PGAS in the Message-Driven Execution Model

Aaron Becker
abecker3@illinois.edu

ABSTRACT

Asynchrony is increasingly important for high performance
on modern parallel machines. A common approach to pro-
viding asynchrony in PGAS languages is to add additional
language constructs to support asynchronous execution. In
this paper we describe Multiphase Shared Arrays (MSA), a
restricted PGAS programming model that takes the oppo-
site approach, layering PGAS semantics over a fundamen-
tally asynchronous runtime environment. We sidestep many
of the difficulties of asynchronous programming through a
discipline that offers desirable safety properties while ex-
posing opportunities for optimization at multiple levels. We
retain generality by offering composability with general pur-
pose parallel programming models.

1. INTRODUCTION

Partitioned global address space (PGAS) programming lan-
guages and libraries have become increasingly common in
parallel computing [31, 15, 12, 36, 1, 37, 9]. The ability to
refer to any data in the global address space is a substantial
convenience, and in many cases a compiler can effectively op-
timize these remote accesses, as demonstrated in the case of
Co-Array Fortran [14], among others. Unfortunately, these
systems are often prone to data races, in which the result
of multiple modifications to globally visible data produces a
non-deterministic result. Subtle data races can be difficult
to diagnose and fix without sophisticated knowledge of the
memory model of the programmed system, and the effort
needed to avoid data races detracts significantly from the
programmability and convenience of PGAS models.

One possible approach to address the difficulties that data
races present is simply to constrain the programming model
to disallow races altogether. In exchange for this safety guar-
antee, the programmer must give up the ability to express ar-
bitrary parallel interactions, sacrificing the completeness of
general-purpose programming models. Our model for PGAS
programming, Multiphase Shared Arrays (MSA), embodies
this approach. In MSA, each global array is decomposed un-
der user control and distributed across the parallel system
by an underlying adaptive runtime system. These arrays,
which are themselves referred to as MSAs, are restricted to
a few simple access modes which guarantee freedom from
data races. Although MSA is an incomplete programming
model that cannot express all types of parallelism, in prac-
tice it is well-suited for a large variety of parallel algorithms,
and for those problems that it can express, the expression is
elegant and race-free.

Phil Miller
mille121@illinois.edu

Laxmikant V. Kalé
kale@illinois.edu

Because MSA is an incomplete programming model, it is of-
ten well-suited to expressing particular algorithms or mod-
ules of a complex program, but it is rarely an ideal choice for
all portions of a complicated parallel application. Our de-
sign philosophy is therefore to provide the programmer with
a collection of such incomplete models backed by complete
models. Each module of a program can then be written in
the model most appropriately suited to express it.

To be successful, this approach requires support for paral-
lel composition and interoperability. MSA is based on the
Charm++ runtime system, whose message driven scheduler
provides such composability naturally [26]. Computational
entities can be defined using any of a variety of programming
models, and the execution of these entities is mediated by
an event-driven scheduler. The scheduler will automatically
interleave the execution of the computational entities, which
is a key to supporting compositionality.

The coupling of MSA to the Charm++ runtime system
means that MSA communication is based on asynchronous
messaging. The performance benefits of asynchronous par-
allelism have been shown throughout its long history, for
example in the Chare Kernel, Active messages, Split-C, and
Charm++ [23, 40, 10, 27]. Charm++ also addresses the
issue of resource management by supporting overdecompo-
sition into a large number of objects, which are mapped
dynamically to hardware resources by an intelligent runtime
system. Together, asynchrony and overdecomposition en-
gender automatic adaptive overlap of communication and
computation, while the runtime automates load balancing.
This approach has been quite successful in parallelizing pro-
duction quality applications [5, 6, 21].

A preliminary version of MSA was developed a few years ago
and published in a short workshop paper [12], though fur-
ther development of MSA was stopped until recently due to
a lack of funding. This paper provides a rationale for MSA
and its relationship with its asynchronous context, and in-
cludes some recent improvements in compile-time detection
of violation of safety properties. In this paper, we briefly
describe the MSA programming model and its associated
safety guarantees. We discuss the relationship between MSA
programs and the underlying runtime system, including the
effects of overdecomposition and asynchrony. We demon-
strate safety checks that can be supported at compile time
without requiring a compiler that has knowledge of MSA,
and illustrate the utility of MSA through example code. We

also describe optimizations possibilities with varying levels
of programmer, compiler, and runtime support.

