
Load Balancing Techniques for Asynchronous
Spacetime Discontinuous Galerkin Methods

Aaron K. Becker (abecker3@illinois.edu)
Robert B. Haber
Laxmikant V. Kalé

University of Illinois, Urbana-Champaign

Parallel Programming Lab
Center for Process Simulation and Design

UNSCCM ’09

NSF: ITR/AP DMR 01-21695
ITR/AP DMR 03-25939

NSF: ITR/AP DMR 01-21695
ITR/AP DMR 03-25939

Tuesday, July 21, 2009

mailto:abecker3@uiuc.edu
mailto:abecker3@uiuc.edu

Fixed Timestep 1D Algorithm

2

Space

T
im
e

!t

Tuesday, July 21, 2009

Tentpitcher: Causal Spacetime Mesh
Advancing-Front Solution Strategy

3

Space

T
im
e

Tuesday, July 21, 2009

Tentpitcher: patch by patch solution & meshing

1 2

3 4

4

Tuesday, July 21, 2009

Crack-tip Wave Scattering

5

Tuesday, July 21, 2009

Parallelizing Tentpitcher

6

• Approach

• take advantage of local decision-making algorithm to avoid
global communication and promote scalability

• build in latency tolerance to support large grain sizes

• Decompose and distribute space mesh

• All non-boundary operations are purely local

• Perform boundary communication on-demand using a message
driven approach

Tuesday, July 21, 2009

Message-driven SDG

• Over-decomposition and virtualization

• multiple mesh partitions per processor

• computation on one partition can be overlapped with blocking
communication on another local partition

7

System ViewUser View

Tuesday, July 21, 2009

System Overview

ParFUM

Charm++ Runtime System

Tentpitcher Algorithm

Incremental
Adaptivity

Partitioning
Ghost Layer
Maintenance

Element
Migration

Virtualization Migration Scheduling

Tuesday, July 21, 2009

Partition and Distribute Mesh

Combine Results

...

V
irtu

a
l P

ro
c
e

s
s
o

rs

Local
Adaptivity

Pitch Local
Vertex

Local
Adaptivity

Pitch Local
Vertex

Local
Adaptivity

Pitch Local
Vertex

Code Structure

9

Tuesday, July 21, 2009

1 2 3 4 5 6 7 8

Processors

50

100

150

200

250

P
it
c
h
e

s
/s

Virtualized, Non-adaptive

Virtualized, Adaptive

Non-virtualized, Non-adaptive

Non-virtualized, Adaptive

Perfect Scaling, Non-adaptive

Perfect Scaling, Adaptive

Performance Effects of Virtualization

10

Tuesday, July 21, 2009

10 100

Processors

100

1000

P
it
c
h

e
s
/s

Non-adaptive, Weak scaling

Adaptive, Weak scaling

Perfect Scaling

SDG Cluster Performance (Abe)

11

Tuesday, July 21, 2009

Dealing with Load Imbalance

Aside from load imbalance, few barriers to scalability

This method naturally tolerates small imbalances

But, for some problems we expect large imbalances

12

Tuesday, July 21, 2009

Partition Migration

• Idea: take advantage of virtualization: there are multiple partitions per
processor, so they can be rearranged to improve load balance

• Standard approach in virtualized environments: Charm++ supports a variety of
algorithms for relocating partitions

Advantages

• built-in support, requires little modification of application

• effective for moderate imbalances

Disadvantages

• global, synchronous approach is a poor fit for tentpitcher

• really large imbalances may not be fixable--the presence of dramatically
overloaded partitions cannot be covered up without unacceptable
overhead

13

Tuesday, July 21, 2009

Diffusion Load Balancing

• Idea: apply purely local decision making process to load balance by
migrating individual mesh elements across partition boundaries once
load imbalance crosses a particular threshold value

• If neighboring partitions i and j have loads λi and λj, choose r >1 and
migrate elements from i to j when r λi > λj

• Advantages: requires only local synchronization and communication

14

Tuesday, July 21, 2009

Partition and Distribute Mesh

Combine Results

...

V
irtu

a
l P

ro
c
e
s
s
o
rs

Local
Adaptivity

Pitch Local
Vertex

Load
Balancing

Local
Adaptivity

Pitch Local
Vertex

Load
Balancing

Local
Adaptivity

Pitch Local
Vertex

Load
Balancing

Code Structure

15

Tuesday, July 21, 2009

Diffusion Load Balancing

Partition i

Partition j

Initially, λi ≈ λj so no load
balancing is needed.

16

Tuesday, July 21, 2009

Diffusion Load Balancing

After local refinement, λi > rλj

so boundary elements will
move from i to j

Partition j

Partition i

17

Tuesday, July 21, 2009

Diffusion Load Balancing

After local refinement, λi > rλj

so boundary elements will
move from i to j

Partition j

Partition i

18

Tuesday, July 21, 2009

Diffusion Load Balancing

After local refinement, λi > rλj

so boundary elements will
move from i to j

Partition j

Partition i

19

Tuesday, July 21, 2009

Diffusion Load Balancing

After local refinement, λi > rλj

so boundary elements will
move from i to j

Partition j

Partition i

20

Tuesday, July 21, 2009

Diffusion Load Balancing

After local refinement, λi > rλj

so boundary elements will
move from i to j

Partition j

Partition i

21

Tuesday, July 21, 2009

Diffusion Load Balancing

We attempt to migrate elements
in a way that maintains or
improves boundary quality.

Partition j

Partition i

22

Tuesday, July 21, 2009

Diffusion Load Balancing Issues

23

• Maintaining boundary quality

• Maintaining accurate load estimates

• Choosing r to avoid unneeded transfers while still avoiding serious
imbalance

• Determining the right termination condition for the load balancing step

• Minimizing lock contention on boundary elements

Tuesday, July 21, 2009

Load Balancing Techniques for Asynchronous
Spacetime Discontinuous Galerkin Methods

Aaron K. Becker (abecker3@illinois.edu)
Robert B. Haber
Laxmikant V. Kalé

University of Illinois, Urbana-Champaign

Parallel Programming Lab
Center for Process Simulation and Design

UNSCCM ’09

Tuesday, July 21, 2009

mailto:abecker3@uiuc.edu
mailto:abecker3@uiuc.edu

