
Object-based Over-Decomposition
Can Enable

Powerful Fault Tolerance Schemes

Laxmikant (Sanjay) Kale
http://charm.cs.uiuc.edu

Parallel Programming Laboratory
Department of Computer Science

University of Illinois at Urbana Champaign

Presentation Outline
• What is object based decomposition

– Its embodiment in Charm++ and AMPI
– Its general benefits
– Its features that are useful for fault tolerance schemes

• Our Fault Tolerance work in Charm++ and AMPI
– Disk-based checkpoint/restart
– In-memory double checkpoint/restart
– Proactive object-migration
– Message-logging

• Appeal for research in leveraging these features in
FT research

6/6/2009 26/6/2009 Dagstuhl Fault Tolerance Workshop

Parallel Programming Lab - PPL
• http://charm.cs.uiuc.edu

– Open positions ☺

PPL, April’2008

6/6/2009 Dagstuhl Fault Tolerance Workshop 3

PPL Mission and Approach
• To enhance Performance and Productivity in

programming complex parallel applications
– Performance: scalable to thousands of processors
– Productivity: of human programmers
– Complex: irregular structure, dynamic variations

• Application-oriented yet CS-centered research
– Develop enabling technology, for a wide collection of apps.
– Embody it into easy to use abstractions
– Implementation: Charm++

• Object-oriented runtime infrastructure
• Freely available for non-commercial use

6/6/2009 Dagstuhl Fault Tolerance Workshop

Charm++ and CSE Applications

6/6/2009 Dagstuhl Fault Tolerance Workshop

Enabling CS technology of parallel objects and intelligent runtime
systems has led to several CSE collaborative applications

Synergy

Well‐known Biophysics
molecular simulations App

Gordon Bell Award, 2002

Computational
Astronomy

Nano‐Materials..

Object based over-decomposition
• Objects:

– Locality of data references is a critical attribute for performance
– A parallel object can access only its own data
– Asynchronous method invocation for accessing other’s data

• Over-Decompostion
– the programmer decompose computation into objects

• Work units, data-units, composites
– Let an intelligent runtime system assign objects to processors
– RTS can change this assignment (mapping) during execution

6/6/2009 Dagstuhl Fault Tolerance Workshop

Object-based over-decomposition: Charm++

6/6/2009 Dagstuhl Fault Tolerance Workshop

User View

System implementation

• Multiple “indexed collections” of C++ objects
• Indices can be multi-dimensional and/or sparse
• Programmer expresses communication between objects

– with no reference to processors

Object-based over-decomposition: AMPI
• Each MPI process is implemented as a user-level thread
• Threads are light-weight, and migratable!

– <1 microsecond contex tswitch time, potentially >100k threads per core

• Each thread is embedded in a charm+ object (chare)

6/6/2009 Dagstuhl Fault Tolerance Workshop

Real Processors

MPI
processes

Virtual
Processors
(user-level
migratable
threads)

Benefits of Object-based overdecomposition
• Software engineering

– Number of virtual processors can be independently controlled
– Separate VPs for different modules

• Message driven execution
– Adaptive overlap of communication
– Predictability :

• Automatic out-of-core
• Prefetch to local stores

– Asynchronous reductions

• Dynamic mapping
– Heterogeneous clusters

• Vacate, adjust to speed, share
– Automatic checkpointing, more advanced Fault Tolerance schemes
– Change set of processors used
– Automatic dynamic load balancing
– Communication optimization

6/6/2009 Dagstuhl Fault Tolerance Workshop

Some Relevant Properties of this approach:
Message Driven Execution

Dagstuhl Fault Tolerance Workshop

Scheduler Scheduler

Message Q Message Q

Object-based Virtualization leads to Message Driven Execution

6/6/2009

Some Relevant Properties of this approach:

6/6/2009 Dagstuhl Fault Tolerance Workshop

Parallel Composition:
A1; (B || C); A2

Recall: Different modules, written in different
languages/paradigms, can overlap in time
and on processors, without programmer
having to worry about this explicitly

Dagstuhl Fault Tolerance Workshop

Without message-driven execution
(and virtualization), you get either:
Space-division