2. PROGRAMMING MODEL

Multiphase shared arrays provide an abstraction common
to many HPC libraries, languages, and applications: arrays
whose elements are simultaneously accessible to multiple
threads of execution. Application code specifies the dimen-
sion, type, and extent of an array at the time of its creation,
distributes a reference to it among relevant threads, then
accesses array elements by conventional subscripting opera-
tions. Each element has a particular home location, defined
by the array’s distribution, and is accessed through software-
managed caches on other processing elements (PEs). Race
conditions are prevented by requiring synchronization points
between operations that may conflict. This requirement is
enforced via access modes. In code accessing an MSA, asyn-
chrony is provided by executing more threads than proces-
sors (‘overdecomposition’), and blocking threads when they
request data that is not in the local cache or when they are
waiting to synchronize. The communication associated with
blocked threads can be overlapped with both other MSA
threads and with the execution of other program modules
which share the same scheduler.

2.1 Data Decomposition and Distribution

An important consideration in the use of MSA is how data
residence is distributed. We decompose arrays not into fixed
chunks per PE, but rather into pages of a common shape.
The number of pages is not coupled to the number of PEs or
the number of accessing threads, and overdecomposing the
array into a large number of pages offers increased oppor-
tunities for latency hiding. At its simplest, the pages can
take a blocked row- or column-major arrangement, with the
block shape determined by the library to suit the underlying
memory and communications hardware. At present, we al-
low the application programmer to manually specify one of
a few simple decompositions, but we plan to extend this to
cover more complicated cases as application needs dictate.

Once the data is split among pages, the pages are distributed
among PEs. The pages are computational objects like any
others in the program. This abstraction means that runtime
infrastructure for object mapping and load balancing applies
just as well to chunks of a shared array as any other part of a
parallel program. Thus, each MSA offers control of the way
in which array elements are mapped to pages, the page size,
and the mapping of pages to PEs. This affords substantial
opportunities to tune MSA code for both application and
hardware characteristics.

2.2 Caching

Data accessed from an MSA is cached by the runtime in
implementation-managed buffers. This approach differs no-
ticeably from Global Arrays [36], where the user must either
explicitly allocate and manage buffers for pre-determined re-
mote array segments or potentially incur remote communi-
cation costs for each array access. Runtime-managed caching
offers several benefits, including simpler application logic,
potentially less memory allocation and copying, sharing of
cached data among threads, and consolidation of multiple
threads’ communications.

In the most straightforward use by application program-
mers, each access checks whether the element in question
is present in the local cache. If the data is available, it is
returned and the executing thread continues uninterrupted.
Otherwise, the thread will request it and block. The pro-
grammer can also make prefetch calls spanning particular
ranges of the array, with subsequent accesses specifying that
the programmer has ensured the local availability of the re-
quested element.

2.3 Access Modes

MSA derives its name from its most distinctive feature: le-
gal accesses to each array are defined by a particular access
mode during each inter-synchronization ‘phase’. By limit-
ing the programmer to the accesses allowed by well-defined
modes and requiring synchronization to pass from one mode
to another, we exclude race conditions within the array with-
out requiring the programmer to understand a complicated
or invisible set of semantics. Operations not conforming to
an array’s current mode are not permitted within the MSA
programming model, and we are exploring various ways to
flag such accesses as early as possible and with minimal pro-
grammer burden.

We will now present the set of access modes available in
MSA. These modes are suitable for a variety of common
parallel access patterns, but we make no claim that these
modes are the only ones necessary or suitable to this model.
We expect to discover more as we explore a broader set of
use cases.

2.3.1 Read-Only Mode

As its name suggests, read-only mode makes the array im-
mutable, permitting reads of any element but writes to none.

2.3.2 Write-Once Mode

The primary safety concern when threads are allowed to
make assignments to the array is the prevention of write-
after-write conflicts. We prevent this by requiring that each
element of the array only be assigned by a single thread
during any phase in which the array is in write-once mode.
This is checked at runtime as cached writes are flushed back
to their home locations. Sophisticated static analysis could
allow us to check this condition at compile time for some
access patterns and elide the runtime checks where possible.

2.3.3 Accumulate Mode

This mode effects a reduction into each element of the ar-
ray, with each thread potentially making zero, one, or many
contributions to any particular element. While it is most
natural to think of accumulation in terms of operations like
addition or multiplication, any associative, commutative bi-
nary operator can be used in this fashion. One example,
used in the mesh repartitioning code of the ParFUM frame-
work [33], uses set union as the accumulation function. We
have found use cases for both including and excluding the
existing value of each entry, as opposed to starting from the
reduction’s identity. Both options are equally easy to imple-
ment, but we currently support only exclusive reductions.

