Init Time Zoom Focus Time _ View Final Time _ Global Max Time __Time Per Pixel
0 |-0.0060565 -0.0060565 238.81427525 477634607 477634607 062031255

S

RaliE—

TimeLines

(oot oo X

I 19eRY ST H uE

({[FOvwrew X T Rt X [w10 e X [Furcson X [G ot X1

2. 2.0
Il Il

—————

Wrucaitel fogion

sxale = 10609%

Il
340

Qoomi| Qzeomou| Qeeaei
Iy

Tae

© By EP Colors

Overview

* Introduction.
e Scalable Techniques:

o Support for Analysis Idioms
> Data Reduction
° Live Streaming

> Hypothesis Testing
» Conclusion.

Introduction

* What does performance analysis of
applications with visual tools entail?

* What are the effects of application scaling
on performance analysis?

Effects of Application Scaling

 Enlarged performance-space.
* Increased performance data volume.

* Reduces accessibility to machines and
increases resource costs

> Time to queue.

> CPU resource consumption.

Main Thrusts

* Tool feature support for Scalable Analysis
|dioms.

* Online reduction of performance data
volume.

* Analysis Idioms for applications through
live performance streaming.

» Effective repeated performance
hypothesis testing through simulation.

Main Thrusts

 Tool feature support for Scalable Analysis
|ldioms.

* Online reduction of performance data
volume.

* Analysis Idioms for applications through
live performance streaming.

» Effective repeated performance
hypothesis testing through simulation.

Scalable Tool Features: Motivations

* Performance analysis idioms need to be
effectively supported by tool features.

* ldioms must avoid using tool features that
become ineffectual at large processor
counts.

* We want to catalog common idioms and
match these with scalable features.

Scalable Tool Feature Support (1/2)

* Non-scalable tool features require
analysts to scan for visual cues over the
processor domain.

* How do we avoid this requirement on
analysts?

Scalable Tool Feature Support (2/2)

» Aggregation across processor domain:

> Histogrames.
> High resolution Time Profiles.

e Processor selection:

o Extrema Tool.

Histogram as a Scalable Tool Feature

* Bins represent time spent by activities.

» Counts of activities across all processors
are added to appropriate bins.

* Total counts for each activity are
displayed as different colored bars.

Case Study:

* Apparent load imbalance.
* No strategy appeared to solve imbalance.
* Picked overloaded processor timelines.*
» Found longer-than-expected activities.

* Longer activities associated with specific
objects.

* Possible work grainsize distribution
problems.

*As we will see later, not effective with large numbers of processors.

Case Study:
Valldatlon usmg HIStO rams

8080 U — I

LI L L | L) I [

800
1200 .

700 - .

1000 .
600

5B .

4880 =

Number of computes

300 .
400 .

200 .

200
100

D Ll L | | 1 L {11 | — 1 - m | | L1l [e |

113 53 7 8 11 A3 132 17 19 21123 25527 F9 31183 39137 29 41243
Erinszes((ns)

Effectiveness of Idiom

* Need to find way to pick out overloaded
processors. Not scalable!

* Finding out if work grainsize was a
problem simply required the histogram
feature.

High Resolution Time Profiles

* Shows activity-overlap over time summed
across all processors.

e Heuristics guide the search for visual cues
for various potential problems:

> Gradual downward slopes hint at possible
load imbalance.

> Gradual upward slopes hint at communication
inefficiencies.

* At high resolution, gives insight into
application sub-structure.

Case Study: Using Time Profiles

—_—
[120040 0 }

1954200 21955300 21956100 31957100 29583¢ 9040 319640.0 319740.0 319840.0
TIPS (10 000
v 5,08 s 5.08
-

W‘téllb@rlééiﬂ |I_I‘@bd$tﬂancmg Strategy

15

Finding Extreme or Unusual
Processors

* A recurring theme in analysis idioms.