6/6/2009

Dagstuhl Fault Tolerance Workshop

OR: Sequentialization

6/6/2009

Charm++/AMPI are well established systems

• The Charm++ model has succeeded in
CSE/HPC

• Because:
– Resource management, …

15% of cycles at NCSA,
20% at PSC, were used on
Charm++ apps, in a one
year period

• So, work on fault tolerance for Charm++ and AMPI is
directly useful to real apps

Dagstuhl Fault Tolerance Workshop6/6/2009

Fault Tolerance in Charm++ & AMPI
• Four Approaches Available:

a) Disk-based checkpoint/restart
b) In-memory double checkpoint/restart
c) Proactive object migration
d) Message-logging

• Common Features:
– Based on dynamic runtime capabilities
– Use of object-migration
– Can be used in concert with load-balancing schemes

6/6/2009 Dagstuhl Fault Tolerance Workshop

Disk-Based Checkpoint/Restart
• Basic Idea:

– Similar to traditional checkpoint/restart; “migration” to disk

• Implementation in Charm++/AMPI:
– Blocking coordinated checkpoint: MPI_Checkpoint(DIRNAME)

• Pros:
– Simple scheme, effective for common cases
– Virtualization enables restart with any number of processors

• Cons:
– Checkpointing and data reload operations may be slow
– Work between last checkpoint and failure is lost
– Job needs to be resubmitted and restarted

6/6/2009 Dagstuhl Fault Tolerance Workshop

In-Memory Double Checkpoint/Restart
• Basic Idea:

– Avoid overhead of disk access for keeping saved data
– Allow user to define what makes up the state data

• Implementation in Charm++/AMPI:
– Coordinated checkpoint
– Each object maintains two checkpoints:

• on local processor’s memory
• on remote buddy processor’s memory

– A dummy process is created to replace crashed process
– New process starts recovery on other processors

• use buddy’s checkpoint to recreate state of failing processor
• perform load balance after restart

6/6/2009 Dagstuhl Fault Tolerance Workshop

In-Memory Double Checkpoint/Restart (cont.)
• Evaluation of Checkpointing Overhead:

– 3D-Jacobi code in AMPI, 200 MB data, IA-32 cluster
– Execution of 100 iterations, 8 checkpoints taken

100Mbi t

0

50

100

150

200

250

4 8 16 32 64 128

Number of pr ocessor s

To
ta

l
ex

ec
ut

io
n

ti
me

(s
)

Nor mal Char m++/ AMPI
FT- Char m++ w/ o checkpoi nt i ng
FT- Char m++ wi t h checkpoi nt i ng

Myr i net

0

50

100

150

200

250

4 8 16 32 64 128

Number of pr ocessor s

To
ta

l
ex

ec
ut

io
n

ti
me

(s
)

Nor mal Char m++/ AMPI
FT- Char m++ w/ o checkpoi nt i ng
FT- Char m++ wi t h checkpoi nt i ng

6/6/2009 Dagstuhl Fault Tolerance Workshop 19

In-Memory Double Checkpoint/Restart (cont.)
• Comparison to disk-based checkpointing:

0. 001

0. 01

0. 1

1

10

100

1000

6. 4 12. 8 25. 6 51. 2 102 205 410 819 1638 3277 6554
Pr obl em s i ze (MB)

Ch
ec

kp
oi

nt
 o

ve
rh

ea
d

(s
)

doubl e i n- memor y
(Myr i net)
doubl e i n- memor y
(100Mb)
Local Di sk

doubl e i n- di sk
(Myr i net)
NFS di sk

6/6/2009 Dagstuhl Fault Tolerance Workshop

In-Memory Double Checkpoint/Restart (cont.)
• Recovery Performance:

– Molecular Dynamics LeanMD code, 92K atoms, P=128
– Load Balancing (LB) effect after failure:

Wi t h LB

0

1

2

3

4

1 101 201 301 401 501 601
Ti mest ep

Si
mu

la
ti

on
 t

im
e

pe
r

st
ep

(s
)

Wi t hout LB

0

1

2

3

4

1 101 201 301 401 501 601
Ti mest ep

Si
mu

la
ti

on
 t

im
e

pe
r

st
ep

(s
)