2.3.4 Owner-Computes Mode

This mode restricts access not by allowed operations, but
rather by the range of accessible indices. Specifically, com-
putation in owner-computes mode is carried out by the page
objects themselves, rather than the external threads of ex-
ecution. This limits the set of accessible indices to a single
page and preserves encapsulation. When the threads syn-
chronize to owner-computes mode, they specify a function
object that each page calls on its local chunk of the array.
Because of the limitation to working on one page, the pro-
grammer can safely access the underlying storage of each
page of the array without restriction. In combination with
a well-specified memory layout, this mode enables the local
use of fast library implementations of common algorithms,
such as BLAS routines [34] and FFTs [16] or offload to ac-
celerators such as GPUs [42] and Cell SPEs [32].

2.4 Synchronization

Threads of execution change the access mode of an array
by synchronizing with all other threads accessing that ar-
ray. When threads synchronize, they must specify the ac-
cess mode that the array should enter, and their specifi-
cations must match. This synchronization should not be
seen in the same light as a barrier, since the only threads
involved are those holding references to the array entering
a new phase. In this sense, each array can be thought of
as having an associated ‘clock’ (as in X10 [9]) that each
accessing thread is registered on. We currently do not im-
pose a requirement to synchronize on all arrays simultane-
ously, as we feel this would unduly restrict sharing of ar-
rays among threads performing different tasks. We are con-
sidering adding batched and split-phase synchronization to
reduce overhead and expose more opportunities to overlap
communication with computation.

2.5 Safety Guarantees

The constrained structure of MSA accesses enforces a strict
guarantee that no MSA operations will suffer from data
races. The difficulty of reasoning about relaxed memory
consistency models and the difficulty in avoiding, detecting,
and resolving data races in shared memory programs makes
this guarantee very attractive. This condition follows di-
rectly from the definition of the access modes. Clearly no
data race can occur due to accesses from different modes, be-
cause there is synchronization between each phase. In read-
only mode, there are no writes to produce possible races. In
write-once mode, write-after-write conflicts are disallowed
by definition. In accumulate mode, the associativity and
commutativity of the accumulate operator guarantee that
ordering of accumulate operations does not affect the final
result. Owner-computes mode allows only local accesses, so
races are again impossible.

2.6 Composability

For an incomplete programming model such as MSA, in-
tegration with other models is essential to accommodate
situations where a general-purpose programming model is
needed. MSA is integrated with the Charm-++ runtime sys-
tem, which provides both interoperability between MSA and
other models and a way of turning synchronous MSA seman-
tics into asynchronous messages.

MSA’s use of the Charm scheduler makes it very natural to
integrate MSA code into applications based on Charm++
or on AMPI, an adaptive MPI implementation built on the
Charm runtime [19]. MSA, Charm++, and AMPI can all co-
exist in the same application and take advantage of the same
runtime facilities, such as topology aware object mapping [3]
and measurement-based load balancing [25]. This approach
has also been used in the development of Charisma [18], an-
other incomplete programming model, targeted at applica-
tions with static data flow. Other incomplete models could
make use of the same infrastructure, facilitating the use of
multiple incomplete programming models, each targeted at
a specific class of problems.

3. IMPLEMENTATION

There are a few facets of the implementation of MSA that
offer important insights. The API uses the C++ type sys-
tem in modestly novel ways to partially enforce the access
modes described above. The intelligent caching of remote
data is a feature we feel is important to effective use dis-
tributed arrays. Finally, the object-based decomposition of
the array itself exposes it to the same runtime load and
communication optimization that other components benefit
from.

3.1 Programming Interface

One of our goals in the current effort is to detect erroneous
programs as early as possible, to avoid time wasted on de-
bugging with potentially scarce parallel execution resources.
To this end, we geared the programming model to detecting
errors at compile-time where possible, and eagerly at run-
time where necessary. Specifically, operations disallowed by
an array’s current access mode are excluded by checks we
implement through the C++ type system. We currently rely
on run-time checks to detect threads synchronizing into dif-
ferent modes, intersecting write sets, and attempts to access
an array in anything other than its current mode.

Ideally, the programmer would access the shared array by a
persistent name within any block of code. However, the use
of the C++ type system to enforce access modes requires
that we name a distinct variable in each phase, so that it
can have a distinct type. We do this through handles whose
types represent the access mode that the array is currently
in. These handles then take the place of the array itself as
an argument to the various operations. Each handle’s type
only defines the operations that are allowed in its associated
mode, so that attempts to perform disallowed operations
induce a compiler error.