 Easy to pick out timelines in datasets with
small numbers of processors.

* Examples of attributes and criteria:
> Least idle processors.
> Processors with late events.

> Processors that behave very differently from
the rest.

The Extrema Tool

» Semi-automatically picks out interesting
processors to display.

* Decisions based on analyst-specified
criteria.

* Mouse-clicks on bars load interesting
processors onto timeline.

V1 N Y 1 1 D Y O 7 {1 £) D1 O Y
N O 6T (O S O S T O SN [(1 T U O Y T |

265, 495278 265,495,893 265 457 084 1,191 ms
FERTCL AOTY TR ITITRR TV mangY FENE RINFY LU RUSE LAY LS

Scalable Tool Features: Conclusions

* Effective analysis idioms must avoid non-
scalable features.

* Histograms, Time Profiles and the
Extrema Tool offer scalable features in
support of idioms.

Main Thrusts

* Tool feature support for Scalable Analysis
|dioms.

e Online reduction of performance data
volume.

* Analysis Idioms for applications through
live performance streaming.

» Effective repeated performance
hypothesis testing through simulation.

Data Reduction

* Normally, scalable tool features are used
with full event traces.

* What happens if full event traces get too
large?
* We can:

> Choose to keep event traces for only a subset
of processors.

> Replace event traces of discarded processors
with interval-based profiles.

Interval-Based Profiles

e Small files. File size is a function of
duration of instrumentation and
resolution of each time interval recorded.

e Suitable for Time Profiles.

Choosing Useful Processor Subset
(1/2)

* What are the challenges!?

> No a priori information about performance
problems in dataset.

> Chosen processors need to capture details of
performance problems.

Choosing Useful Processor Subsets
(2/2)

e Observations:

> Processors tend to form equivalence classes
with respect to performance behavior.

> Clustering can be used to discover
equivalence classes in performance data.

> Qutliers in clusters may be good candidates
for capturing performance problems.

Applying k-Means Clustering to
Performance Data (1/2)

* k-Means Clustering algorithm is
commonly used to classify objects in data
mining applications.

* Treat the vector of recorded performance
metric values on each processor as a data
point for clustering.

Applying k-Means Clustering to
Performance Data (2/2)

* Measure similarity between two data
points using the Euclidean Distance
between the two metric vectors.

* Given k clusters to be found, the goal is
to minimize similarity values between all
data points and the centroids of the k
clusters.

Choosing from Clusters

e Choosing Cluster Outliers.

° Pick processors furthest from cluster
centroid.

> Number chosen by proportion of cluster size.
e Choosing Cluster Exemplars.

° Pick a single processor closest to the cluster
centroid.

e QOutliers + Exemplars = Reduced Dataset.

Applying k-Means Clustering Online

e Decisions on data retention are made
before data is written to disk.

» Requires a low-overhead and scalable
parallel k-Means algorithm which was
implemented.

Parallel k-Means

Root Worker

Contribute metric vector.

Receive aggregated metric vector stats.
Calculate normalization factors.

Get initial cluster centroids.
Broadcast factors and centroids.

Normalize local metric vector.
Find closest centroid.
Contribute centroid modification.

Update centroids.

If no centroid changes,
Done

Else
Broadcast centroids

Important k-Means Parameters

e Choice of metrics from domains:
> Activity time.
> Communication volume (bytes).

> Communication (number of messages).

e Normalization of metrics:
o Same metric domain = no normalization.

o Min-max normalization across different metric
domains to remove inter-domain bias.

Min-Max Normalization for

Multiple Metric Domains

e Find min_ values for each metric m over
all processor data points.

* Find max, values for metrics within each
metric domain d over all processor data
points.

» For each data point, re-compute each
metric value m, where m is a member of
domain d, as: (m — min_)/max

k-Means Clustering

t MetricY

A

Clustering Nuances

@

Idle Time

—=

33

Evaluating the technique

» Clustering and choice heuristics
presented us with a reduced dataset.