6/6/2009 Dagstuhl Fault Tolerance Workshop

In-Memory Double Checkpoint/Restart (cont.)
• Application Performance:

– Molecular Dynamics LeanMD code, 92K atoms, P=128
– Checkpointing every 10 timesteps; 10 crashes inserted:

6/6/2009 Dagstuhl Fault Tolerance Workshop

In-Memory Double Checkpoint/Restart (cont.)
• Pros:

– Faster checkpointing than disk-based
– Reading of saved data also faster
– Only one processor fetches checkpoint across network

• Cons:
– Memory overhead may be high
– All processors are rolled back, despite individual failure
– All the work since last checkpoint is redone by every processor

• Publications:
– Zheng, Huang & Kale: ACM-SIGOPS, April 2006
– Zheng, Shi & Kale: IEEE-Cluster’2004, Sep.2004

6/6/2009 Dagstuhl Fault Tolerance Workshop

Proactive Object Migration
• Basic Idea:

– Use knowledge about impending faults
– Migrate objects away from processors that may fail soon
– Fall back to checkpoint/restart when faults not predicted

• Implementation in Charm++/AMPI:
– Each object has a unique index
– Each object is mapped to a home processor

• objects need not reside on home processor
• home processor knows how to reach the object

– Upon getting a warning, evacuate the processor
• reassign mapping of objects to new home processors
• send objects away, to their home processors

6/6/2009 Dagstuhl Fault Tolerance Workshop

Proactive Object Migration (cont.)
• Evacuation time as a function of data size:

– 5-point stencil code in Charm++, IA-32 cluster

6/6/2009 Dagstuhl Fault Tolerance Workshop

Proactive Object Migration (cont.)
• Evacuation time as a function of #processors:

– 5-point stencil code in Charm++, IA-32 cluster

6/6/2009 Dagstuhl Fault Tolerance Workshop

Proactive Object Migration (cont.)
• Performance of an MPI application

– Sweep3d code, 150x150x150 dataset, P=32, 1 warning
– 5-point stencil code in Charm++, IA-32 cluster

6/6/2009 Dagstuhl Fault Tolerance Workshop

Proactive Object Migration (cont.)
• Pros:

– No overhead in fault-free scenario
– Evacuation time scales well, only depends on data and network
– No need to roll back when predicted fault happens

• Cons:
– Effectiveness depends on fault predictability mechanism
– Some faults may happen without advance warning

• Publications:
– Chakravorty, Mendes & Kale: HiPC, Dec.2006
– Chakravorty, Mendes, Kale et al: ACM-SIGOPS, April 2006

6/6/2009 Dagstuhl Fault Tolerance Workshop

Message-Logging
• Basic Idea:

– Messages are stored by sender during execution
– Periodic checkpoints still maintained
– After a crash, reprocess “recent” messages to regain state

• Implementation in Charm++/AMPI:
– Since the state depends on the order of messages received, the

protocol ensures that the new receptions occur in the same order
– Upon failure, roll back is “localized” around failing point: no

need to roll back all the processors!
– With virtualization, work in one processor is divided across

multiple virtual processors; thus, restart can be parallelized
– Virtualization helps fault-free case as well

6/6/2009 Dagstuhl Fault Tolerance Workshop

Message-Logging (cont.)
• Fast restart performance:

– Test: 7-point 3D-stencil in MPI, P=32, 2 ≤ VP ≤ 16
– Checkpoint taken every 30s, failure inserted at t=27s

6/6/2009 Dagstuhl Fault Tolerance Workshop 30

31

Time

Progress

Pow
er

Normal
Checkpoint-Resart
method

Progress is slowed
down with failures

Power
consumption is
continuous

32

Our Checkpoint-
Resart method

(Message logging
+ Object-based
virtualization)

Progress is faster
with failures

Power
consumption is
lower during
recovery

Message-Logging (cont.)
• Fault-free performance:

– Test: NAS benchmarks, MG/LU
– Versions: AMPI, AMPI+FT, AMPI+FT+multipleVPs

6/6/2009 Dagstuhl Fault Tolerance Workshop 33

Message-Logging (cont.)
• Protocol Optimization:

– Combine protocol messages: reduces overhead and contention
– Test: synthetic compute/communicate benchmark

6/6/2009 Dagstuhl Fault Tolerance Workshop 34

Message-Logging (cont.)
• Pros:

– No need to roll back non-failing processors
– Restart can be accelerated by spreading work to be redone
– No need of stable storage

• Cons:
– Protocol overhead is present even in fault-free scenario
– Increase in latency may be an issue for fine-grained applications

• Publications:
– Chakravorty: UIUC PhD Thesis, Dec.2007
– Chakravorty & Kale: IPDPS, April 2007
– Chakravorty & Kale: FTPDS workshop at IPDPS, April 2004

6/6/2009 Dagstuhl Fault Tolerance Workshop

Current PPL Research Directions
• Message-Logging Scheme

– Decrease latency overhead in protocol
– Decrease memory overhead for checkpoints
– Stronger coupling to load-balancing
– Newer schemes to reduce message-logging overhead

6/6/2009 Dagstuhl Fault Tolerance Workshop

But we are not experts in FT
• The message-driven objects model provides many

benefits for fault tolerance schemes
– Not just our schemes, but your schemes too
– Multiple objects per processor:

• latencies of protocols can be hidden
– Parallel recovery by leveraging “multiple objects per processor”
– Can combine benefits by using system level or BLCR schemes

specialized to take advantage of objects (or user-level threads)
– I am sure you can think of many new schemes

• We are willing to help
– (without needing to be co-authors)
– E.g. a simplified version of Charm RTS for you to use?
6/6/2009 Dagstuhl Fault Tolerance Workshop

Messages
• We have an interesting fault tolerance schemes

– Read about them

• We have an approach to parallel programming
– That has benefits in the era of complex machines, and

sophisticated applications
– That is used by real apps
– That provides beneficial features for FT schemes
– That is available via the web
– SO: please think about developing new FT schemes of your

own for this model

• More info, papers, software: http://charm.cs.uiuc.edu
• And please pass the word on: we are hiring

6/6/2009 Dagstuhl Fault Tolerance Workshop

http://charm.cs.uiuc.edu/

PPL Funding Sources
• National Science Foundation

– BigSim, Cosmology, Languages

• Dep. of Energy
– Charm++ (Load-Balance, Fault-Tolerance), Quantum Chemistry

• National Institutes of Health
– NAMD

• NCSA/NSF, NCSA/IACAT
– Blue Waters project (Charm++, BigSim, NAMD), Applications

• Dep. of Energy / UIUC Rocket Center
– AMPI, Applications

• NASA
– Cosmology/Visualization

6/6/2009 Dagstuhl Fault Tolerance Workshop

	Object-based Over-Decomposition �Can Enable �Powerful Fault Tolerance Schemes
	Presentation Outline
	Parallel Programming Lab - PPL
	PPL Mission and Approach
	Charm++ and CSE Applications
	Object based over-decomposition
	Object-based over-decomposition: Charm++
	Object-based over-decomposition: AMPI
	Benefits of Object-based overdecomposition
	Some Relevant Properties of this approach:�Message Driven Execution
	Some Relevant Properties of this approach:
	Slide Number 13
	Slide Number 14
	Charm++/AMPI are well established systems
	Fault Tolerance in Charm++ & AMPI
	Disk-Based Checkpoint/Restart
	In-Memory Double Checkpoint/Restart
	In-Memory Double Checkpoint/Restart (cont.)
	In-Memory Double Checkpoint/Restart (cont.)
	In-Memory Double Checkpoint/Restart (cont.)
	In-Memory Double Checkpoint/Restart (cont.)
	In-Memory Double Checkpoint/Restart (cont.)
	Proactive Object Migration
	Proactive Object Migration (cont.)
	Proactive Object Migration (cont.)
	Proactive Object Migration (cont.)
	Proactive Object Migration (cont.)
	Message-Logging
	Message-Logging (cont.)
	Slide Number 31
	Slide Number 32
	Message-Logging (cont.)
	Message-Logging (cont.)
	Message-Logging (cont.)
	Current PPL Research Directions
	But we are not experts in FT
	Messages
	PPL Funding Sources