There are numerous alternatives to this construct, but they
all fail to satisfy for one reason or another. With a more
capable type system in C++4, we could define the array it-
self with a linear type [41] such that synchronization op-
erations would change the array’s type as we currently set
the handles’. This would also eliminate the need to verify
that handles are still valid when they are used. If we wished
to construct more complex constellations of allowed opera-
tions, an approach of policy templates and static assertions
(such as provided by Boost [35]) would fit the bill. Such
policy templates would have a boolean argument for each
operation or group of operations that is controlled. We feel

that this construct creates less clear error reporting, and
complicates the implementation.

A more conventional approach to the problem of enforcing
high-level semantic conditions is writing contracts [17] de-
scribing allowable operations. There are a few down-sides to
this approach for our purposes. For one, contracts require
either an enforcement tool external to the compiler, or a lan-
guage that natively supports contracts, such as Eiffel. For
another, these conditions would necessarily depend on state
variables that aren’t visible in the user code. Finally, we
prefer a form in which the violation is local to the erroneous
statement, rather than dependent on context.

Another approach to problems like this, common in the soft-
ware engineering literature, is the definition of the MSA
modes in a static analysis tool. Again, this implies enforce-
ment by a tool other than the compiler. The rules so defined
would necessarily be flow-sensitive, which makes this anal-
ysis fairly expensive and bloats the errors that would result
from a rule violation.

3.2 Cache

Each PE hosts a cache management object which is respon-
sible for moving remote data to and from that PE. Syn-
chronization work is also coalesced from the computational
threads to the cache objects to limit the number of synchro-
nizing entities to the number of PEs in the system. Depend-
ing on the mode that a given array is in, the cache managers
will treat its data according to different coherence protocols,
as in Munin [2]. However, the MSA access modes have been
carefully chosen to make cache coherence as simple and in-
expensive as possible.

In read-only mode, remote cache lines can simply be mir-
rored locally, and discarded at synchronization time. In
write-once mode, all writes to remote data can be buffered
until the end of the phase, minimizing communication costs.
Runtime verification that the write-once guarantee has not
been violated takes place within the home objects (see be-
low) when remote writes are committed at the end of the
phase. Similarly, accumulations are performed in a local
buffer, and the result is consolidated with the remote data
during the phase change. In no case are cache invalidations
or unbuffered writes required.

3.3 Asynchronous Message-Driven Execution
The elements of each MSA are distributed into pages, each of
which is managed by a home object. The page size and array
layout can be controlled by the programmer. These pages
are the place to which locally buffered data is synchronized
during phase changes, and are responsible for array modifi-
cations in owner-computes mode. The caches communicate
with each other and with the home objects via messages
delivered to asynchronously executed entry methods. All of
these objects are placed and scheduled by the Charm-++
runtime, as shown in figure 1.

When a thread requests data not present in the local cache,
the cache object sends a request for it to its home object,
and then suspends the thread that made the request. At
this point, messages queued for other threads are delivered.
When the home object receives the request, it sends back

199 mmm

Threads

IZ-I-II-I,

Scheduler

Figure 1: On each PE, the Charm scheduler man-
ages the execution of each MSA page and each ac-
cessing thread. Whenever a thread blocks, the next
entry method is scheduled. Remote requests for
data are served by the page that owns the data.

data to the remote cache object. The cache manager receives
this and makes the blocked thread runnable.

When a computation thread synchronizes, it notifies its lo-
cal cache manager that it is at a synchronization point and
suspends. The cache manager keeps count of how many lo-
cal threads are waiting to synchronize. When all threads
reach that point, the cache manager starts synchronization
with its siblings on other PEs. This entails flushing dirty ar-
ray entries to their home locations and waiting for the other
cache managers to finish doing the same. When all of this is
complete, the blocked computational threads are awakened.

One advantage of decoupling data distribution from physical
processor identity is that the load balancer can treat ‘hot’
portions of the array the same way it would treat any other
object that was doing a lot of work or communication. Such
‘hot’ segments can result either from uneven access to the
array by the computational threads, or from having data
that takes a long time to process in owner-computes phases.
It also allows communication optimizations, as described in
Section 5.

