Object-based Over-Decomposition
Can Enable
Powerful Fault Tolerance Schemes

Laxmikant (Sanjay) Kale

http://charm.cs.uiuc.edu

Parallel Programming Laboratory
Department of Computer Science

University of Illinois at Urbana Champaign

ILLINOTIS PARALLELTD

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PROGRAMMING LAB UI0C
DEPT.OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS

1

™

Presentation Outline

* What 1s object based decomposition
— Its embodiment in Charm++ and AMPI
— Its general benefits
— Its features that are useful for fault tolerance schemes

* QOur Fault Tolerance work 1n Charm++ and AMPI
— Disk-based checkpoint/restart
— In-memory double checkpoint/restart
— Proactive object-migration
— Message-logging

* Appeal for research 1n leveraging these features in
FT research

6/6/2009 Dagstuhl Fault Tolerance Workshop 2

Parallel Programming Lab - PPL

* http://charm.cs.uiuc.edu
— Open positions ©

PPL, April’2008

6/6/2009 Dagstuhl Fault Tolerance Workshop

PPL Mission and Approach

* To enhance Performance and Productivity in
programming complex parallel applications

— Performance: scalable to thousands of processors

— Productivity: of human programmers

— Complex: irregular structure, dynamic variations

6/6/2009 Dagstuhl Fault Tolerance Workshop

Charm++ and CSE Applications

Well-known Biophysics
molecular simulations App

N\ 1Y | P JEB Gordon Bell Award, 2002

Nano-Materials..

3 L
— T ey

- % g Issues che!' \

Enabling CS technology of parallel objects and intelligent runtime
systems has led to several CSE collaborative applications

System

ChaNGa

.Rocket
Computational ‘Sbace_Time Jiul, ation

Astronomy ‘Meshing y

6/6/2009

Object based over-decomposition
* Objects:

— Locality of data references 1s a critical attribute for performance

— A parallel object can access only its own data
— Asynchronous method invocation for accessing other’s data

* Over-Decompostion
— the programmer decompose computation into objects
* Work units, data-units, composites
— Let an 1ntelligent runtime system assign objects to processors
— RTS can change this assignment (mapping) during execution

Object-based over-decomposition: Charm-++

e Multiple “indexed collections” of C++ objects

e Indices can be multi-dimensional and/or sparse

e Programmer expresses communication between objects
— with no reference to processors

System implementation

I

User View

Object-based over-decomposition: AMPI

* Each MPI process 1s implemented as a user-level thread
e Threads are light-weight, and migratable!

— <1 microsecond contex tswitch time, potentially >100k threads per core

e Each thread 1s embedded in a charm+ object (chare)

MPI
processes

Virtual
Processors
(user-level
migratable

J threads) W _)

Real Processors

Benefits of Object-based overdecomposition
* Software engineering

— Number of virtual processors can be independently controlled
— Separate VPs for different modules

* Message driven execution

— Adaptive overlap of communication
— Predictability :

* Automatic out-of-core

« Prefetch to local stores
— Asynchronous reductions

* Dynamic mapping
— Heterogeneous clusters
* Vacate, adjust to speed, share
— Automatic checkpointing, more advanced Fault Tolerance schemes
— Change set of processors used
— Automatic dynamic load balancing
— Communication optimization

Some Relevant Properties of this approach:
Message Driven Execution

Object-based Virtualization leads to Message Driven Execution

Parallel Composition:
Al; (B|[C); A2

Recall: Different modules, written in different
languages/paradigms, can overlap in time
and on processors, without programmer
having to worry about this explicitly

Without message-driven execution
(and virtualization), you get either:

Space-division

Dagstuhl Fault Tolerance Workshop

6/6/2009

OR: Sequentialization

6/6/2009 Dagstuhl Fault Tolerance Workshop

Charm++/AMPI are well established systems

e The Charm++ model has succeeded 1n

CSE/HPC 15% of cycles at NCSA,
20% at PSC, were used on

. :
Because: Charm++ apps, 1n a one
— Resource management, ... year period

* S0, work on fault tolerance for Charm++ and AMPI Is
directly useful to real apps

TETEDAUC VITUC I

- ~ By
16 \\\\ o
\

8 —
4

128 2536 512 1024 2048 4096 8192 16384 32768

Fault Tolerance in Charm++ & AMPI

* Four Approaches Available:

a) Disk-based checkpoint/restart
b) In-memory double checkpoint/restart

c) Proactive object migration
d) Message-logging

e Common Features:

— Based on dynamic runtime capabilities
— Use of object-migration

— Can be used 1n concert with load-balancing schemes

6/6/2009 Dagstuhl Fault Tolerance Workshop

Disk-Based Checkpoint/Restart

Basic Idea:

— Similar to traditional checkpoint/restart; “migration” to disk

Implementation in Charm++/AMPI:
— Blocking coordinated checkpoint: MPI_Checkpoint (DIRNAME)

Pros:

— Simple scheme, effective for common cases

— Virtualization enables restart with any number of processors

Cons:

— Checkpointing and data reload operations may be slow
— Work between last checkpoint and failure 1s lost
— Job needs to be resubmitted and restarted

6/6/2009 Dagstuhl Fault Tolerance Workshop

In-Memory Double Checkpoint/Restart

e Basic Idea:

— Avoid overhead of disk access for keeping saved data
— Allow user to define what makes up the state data

* Implementation in Charm++/AMPI:

— Coordinated checkpoint
— Each object maintains two checkpoints:
 on local processor’s memory
 on remote buddy processor’s memory
— A dummy process is created to replace crashed process
— New process starts recovery on other processors
 use buddy’s checkpoint to recreate state of failing processor
 perform load balance after restart

6/6/2009 Dagstuhl Fault Tolerance Workshop

In-Memory Double Checkpoint/Restart (cont.)

» Evaluation of Checkpointing Overhead:
— 3D-Jacobi code in AMPI, 200 MB data, IA-32 cluster
— Execution of 100 iterations, 8 checkpoints taken

100Mbi t Mri net

2 250 2 250
— O Normal Char m++ AVPI — O Normal Char mr+/ AVP)
: 200 B FT-Charmt+ w o checkpointing | Z 200 BFT- Charm++ w o checkpointing |
© O FT- Charm++ wi th checkpoi nti ng © D FT-Charmr+ with checkpoi nting
= 150 | =190
o¢ o¢
2 100 [2 100 |
(¢b] (¢b]
s 1 s ﬂh[
2 W mm || s] 0 mn
= 0 = 0

4 8 6 32 64 128 4 8 16 32 64 128

Nunber of processors Nunber of processors

6/6/2009 Dagstuhl Fault Tolerance Workshop 19

In-Memory Double Checkpoint/Restart (cont.)

* Comparison to disk-based checkpointing:

1000

100

—®*—doubl e i n-nemory
(Mrinet)
doubl e i n-menory
(100Mb)
Local D sk

—*—doubl e in-di sk

(Mrinet)
—®—NFS di sk

0. 01

Checkpoint overhead (s)

0. 001
6.4 12.8 25.6 51.2 102 205 410 819 1638 3277 6554

Probl em si ze (MB)

6/6/2009 Dagstuhl Fault Tolerance Workshop

In-Memory Double Checkpoint/Restart (cont.)

* Recovery Performance:

— Molecular Dynamics LeanMD code, 92K atoms, P=128
— Load Balancing (LB) effect after failure:

Wthout LB
o 4
€ 31 \
= MM
Rl
=
5 0

1 101 201 301 401 501 601
Ti nest ep

per

Simulation tim

st en (g)

I~

w
T

N

—_—

(e

Wth LB

L

oo M oy oo

T 101 201 301 401 501 601

Ti mest ep

6/6/2009 Dagstuhl Fault Tolerance Workshop

In-Memory Double Checkpoint/Restart (cont.)

* Application Performance:

— Molecular Dynamics LeanMD code, 92K atoms, P=128
— Checkpointing every 10 timesteps; 10 crashes inserted:

&
-~ load balancing
o) 5 —
-
=
g
]
&
-
4 —
=
o
-
&
5 3 -
=
o
| = -
o i
g °7]
=
= E
5 Rl
T
2 1
= 1
m -
o T T T T T T
0 106 200 300 00 00 B0
Tinestep

6/6/2009 Dagstuhl Fault Tolerance Workshop

In-Memory Double Checkpoint/Restart (cont.)

e Pros:

— Faster checkpointing than disk-based
— Reading of saved data also faster
— Only one processor fetches checkpoint across network

e Cons:
— Memory overhead may be high

— All processors are rolled back, despite individual failure
— All the work since last checkpoint i1s redone by every processor

e Publications:

— Zheng, Huang & Kale: ACM-SIGOPS, April 2006
— Zheng, Shi & Kale: IEEE-Cluster’2004, Sep.2004

6/6/2009 Dagstuhl Fault Tolerance Workshop

Proactive Object Migration

* Basic Idea:
— Use knowledge about impending faults
— Migrate objects away from processors that may fail soon
— Fall back to checkpoint/restart when faults not predicted

* Implementation in Charm++/AMPI:

— Each object has a unique index
— Each object is mapped to a home processor
* objects need not reside on home processor
* home processor knows how to reach the object
— Upon getting a warning, evacuate the processor
* reassign mapping of objects to new home processors
 send objects away, to their home processors

6/6/2009 Dagstuhl Fault Tolerance Workshop

Proactive Object Migration (cont.)

