
Scalable Fa lt Tolerance Schemes singScalable Fault Tolerance Schemes using
Adaptive Runtime Support

Laxmikant (Sanjay) KaleLaxmikant (Sanjay) Kale
http://charm.cs.uiuc.edu

Parallel Programming Laboratoryg g y
Department of Computer Science

University of Illinois at Urbana Champaigny p g

Presentation Outline
• What is object based decomposition

– Its embodiment in Charm++ and AMPI
– Its general benefits
– Its features that are useful for fault tolerance schemes

• Our Fault Tolerance work in Charm++ and AMPI
– Disk-based checkpoint/restart
– In-memory double checkpoint/restart
– Proactive object-migration

Message logging– Message-logging

10/1/2009 28/13/2009 HPC Resilience Workshop DC

Object based over-decomposition
• Programmers decompose computation into objects

– Work units, data-units, composites
– Decomposition independent of number of processors
– Typically, many more objects than processors

• Intelligent runtime system assigns objects to
processors

• RTS can change this assignment (mapping) during
execution

8/13/2009 HPC Resilience Workshop DC

Object-based over-decomposition: Charm++
• Multiple “indexed collections” of C++ objects
• Indices can be multi-dimensional and/or sparse
• Programmer expresses communication between objects

System implementation

• Programmer expresses communication between objects
– with no reference to processors

System implementation

8/13/2009 HPC Resilience Workshop DC

User View

Object-based over-decomposition: AMPI
• Each MPI process is implemented as a user-level thread
• Threads are light-weight, and migratable!

– <1 microsecond context switch time, potentially >100k threads per core

• Each thread is embedded in a charm+ object (chare)

MPI
processes

Virtual
Processors
(user level

R l P

(user-level
migratable
threads)

8/13/2009 HPC Resilience Workshop DC

Real Processors

Some Properties of this approach
Relevant to Fault ToleranceRelevant to Fault Tolerance

• Object‐based Virtualization • Dynamic load balancingj
leads to Message Driven
Execution

Dynamic load balancing
by migrating objects

• No dependence on p
processor number:
– E.g. 3D cube of objects,
can be mapped to a non‐
cube number of
processorsp ocesso s

Scheduler Scheduler

M Q Message Q

8/13/2009 HPC Resilience Workshop DC

Message Q Message Q

Charm++/AMPI are well established systems

• The Charm++ model has succeeded in
CSE/HPCCSE/HPC

• Because:
15% of cycles at NCSA,
20% at PSC, were used on
Charm++ apps in a one

– Resource management, …
Charm++ apps, in a one
year period

• So, work on fault tolerance for Charm++ and AMPI is
directly useful to real apps

• Also, with AMPI, it applies to MPI applications

HPC Resilience Workshop DC8/13/2009

Fault Tolerance in Charm++ & AMPI
• Four Approaches Available:

a) Disk-based checkpoint/restart
b) In-memory double checkpoint/restart
c) Proactive object migration) j g
d) Message-logging: scalable rollback, parallel restart

• Common Features:Common Features:
– Based on dynamic runtime capabilities

Use of object migration– Use of object-migration
– Can be used in concert with load-balancing schemes

8/13/2009 HPC Resilience Workshop DC

Disk-Based Checkpoint/Restart
• Basic Idea:

– Similar to traditional checkpoint/restart; “migration” to disk

• Implementation in Charm++/AMPI:
– Blocking coordinated checkpoint: MPI_Checkpoint(DIRNAME)

• Pros:
– Simple scheme, effective for common casesp
– Virtualization enables restart with any number of processors

• Cons:
– Checkpointing and data reload operations may be slow
– Work between last checkpoint and failure is lost
– Job needs to be resubmitted and restarted

8/13/2009 HPC Resilience Workshop DC

SyncFT: In-Memory double Checkpoint/Restart
• Basic Idea:

– Avoid overhead of disk access for keeping saved data
– Allow user to define what makes up the state data

• Implementation in Charm++/AMPI:
– Coordinated checkpoint
– Each object maintains two checkpoints:

• on local processor’s memory
• on remote buddy processor’s memory

A d process is created to replace crashed process– A dummy process is created to replace crashed process
– New process starts recovery on another processor

• use buddy’s checkpoint to recreate state of failing processoruse buddy s checkpoint to recreate state of failing processor
• perform load balance after restart

8/13/2009 HPC Resilience Workshop DC

OverOver

In-Memory Double Checkpoint/Restart (cont.)
• Comparison to disk-based checkpointing:

100

1000

ea
d

(s
)

doubl e i n memor y

1

10

 o
ve

rh
e doubl e i n- memor y

(Myr i net)
doubl e i n- memor y
(100Mb)
L l Di k

0. 01

0. 1

ec
kp

oi
nt Local Di sk

doubl e i n- di sk
(Myr i net)

0. 001
6. 4 12. 8 25. 6 51. 2 102 205 410 819 1638 3277 6554

()

Ch
e (y)

NFS di sk

Pr obl em s i ze (MB)

8/13/2009 HPC Resilience Workshop DC

In-Memory Double Checkpoint/Restart (cont.)
• Recovery Performance:

– Molecular Dynamics LeanMD code, 92K atoms, P=128
– Load Balancing (LB) effect after failure:

Wi t h LBWi t hout LB

3

4

me
 p

er
)3

4

me
 p

er

1

2

3

at
io

n
ti

st
ep

(s
)

1

2

3

at
io

n
ti

st
ep

(s
)

0

1

1 101 201 301 401 501 601

Si
mu

l
0

1

1 101 201 301 401 501 601

Si
mu

l

Ti mest epTi mest ep

8/13/2009 HPC Resilience Workshop DC

In-Memory Double Checkpoint/Restart (cont.)
• Application Performance:

– Molecular Dynamics LeanMD code, 92K atoms, P=128
– Checkpointing every 10 timesteps; 10 crashes inserted:

8/13/2009 HPC Resilience Workshop DC

In-Memory Double Checkpoint/Restart (cont.)
• Pros:

– Faster checkpointing than disk-based
– Reading of saved data also faster
– Only one processor fetches checkpoint across network

• Cons:
– Memory overhead may be high
– All processors are rolled back, despite individual failure
– All the work since last checkpoint is redone by every processor

P bli i• Publications:
– Zheng, Huang & Kale: ACM-SIGOPS, April 2006

Zh Shi & K l IEEE Cl ’2004 S 2004– Zheng, Shi & Kale: IEEE-Cluster’2004, Sep.2004

8/13/2009 HPC Resilience Workshop DC

Proactive Object Migration
• Basic Idea:

– Use knowledge about impending faults
– Migrate objects away from processors that may fail soon
– Fall back to checkpoint/restart when faults not predicted

• Implementation in Charm++/AMPI:
– Each object has a unique index
– Each object is mapped to a home processor

• objects need not reside on home processor
• home processor kno s ho to reach the object• home processor knows how to reach the object

– Upon getting a warning, evacuate the processor
• reassign mapping of objects to new home processorsreassign mapping of objects to new home processors
• send objects away, to their home processors

8/13/2009 HPC Resilience Workshop DC

Proactive Object Migration (cont.)
• Evacuation time as a function of #processors:

– 5-point stencil code in Charm++, IA-32 cluster

8/13/2009 HPC Resilience Workshop DC

Proactive Object Migration (cont.)
• Performance of an MPI application

– Sweep3d code, 150x150x150 dataset, P=32, 1 warning
– 5-point stencil code in Charm++, IA-32 cluster

8/13/2009 HPC Resilience Workshop DC

Proactive Object Migration (cont.)
• Pros:

– No overhead in fault-free scenario
– Evacuation time scales well, only depends on data and network
– No need to roll back when predicted fault happens

• Cons:
– Effectiveness depends on fault predictability mechanism
– Some faults may happen without advance warning

• Publications:
– Chakravorty, Mendes & Kale: HiPC, Dec.2006
– Chakravorty, Mendes, Kale et al: ACM-SIGOPS, April 2006