The drawback of this scheme is high latency for non-local
reads and phase changes. The runtime can compensate by
overlapping the execution of other local threads with block-
ing MSA operations. This process is facilitated by overde-
composition, so that on each PE there are many threads
using the MSA. When the active thread blocks, either due
to a MSA cache miss, phase change, or a non-MSA opera-
tion, another thread is scheduled.

3.4 Tools

One common barrier to entry for new programming mod-
els is the lack of good tools for debugging and performance
analysis. Particularly for specialized models such as MSA,
the cost of creating these tools is unjustifiably high, at least
while the model is not widely used. MSA avoids this prob-
lem by relying upon tools targeting Charm++. The Pro-
jections [29] visualization tool allows the user to view all
MSA-related sends and receives and identify performance
bottlenecks and outlier processes. CharmDebug [22] pro-
vides breakpoints, message inspection, and memory tagging
for both shared memory and cluster environments. MSA
derives significant utility from the fact that any efforts un-

dertaken to provide tools for its underlying runtime system
translate directly into benefits for MSA programs.

4. EXAMPLE

To demonstrate the use of MSA, we present the kernel of
a classical (Newtonian) molecular dynamics simulation us-
ing Plimpton’s algorithm [38]. The code for this example
can be seen in Listing 1. This is a force-based decomposi-
tion, meaning that each thread is responsible for a subset of
the pairwise interactions between particles. Each thread’s
portion of the interactions is specified by variables i_start,
i_end, j_start, and j_end. Once the interaction forces have
been computed, the particles’ velocities and positions are up-
dated by integrating the force on each particle over a short
timestep.

The two separate phases of computation described above,
force summation and integration, correspond to distinct us-
ages for the shared arrays holding the data. In the force sum-
mation phase (lines 6-15), particle coordinates are read and
forces are accumulated. The application code accesses these
arrays as if they were local, and the runtime works to limit
communication overhead. For the coordinates, caching en-
sures that access is mostly local. For the forces, the buffered
reduction offered by accumulation mode minimizes commu-
nication needs.

The integration phase (lines 17-19 and 26-40) operates on
the particle coordinates in owner-computes mode. The code
instructs each page of the coordinates MSA to run Integra-
tor::operator() over its contents. We pass read handles
for the atominfo and forces arrays to the constructor for
this function object so that it can access all necessary data.
The main threads of execution are then free to continue
doing other work until they next synchronize on the coordi-
nates array. In essence, this forks off a task for each page of
the array, and joins all of them at the next synchronization.

5. OPTIMIZATION

The design of MSA offers opportunities for optimization
both at the application level and the runtime level. This
allows the programmer to tune MSA to handle the mem-
ory access characteristics of a particular algorithm through
explicit means such as manually prefetching remote data
and adjusting the granularity of remote data access while
still benefiting from active optimization at runtime. In ad-
dition, there are opportunities for the compiler to improve
performance by identifying array accesses that can be proven
not to access remote data and transparently eliminating the
checking that would normally be needed for such accesses. In
this section we present possible compile-time and run-time
optimizations for MSA, some of which are still speculative
or under development.

5.1 Programmer- and Compiler-driven Opti-

mizations
In a distributed shared memory system, the utmost care
must be taken to ensure that the code executed at runtime
doesn’t naively incur the expense of accessing remote mem-
ory when it’s not necessary. Alongside this overriding con-
cern, we wish to avoid the overheads imposed by unneeded
runtime checks and poor communication patterns. In other

PGAS languages [15, 43, 8, 37, 9], these responsibilities are
shared among the programmer, the compiler, and the run-
time implementation, and MSA is no different.

5.1.1 Prefetching

At the application level, the programmer has the ability to
explicitly prefetch remote data to ensure that subsequent
reads will access only locally available data. Prefetching
prevents long latency remote reads in read-only mode, po-
tentially leading to a dramatic increase in performance.

Consider, as an example, a simple matrix multiplication
where data from two MSAs in read-only mode is used to
calculate contributions to a third MSA in accumulate mode.
All remote accumulate operations are locally buffered un-
til the array’s phase changes, so the threads accessing these
MSAs will block only when they attempt to read non-local
data. Even if the runtime is able to compensate for all block-
ing reads by scheduling other work, performance can suffer.
When the blocked thread’s data arrives and it is resched-
uled, any data it had in the hardware cache has likely been
evicted during the execution of other threads. Given the
reliance of many optimized codes on a high cache hit rate,
the performance penalty of remote reads may be high even
if the resulting communication is fully overlapped with com-
putation.