» Evacuation time as a function of data size:
— 5-point stencil code 1n Charm++, IA-32 cluster

1

6/6/2009

L Be+B

.Be-a1

.he-g1

.ce—@1

.ce—-ge

. le-@e

.be-@¢e

.Be-03

. Fe-03

0

procs
procs
procs
procs

on gigabit —s—
on myrinet ——
on gigabit —8—
on myrinet ——

3c

&4 128 che 5172
Total User Data (ME?2

Dagstuhl Fault Tolerance Workshop

Proactive Object Migration (cont.)

* Evacuation time as a function of #processors:
— 5-point stencil code 1n Charm++, IA-32 cluster

c.de+00

I [T
512 ME with gigabit —e—
1.de+dl |- 512 MB Ld%‘th mL_I_Jr"in?t _—
32 MB with gigabit —8&—

32 MB with myrinet ——
S5.80e-01 - -

c.oe-01

1.2e-81 -

6.2e—-B2 - .

3.1le-B2 |- n

l.ce-B2 n

7 .8e-U3 - n

3.9e-083 : : ' : ' :
@ 10 20 30 40 50 60 70

Mumber of processors

6/6/2009 Dagstuhl Fault Tolerance Workshop

Proactive Object Migration (cont.)

Performance of an MPI application
— Sweep3d code, 150x150x150 dataset, P=32, 1 warning

I I I I I
Evacuation without load balance
Evacuation with load balance
O Larning

N

Karning Load balancing

Time per Iteration (s
=
o)

5] o 19 15 2y 25 34 35 46 45 =17

Iteration Mumber

6/6/2009 Dagstuhl Fault Tolerance Workshop

Proactive Object Migration (cont.)

e Pros:

— No overhead 1n fault-free scenario
— Evacuation time scales well, only depends on data and network

— No need to roll back when predicted fault happens
e Cons:

— Effectiveness depends on fault predictability mechanism

— Some faults may happen without advance warning

 Publications:

— Chakravorty, Mendes & Kale: HiPC, Dec.2006
— Chakravorty, Mendes, Kale et al: ACM-SIGOPS, April 2006

6/6/2009 Dagstuhl Fault Tolerance Workshop

Message-Logging

» Basic Idea:
— Messages are stored by sender during execution
— Periodic checkpoints still maintained

— After a crash, reprocess “recent” messages to regain state

* Implementation in Charm++/AMPI:

— Since the state depends on the order of messages received, the
protocol ensures that the new receptions occur in the same order

— Upon failure, roll back 1s “localized” around failing point: no
need to roll back all the processors!

— With virtualization, work in one processor 1s divided across
multiple virtual processors; thus, restart can be parallelized

— Virtualization helps fault-free case as well

6/6/2009 Dagstuhl Fault Tolerance Workshop

Message-Logging (cont.)

 Fast restart performance:
— Test: 7-point 3D-stencil in MPI, P=32, 2 < VP <16
— Checkpoint taken every 30s, failure inserted at t=27s

6/6/2009

275 -
o5 W Re-execute
1 [l Redistribute the objects
29 5 | B Recreate the objects
[l Retrieve the checkpoint
20 B Launching the new
poCess
17.5
@ 15
b
E |
i= 125
104
7.5
e
2.5 -
ﬂ T T T

Fast-8 Fast-16

Dagstuhl Fault Tolerance Workshop

I0MOJ

Normal
Checkpoint-Resart
method

Progress 1s slowed
down with failures

Power
consumption 1s
continuous

31

Message-Logging (cont.)

* Fault-free performance:

— Test: NAS benchmarks, MG/LU
— Versions: AMPI, AMPI+FT, AMPI+FT-+multipleVPs

10000
4000 MGclass B Ll class B
3500 8000
3000
2 2500 S 6000
= 2000 =
= 00 = 4000
1000 2000
500 -
0 0
2 &4 5] 16 32 2 4 8 16 32
Processors Processors

6/6/2009 Dagstuhl Fault Tolerance Workshop 33

Message-Logging (cont.)