8/13/2009 HPC Resilience Workshop DC

Message-Logging
• Basic Idea:

– Messages are stored by sender during execution
– Periodic checkpoints still maintained
– After a crash, reprocess “recent” messages to regain state

• Implementation in Charm++/AMPI:
– Since the state depends on the order of messages received, the

t l th t th ti i th dprotocol ensures that the new receptions occur in the same order
– Upon failure, roll back is “localized” around failing point: no

need to roll back all the processors!p
– With virtualization, work in one processor is divided across

multiple virtual processors; thus, restart can be parallelized
– Virtualization helps fault-free case as well

8/13/2009 HPC Resilience Workshop DC

Message-Logging (cont.)
• Fast restart performance:

– Test: 7-point 3D-stencil in MPI, P=32, 2 ≤ VP ≤ 16
– Checkpoint taken every 30s, failure inserted at t=27s

8/13/2009 HPC Resilience Workshop DC 22

Pow
err

Normal
Checkpoint-Resart p
method

Progress is slowed

Pro

down with failures

Power gress

consumption is
continuous

Time

8/13/2009 HPC Resilience Workshop DC

Our Checkpoint-
Resart method

(Message logging
+ Object-based
virtualization)

Progress is faster

Pro

with failures

Power
ti i

gress

consumption is
lower during
recovery8/13/2009 HPC Resilience Workshop DC

Time

Message-Logging (cont.)
• Fault-free performance:

– Is ok with large-grain, but significant los with fine-grained
– Test: NAS benchmarks, MG/LU
– Versions: AMPI, AMPI+FT, AMPI+FT+multipleVPs

8/13/2009 HPC Resilience Workshop DC 25

Message-Logging (cont.)
• Protocol Optimization:

– Combine protocol messages: reduces overhead and contention
– Test: synthetic compute/communicate benchmark

8/13/2009 HPC Resilience Workshop DC 26

Message-Logging (cont.)
• Pros:

– No need to roll back non-failing processors
– Restart can be accelerated by spreading work to be redone
– No need of stable storage

• Cons:
– Protocol overhead is present even in fault-free scenario
– Increase in latency may be an issue for fine-grained applications

• Publications:
– Chakravorty: UIUC PhD Thesis, Dec.2007
– Chakravorty & Kale: IPDPS, April 2007

Ch k & K l FTPDS k h IPDPS A il 2004– Chakravorty & Kale: FTPDS workshop at IPDPS, April 2004

8/13/2009 HPC Resilience Workshop DC

Current PPL Research Directions
• Message-Logging Scheme

– Decrease latency overhead in protocol
– Decrease memory overhead for checkpoints
– Stronger coupling to load-balancing

N h d l i h d– Newer schemes to reduce message-logging overhead
• Clustering: a set of cores are sent back to their checkpt

– Greg Bronevetsky’s suggestionGreg Bronevetsky s suggestion

• Other collaboration with Franck Capello

8/13/2009 HPC Resilience Workshop DC

Some external Gaps
• Scheduler that won’t kill a job

– Broader need: a scheduler that allows flexible bi-directional
communication between jobs and scheduler

• Fault prediction
– Needed if proactive Fault Tolerance is of use

• Local disks!
• Need to better integrate knowledge from

distributed systemsy
– They have sophisticated techniques, but HPC metrics and

context is substantially different

8/13/2009 HPC Resilience Workshop DC

Messages
• We have interesting fault tolerance schemes

– Read about them

• We have an approach to parallel programming
– That has benefits in the era of complex machines, and

sophisticated applications
– That is used by real apps

Th t id b fi i l f t f FT h– That provides beneficial features for FT schemes
– That is available via the web
– SO: please think about developing new FT schemes of yourSO: please think about developing new FT schemes of your

own for this model

• More info, papers, software: http://charm.cs.uiuc.eduMore info, papers, software: http://charm.cs.uiuc.edu
• And please pass the word on: we are hiring

8/13/2009 HPC Resilience Workshop DC