5.1.2 Efficient Local Operations

Effective prefetching leads to a further optimization: the
elimination of the check for remote data accesses in reads
known to be safe. Conservatively, every array read can be
assumed unsafe and explicitly checked to see if a blocking
non-local access is necessary. However, in code that has
been written to avoid these reads, these checks produce an
unwanted performance penalty, particularly when the reads
in question occur in the body of tight loops. Although an
unsafe read operation could be exposed to the programmer,
this approach is inelegant and produces an additional fail-
ure mode in MSA programs. Compiler analysis to identify
safe reads and eliminate their associated runtime checks can
provide the same benefits without the drawback of a more
complex and failure-prone API in many cases. Steps toward
this optimization have been taken in other work [11], but
current support is incomplete.

5.1.3 Tunable Cache Parameters

The fact that MSA’s local cache is software controlled presents
another avenue to optimization. Both the size of the local
cache and the granularity of data exchange for the MSA (ef-
fectively the cache line size) can be set programmatically
on a per-MSA basis. This allows the programmer to select
sizes appropriate to the memory access pattern of the MSA
in question. In contrast, the granularity of many distributed
shared memory systems is determined by the operating sys-
tem memory page size. The decoupling of these variables
from the operating system and from one MSA to another
provides another opportunity to tune MSA performance.

5.2 Internal Optimizations
Independent of any changes to program organization made
by the programmer or compiler, there are some techniques

void PlimptonMD (CoordMSA :: Handle &hCoords,
XyzMSA :: Handle &hForces,
AtomInfoMSA :: Read &rAtominfo)

for (int timestep = 0; timestep < NUM.TIMESTEPS; timestep++) {
// Force calculation for a section of the interaction matric
XyzMSA :: Accum aForces = forces.syncToAccum(hForces);
CoordMSA :: Read rCoords = coords.syncToRead (hCoords);
for (int i = i_start; i < i_end; 4++i)
for (int j = j_start; j < j_end; ++j) {
XYZ force = calculateForce (rCoords(i), rAtominfo (i),
rCoords(j), rAtominfo(j));
aForces(i) += force;
aForces(j) += force.negate ();

}

// Movement Integration for our subset of atoms
XyzMSA:: Read rForces = forces.syncToRead(aForces);
CoordMSA : : Owner oCoords = coords.syncToOwner (rCoords, Integrator (rAtominfo, rForces));

hCoords = oCoords;
hForces = rForces;

class Integrator

{
const AtominfoMSA :: Read &rAtominfo;

const XyzMSA::Read &rForces;

public:
Integrator (const AtominfoMSA ::Read &rAtominfo_, const XyzMSA::Read &rForces_)
rAtominfo (rAtominfo_), rForces(rForces_) { }

operator () (CoordsMSA :: page_ref page)

for (int k = page.begin(); k != page.end(); ++k)
integrate (rAtominfo(k), rForces(k), page(k));

s

Listing 1: MSA-style kernel of Plimpton’s algorithm for classical molecular dynamics simulation. For sim-
plicity, we show only the function executed by each thread, omitting array declarations and thread creation.
Full examples, as well as our MSA implementation, are available as part of the Charm distribution at
charm.cs.ujuc.edu

that the MSA implementation can apply to improve per-
formance. Exactly when and how these are applied can
be controlled either through configuration made by users
at runtime, or by decision procedures within the adaptive
runtime system [13].

5.2.1 Pushing

In applications that exhibit locality of reference to particular
arrays, we can predict which array elements each thread is
likely to access in each phase. Given this foreknowledge,
the implementation can push data to caches on PEs with
threads that are expected to access it. This pushing can
happen as soon after each synchronization as each page can
be sure that the data to be pushed is correct. At worst,
this occurs when the synchronization is complete (if some
elements are not assigned during a write phase), but can
occur sooner if writes to all elements in the range to be
pushed have already reached the page. This optimization is
currently under development in MSA.

5.2.2 Variable Data Movement Granularity
Logically, it makes sense to think about the chunks of the
array that are sent from home pages to remote PEs in terms
of cache lines, as in coherent multi-processor systems. How-
ever, unlike in hardware implementations, there is no reason
to force these units to a fixed size. Depending on informa-
tion about what data is likely to be accessed, the unit of
transfer can vary. In an application which exhibits no local-
ity, such as an unstructured mesh with indirection from one
array to another, data can be moved one element at a time.
On the other hand, if persistent locality of reference allows
the runtime to predict that in a given phase, some thread
will access a particular chunk of a page, then the page can
send exactly that chunk to the thread’s host PE before or
as its first element is requested. This knowledge can be ac-
quired either through runtime tracking or from prefetch calls
inserted by the programmer or compiler.