* How useful is
analysis!?

the reduced dataset to

* We know least-idle processors can be

useful for ana

ysis.

* How many to

b least-idle processors will

show up in the reduced dataset!?

* What was the overhead?

Results (2048 Processors NAMD)

Percentage of Top Least Idle processors
picked for the reduced dataset.

Top x 5% Retention 10% Retention 15% Retention
Least Idle

5 100% 100% 100%

10 70% 90% 100%

20 45% 70% 95%

5% Retention = 102 processors
0% Retention = 204 processors
5% Retention = 306 processors

35

Results (1024 Processors NAMD)

Percentage of Top Least Idle processors
picked for the reduced dataset.

Top x 5% Retention 10% Retention 15% Retention
Least Idle

5 20% 40% 60%

10 20% 40% 50%

20 10% 20% 30%

5% Retention = 5| processors
|0% Retention = 102 processors
5% Retention = |53 processors

36

Results (4096 Processors NAMD)

Percentage of Top Least Idle processors
picked for the reduced dataset.

Top x 2.5% Retention 5% Retention 7.5% Retention
Least Idle

5 40% 100% 100%

10 20% 70% 100%

20 10% 45% 100%

2.5% Retention = 102 processors
5% Retention = 204 processors
7.5% Retention = 306 processors

37

Overhead of parallel k-Means

Time to Perform K-Means Clustering

0.300
0.225

0.150

Seconds

0.075

240 1200 2400 4800 9600 19200

Number of Processor Cores

Data Reduction: Conclusions

» Showed combination of techniques for
online data reduction is effective™.

* Choice of processors included in reduced
datasets can be refined and improved

° Include communicating processors.
° Include processors on critical path.

» Consideration of application phases can
further improve quality of reduced
dataset.

*Chee Wai Lee, Celso Mendes and LaxmikantV. Kale. Towards Scalable
Performance Analysis and Visualization through Data Reduction.
| 3th International Workshop on High-Level Parallel Programming Models
and Supportive Environments, Miami, Florida, USA, April 2008.

Main Thrusts

* Tool feature support for Scalable Analysis
|dioms.

* Online reduction of performance data
volume.

e Analysis Idioms for applications through
live performance streaming.

» Effective repeated performance
hypothesis testing through simulation.

Live Streaming of Performance Data

* Live Streaming mitigates need to store a
arge volume of performance data.

e Live Streaming enables analysis idioms
that provide animated insight into the
trends application behavior.

* Live Streaming also enables idioms for the
observation of unanticipated problems,
possibly over a long run.

Challenges to Live Streaming

e Must maintain low overhead for
performance data to be recorded, pre-
processed and disposed-of.

* Need efficient mechanism for
berformance data to be sent via out-of-
band channels to one (or a few)
brocessors for delivery to a remote
client.

Enabling Mechanisms

e Charm++ adaptive runtime as medium for
scalable and efficient:
> Control signal delivery.
> Performance data capture and delivery.

» Converse Client-Server (CCS) enables
remote interaction with running Charm+

+ application through a socket opened by
the runtime.

Questions

* What kinds of performance data should
we stream!?

* How frequently should we deliver the
data to the client?

Live Streaming System Overview

A) Gathering Performance Data in Parallel Runtime System:

(1) Broadcast Request for
Root Processor Utilization Profiles
~ Periodic Once Per Second
_../ Requests * * *
Trace Processor Trace Processor Trace
Module Module === Module
(3) Buffer
Utilization
Profiles N (2) Reduction Merges Compressed Utilization Profiles

B) Visualizing Performance Data:

: ot ; Root Processor
Visualization Client (1) Send Request via
- ——— ‘ TCP using CCS protocol
i mn
E = P CCS
L 4

< Handler (2) Retrieve a
(3) CCS Reply Contains Buffered Utilization
Utilization Profile Profile

(4) Update Display

What is Streamed?

