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Fixed Timestep 1D Algorithm
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Tentpitcher: Causal Spacetime Mesh
Advancing-Front Solution Strategy 
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Tentpitcher: patch by patch solution & meshing
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Crack-tip Wave Scattering
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Parallelizing Tentpitcher
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• Approach

• take advantage of local decision-making algorithm to avoid 
global communication and promote scalability

• build in latency tolerance to support large grain sizes

• Decompose and distribute space mesh

• All non-boundary operations are purely local

• Perform boundary communication on-demand using a message 
driven approach
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Message-driven SDG

• Over-decomposition and virtualization

• multiple mesh partitions per processor

• computation on one partition can be overlapped with blocking 
communication on another local partition
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System Overview
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Partition and Distribute Mesh

Combine Results
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Dealing with Load Imbalance

Aside from load imbalance, few barriers to scalability

This method naturally tolerates small imbalances

But, for some problems we expect large imbalances
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Partition Migration

• Idea: take advantage of virtualization: there are multiple partitions per 
processor, so they can be rearranged to improve load balance

• Standard approach in virtualized environments: Charm++ supports a variety of 
algorithms for relocating partitions

Advantages

• built-in support, requires little modification of application

• effective for moderate imbalances

Disadvantages

• global, synchronous approach is a poor fit for tentpitcher

• really large imbalances may not be fixable--the presence of dramatically 
overloaded partitions cannot be covered up without unacceptable 
overhead
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Diffusion Load Balancing

• Idea: apply purely local decision making process to load balance by 
migrating individual mesh elements across partition boundaries once 
load imbalance crosses a particular threshold value

• If neighboring partitions i and j have loads λi and λj, choose r >1 and 
migrate elements from i to j when r λi  > λj

• Advantages: requires only local synchronization and communication
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Partition and Distribute Mesh

Combine Results
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Diffusion Load Balancing

Partition i

Partition j

Initially, λi ≈ λj so no load
balancing is needed.
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Diffusion Load Balancing

After local refinement, λi > rλj

so boundary elements will
move from i to j

Partition j

Partition i
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Diffusion Load Balancing

After local refinement, λi > rλj

so boundary elements will
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Diffusion Load Balancing

We attempt to migrate elements
in a way that maintains or
improves boundary quality.

Partition j

Partition i
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Diffusion Load Balancing Issues

23

• Maintaining boundary quality

• Maintaining accurate load estimates

• Choosing r to avoid unneeded transfers while still avoiding serious 
imbalance

• Determining the right termination condition for the load balancing step

• Minimizing lock contention on boundary elements
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