Taking this idea further, a requested or pushed chunk of data
might be large enough that its transfer would last longer
than other available work on the destination PE. This would
lead to idle time until the transfer completes and the re-
questing thread unblocks. Thus, it might be preferable to
transmit smaller chunks so that computation can proceed
while more data is transferred. This is similar in spirit to
cache prefetch instructions in modern micro-architectures,
though at a much different scale.

5.2.3 Reductions

As noted in the description of the MSA programming model,
the accumulate mode effects a reduction into each element
of the shared array. The write mode can also be seen as
a reduction, with assignments to different elements of each
page merged as they move to the page’s home PE. Hence,
we can take advantage of other efforts toward efficient cross-
node reduction operations.

5.2.4 Object Mapping

One benefit of programming above an adaptive runtime sys-
tem is access to the optimization techniques that it pro-
vides. In the Charm++ model, objects are decoupled from
the processors on which they execute [24]. This means that

the runtime system is free to map both threads of program
execution and homes for array pages as it sees fit across the
machine. Two prime drivers of mapping decision are load
balance [25] and communication minimization [28, 4].

6. RELATED WORK

Software distributed shared memory (DSM) systems have
been widely studied as a programming model for simpli-
fying cluster programming. These systems commonly use
hardware designed to support virtual memory page faults
to detect non-local accesses and hide the underlying mes-
saging. This approach is combined with relaxed memory
consistency models to improve performance and compensate
for false sharing, which can otherwise be debilitating when
the unit of sharing is a memory page.

Treadmarks [30] and its successor Cluster OpenMP [39] are
successful DSM implementations that closely mimic physical
shared memory from the programmer’s perspective. They
impose no synchronization burden beyond what is needed
in a general shared memory program. A multiple-writer
coherence protocol ameliorates the performance penalty of
false sharing by allowing non-conflicting writes by multiple
threads within a single page. However, false sharing and
the resulting cache invalidations remains a major source of
performance degradation in these systems.

Munin [2, 7] introduces the idea of multiple cache coherence
protocols based on common memory access patterns. For
example, read-mostly objects are read far more often than
they are written. Munin replicates read-mostly objects and
updates their values via broadcast. The authors identify a
variety of common access modes, including write-once, re-
sult, producer-consumer, and migratory. All objects that
do not fall into an optimized category are handled with a
general-purpose coherence protocol.

In Munin, each variable’s mode is statically determined at
compile-time. Unfortunately, Munin’s virtual memory mech-
anism requires each shared variable to be located on its own
page. Despite this handicap, the efficiencies provided by spe-
cialized access modes led to substantial performance gains.

These DSM systems are similar to MSA in that accesses to
shared arrays do not include any information about where
the accessed data is located. They differ in their lack of con-
trol over data decomposition. Within each page, MSA sup-
ports a variety of data layouts specified by the programmer,
such as row- and column-major, to allow matching between
the array’s memory organization and access patterns of the
application. Each page is dynamically mapped to a PE by a
combination of programmer specification and runtime mod-
elling and measurement. In contrast, Cluster OpenMP and
Munin do not offer mechanisms to control data distribution,
although Huang et al. have implemented mapping directives
in OpenMP as part of an effort to implement OpenMP on
top of Global Arrays [20].

Global Arrays [36] (GA) is a partitioned global address space
model that combines a global view of memory with explicit
asynchronous gets and puts over RDMA. GA provides no
caching or replication of remote data, preferring to allow
the programmer to directly control all memory transfers.

One-sided communication is used to access remote memory,
which is staged into a buffer provided by the programmer. In
the case of discontiguous array accesses, RDMA operations
can be used directly to avoid unnecessary overhead. Like
MSA, the unit of sharing in GAs can be controlled by the
programmer and is not tied to cache line or memory page
size. MSA’s composability with other programming models
is similar in spirit to GA’s composability with MPI.

7. CONCLUSIONS

Asynchrony in execution is important to attaining high per-
formance for a variety of reasons: the need for overlap of
communication and computation, the increasingly dynamic
structure of scientific codes, and the need to efficiently as-
semble a multitude of interacting parallel components. A
long line of research has shown the programmability bene-
fits of easy access to non-local memory. In this paper, we
have described the addition of Multiphase Shared Arrays,
a PGAS array library, to the established Charm++ asyn-
chronous programming environment.