» A Utilization Profile similar to high
resolution Time Profiles.

* Performance data is compressed by only
considering significant metrics in a special
format.

» Special reduction client merges data from
multiple processors.

of Bins # Processors Bin 1 " Bin m
4 bytes 4 bytes
of Records EID1 Utilization 1 " EIDn Utilization n

2 bytes 2 bytes 1 byte 2 bytes 1 byte

Visualization

acked by EP

Utilization St

85
80
75
70
65
60
55
50 -
45 -
40 -
35 -
30 -
25 -
20
15
10

5

0

Percent Utilization

B Other W dummy_thread_ep Minit [Jstartup M collectSumDetailData M initialize_pencils [0 enqueueWorkA
M recvGrid M enqueueSelfA W enqueueSelfB M enqueueWorkB M recvUntrans M recvTrans Mresume
W updateLocalComputes M updatelLocalComputes3 M ReceiveMigration

4/

Overheads (1/2)

% Overhead when compared to baseline system:

Same application with no performance

instrumentation.

512 1024 2048 4096 8192
With instrumentation,
data reductions to root | g g4 | 179 | .026% | 0.16% | 0.83%
with remote client
attached.
With instrumentation,
data reductions to root |y ga. | g7 | 037% | 1.14% | 0.99%

but no remote client
attached.

Overheads (2/2)

For bandwidth consumed when streaming
performance data to the remote
visualization client.

CCS Reply Message Sizes

12,500
12,000
11,500 '.J'fﬂ-ﬁw-f-. e
11,000 L

10,500 ol |

10,000 e * N

9,500 n¥

9,000
8,500
8,000 { M —

75001 |\ ‘ ‘

7,000 { | ®

6,500 1 | |

6,000 | | ‘

5500 | e ‘

5,000 { | ———— ﬁ
4,500 1 | ‘ 5
4,000 I \ !
3,500
3,000 {|
2,500

2,000 f o

0 10 20 30 40 50 60 70 80 90 100 110 120 130
CCS Non-Empty Reply Message

Size (Bytes)

j¢—————— Startup ——————nja— SE;"",’Q ~#}e———————— Load Balanced Steps =}

Live Streaming: Conclusions™

* Adaptive runtime allowed out-of-band
collection of performance data while in
user-space.

* Achieved with very low overhead and
bandwidth requirements.

*Isaac Dooley, Chee Wiai Lee, and Laxmikant V. Kale. Continuous

Performance Monitoring for Large-Scale Parallel Applications.
Accepted for publication at HiPC 2009, December-2009.

Main Thrusts

* Tool feature support for Scalable Analysis
|dioms.

* Online reduction of performance data
volume.

* Analysis |ldioms for long-running
applications through live performance
streaming.

o Effective repeated performance
hypothesis testing through simulation.

Repeated Large-Scale Hypothesis
Testing

e Large-Scale runs are expensive:

° Job submission of very wide jobs to
supercomputing facilities.

> CPU resources consumed by very wide jobs.

* How do we make repeated but
inexpensive hypothesis testing
experiments!?

Trace-based Simulation

» Capture event dependency logs from a
baseline application run.

 Simulation produces performance event
traces from event dependency logs.

Advantages

e The time and memory requirements at
simulation time are divorced from
requirements at execution time.

e Simulation can be executed on fewer
Processors.

 Simulation can be executed on a cluster
of workstations and still produce the
same predictions.

Using the BigSim Framework (1/2)

 BigSim emulator captures:
> Relative event time stamps.
> Message dependencies.
> Event dependencies.

e BigSim emulator produces event
dependency logs.

Using the BigSim Framework (2/2)

* BigSim simulator uses a PDES engine to
process event dependency logs to predict
performance.

e BigSim simulator can generate
performance event traces based on the
predicted run.