* Protocol Optimization:

— Combine protocol messages: reduces overhead and contention

— Test: synthetic compute/communicate benchmark

100

10

@ AMPI
* AMPI-FT-1vp
¥ AMPI-FT dvp

& AMPI-FT -vpd
with combining

Avg. Time per iteration (ms)

0.1

I I
1 1 10 100

Work per iteration per processor (ms)

6/6/2009 Dagstuhl Fault Tolerance Workshop 34

Message-Logging (cont.)

e Pros:

— No need to roll back non-failing processors
— Restart can be accelerated by spreading work to be redone
— No need of stable storage

e Cons:

— Protocol overhead 1s present even in fault-free scenario

— Increase in latency may be an issue for fine-grained applications

 Publications:

— Chakravorty: UIUC PhD Thesis, Dec.2007
— Chakravorty & Kale: IPDPS, April 2007
— Chakravorty & Kale: FTPDS workshop at IPDPS, April 2004

6/6/2009 Dagstuhl Fault Tolerance Workshop

Current PPL Research Directions

* Message-Logging Scheme
— Decrease latency overhead 1n protocol
— Decrease memory overhead for checkpoints
— Stronger coupling to load-balancing
— Newer schemes to reduce message-logging overhead

6/6/2009 Dagstuhl Fault Tolerance Workshop

But we are not experts in FT

* The message-driven objects model provides many

benefits for fault tolerance schemes
— Not just our schemes, but your schemes too
— Multiple objects per processor:
* latencies of protocols can be hidden
— Parallel recovery by leveraging “multiple objects per processor”

— Can combine benefits by using system level or BLCR schemes
specialized to take advantage of objects (or user-level threads)

— I am sure you can think of many new schemes

* We are willing to help

— (without needing to be co-authors)
— E.g. a simplified version of Charm RTS for you to use?

Messages

 We have an interesting fault tolerance schemes
— Read about them

* We have an approach to parallel programming

— That has benefits in the era of complex machines, and
sophisticated applications

— That 1s used by real apps
— That provides beneficial features for FT schemes
— That 1s available via the web

— SO: please think about developing new FT schemes of your
own for this model

* More info, papers, software:

* And please pass the word on: we are hiring

http://charm.cs.uiuc.edu/

PPL Funding Sources

National Science Foundation

— BigSim, Cosmology, Languages
Dep. of Energy

— Charm++ (Load-Balance, Fault-Tolerance), Quantum Chemistry
National Institutes of Health

— NAMD

NCSA/NSF, NCSA/TACAT
— Blue Waters project (Charm++, BigSim, NAMD), Applications

Dep. of Energy / UIUC Rocket Center
— AMPI, Applications
NASA

— Cosmology/Visualization

6/6/2009 Dagstuhl Fault Tolerance Workshop

	Object-based Over-Decomposition �Can Enable �Powerful Fault Tolerance Schemes
	Presentation Outline
	Parallel Programming Lab - PPL
	PPL Mission and Approach
	Charm++ and CSE Applications
	Object based over-decomposition
	Object-based over-decomposition: Charm++
	Object-based over-decomposition: AMPI
	Benefits of Object-based overdecomposition
	Some Relevant Properties of this approach:�Message Driven Execution
	Some Relevant Properties of this approach:
	Slide Number 13
	Slide Number 14
	Charm++/AMPI are well established systems
	Fault Tolerance in Charm++ & AMPI
	Disk-Based Checkpoint/Restart
	In-Memory Double Checkpoint/Restart
	In-Memory Double Checkpoint/Restart (cont.)
	In-Memory Double Checkpoint/Restart (cont.)
	In-Memory Double Checkpoint/Restart (cont.)
	In-Memory Double Checkpoint/Restart (cont.)
	In-Memory Double Checkpoint/Restart (cont.)
	Proactive Object Migration
	Proactive Object Migration (cont.)
	Proactive Object Migration (cont.)
	Proactive Object Migration (cont.)
	Proactive Object Migration (cont.)
	Message-Logging
	Message-Logging (cont.)
	Slide Number 31
	Slide Number 32
	Message-Logging (cont.)
	Message-Logging (cont.)
	Message-Logging (cont.)
	Current PPL Research Directions
	But we are not experts in FT
	Messages
	PPL Funding Sources