Examples of Hypothesis Testing

Possible
* Hypothetical Hardware changes:

> Communication Latency.

> Network properties.

* Hypothetical Software changes:
o Different load balancing strategies.
o Different initial object placement.

o Different number of processors with the
same object decomposition.

Example:
Discovering Latency Trends

» Study the effects of network latency on
performance of seven-point stencil
computation.

Latency Trends —
Jacobi 3d 256x256x192 on 48 pes

Sinulated Inpact of Latency Variation on Perfornance (3D Jacobi 256x256x192)
16000

Virtualization Factor 1 —— P

Virtualization Factor 4 —#%— T

Virtualization Factor 8 —5— e
Virtualization Factor 16 —8— -

*
”~~

%]

-
'

. 6000

Q
-
[7p]

[

o L—

- "

Q
L 4eee | -
-

W

>
(=

2000 -
0 1 1 1 1 1
e 1000 2000 3000 4000 5000 6000

Latency {us}

Testing Different
Load Balancing Strategies (1/2)

* Load Balancing Strategies make decisions
as object-to-processor maps based on
object load and inter-object
communication costs.

* How do we make the simulator produce
predictions about new load balancing
strategies without re-executing the
original code!?

Testing Different
Load Balancing Strategies (2/2)

* Record object-load and communication
information of baseline run.

* Different Load Balancing strategies create
different object-to-processor maps.

* A log transformation tool | wrote,
transforms event dependency logs to
reflect new object-to-processor mapping.

Example:
Load Balancing Strategies

Projections Timelines - tproj.sts

File Ranges Screenshot Colors Tracing View Experimental Features

Time In Microseconds
199,666 598,999 798,665 998,332 1,197,998 397, 1,597,331 1,796,997 1,996,664

.
e E e
.

__| Display Pack Times ! Display Message Sends 1 Display Idle Time 1 Display User Events __| View User Events (0)
Q Zoom Ratio: 1.0 @% Reset Zoom
Load New Time/PE Range Time At Mouse Cursor Selection Begin Time Selection End Time Selection Length

BaeekilycStoadd gy dDbjectsiblif|the gd-acessssrpesksons
pertecthe work with 2 objects per processor.

Reduction of Processors

during Emulation

* BigSim emulator can emulate k
processors on p physical processors

* Ratio of k to p can be increased by
memory aliasing where appropriate.

Hypothesis Testing: Conclusions

* Flexible repeated performance hypothesis
testing can be achieved via trace-based
simulation.

* No analytical models need to be
constructed for each application to enable
software changes such as load balancing
strategies.

Extending Scalability Techniques

» Can the techniques described in this

thesis be adopted by other too
* This was investigated through t

s quickly?
ne results

of a collaboration with the TAU

group™.

* Flexible Performance call-back interface in
Charm++ enabled an easy mechanism for
a popular tool like TAU to record and
process key runtime and application

events.

*Scott Biersdorff, Chee Wai Lee, Allen D. Malony and Laximkant V. Kale.
Integrated Performance Views in Charm++: Projections Meets TAU.

ICPP-2009,Vienna, Austria, September 22-25,2009.

Benefits of Extension of Capabilities

* Scalable TAU tools features can be used
to grant different performance insights
into Charm++ applications.

e TAU can ma
runtime for

e TAU can ma

e use of the adaptive

ive streaming of TAU data.

e use of BigSim for re

hypothesis testing.

heated

Thesis Contributions (1/2)

* ldentified and developed scalable tool
feature support for performance analysis
idioms.

» Showed the combination of techniques
and heuristics effective for data reduction.

e Showed how an adaptive runtime can
efficiently stream live performance data
out-of-band in user-space to enable
powerful analysis idioms.

Thesis Contributions (2/2)

* Showed trace-based simulation to be an
effective method for repeated hardware
and software hypothesis testing.

* Highlighted importance of flexible
performance frameworks for the
extension of scalability features to other
tools.