MSA’s programming model offers some advantages over other
PGAS implementations. By restricting application code to
simple, well-specified access modes in each phase between
synchronization points, we eliminate the possibility of race
conditions. We demonstrate enforcement of these access
modes at compile time using pure C++ code. Additional
checks are implemented in the runtime, but could be elided
by a more specialized compiler or translator.

Like other PGAS languages, we do not ask the programmer
to explicitly transfer data from remote PEs to local buffers.
Where they use compile-time optimization to attain per-
formance, we primarily rely on adaptive software-managed
caching.

Since MSA is not general enough to express the bulk of par-
allel programs, we rely on composition with other program-
ming models. Our approach allows easy integration with
code written in different styles, all implemented on top of a
common runtime system.

We have described a variety of optimization opportunities
presented by MSA. Some of these are common to imple-
mentations of PGAS and asynchronous message-driven ex-
ecution. In the context of distributed shared arrays, we
consider the benefits of decoupling decomposition from dis-
tribution and pushing to be distinct contributions.

8. ACKNOWLEDGEMENTS

We would like to thank Abhinav Bhatelé, Eric Bohm, and
Lukasz Wesolowski for their helpful comments on this paper.
Earlier implementations of some facets of MSA were devel-
oped by Jayant DeSouza and Orion Lawlor. The authors
of this work were supported by NSF grants ITR-HECURA-
0833188 and OCI-0725070, and the UIUC/NCSA Institute
for Advanced Computing Applications and Technologies.

9. REFERENCES
[1] R. Barriuso and A. Knies. Shmem user’s guide for c.
Cray Research Inc, Jan 1994.
[2] J. K. Bennett, J. B. Carter, and W. Zwaenepoel.
Munin: Distributed shared memory based on

3]

[4]

[5]

[6]

8]

9

(10]

(11]

(12]

(13]

(14]

type-specific memory coherence. In Proc. of the
Second ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming (PPOPP’90), pages
168-177, 1990.

A. Bhatelé and L. V. Kalé. Benefits of Topology
Aware Mapping for Mesh Interconnects. Parallel
Processing Letters (Special issue on Large-Scale
Parallel Processing), 18(4):549-566, 2008.

A. Bhatele and L. V. Kale. An Evaluation of the
Effect of Interconnect Topologies on Message
Latencies in Large Supercomputers. In Proceedings of
Workshop on Large-Scale Parallel Processing (IPDPS
’09), May 2009.

A. Bhatele, S. Kumar, C. Mei, J. C. Phillips,

G. Zheng, and L. V. Kale. Overcoming Scaling
Challenges in Biomolecular Simulations across
Multiple Platforms. In Proceedings of IEEE
International Parallel and Distributed Processing
Symposium 2008, April 2008.

E. Bohm, A. Bhatele, L. V. Kale, M. E. Tuckerman,
S. Kumar, J. A. Gunnels, and G. J. Martyna. Fine
Grained Parallelization of the Car-Parrinello ab initio
MD Method on Blue Gene/L. IBM Journal of
Research and Development: Applications of Massively
Parallel Systems, 52(1/2):159-174, 2008.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel.
Techniques for reducing consistency-related
communications in distributed shared memory
systems. ACM Transactions on Computers,
13(3):205-243, Aug. 1995.

B. Chamberlain, D. Callahan, and H. Zima. Parallel
programmability and the chapel language.
International Journal of High Performance
Computing, Jan 2007.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa,

A. Kielstra, K. Ebcioglu, C. von Praun, and

V. Sarkar. X10: an object-oriented approach to
non-uniform cluster computing. In OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN
conference on Object oriented programming systems
languages and applications, pages 519-538, New York,
NY, USA, 2005. ACM.

D. Culler, A. Dusseau, S. Goldstein,

A. Krishnamurthy, S. Lumetta, T. von Eicken, and
K. Yelick. Parallel Programming in Split-C. In Proc.
Supercomputing '93, 1993.

J. DeSouza. Jade: Compiler-Supported

Multi- Paradigm Processor Virtualization-Based
Parallel Programming. PhD thesis, Department of
Computer Science, University of Illinois at
Urbana-Champaign, 2004.

J. DeSouza and L. V. Kalé. MSA: Multiphase
specifically shared arrays. In Proceedings of the 17th
International Workshop on Languages and Compilers
for Parallel Computing, West Lafayette, Indiana,
USA, September 2004.

I. Dooley and L. V. Kale. Control points for adaptive
parallel performance tuning. November 2008.

Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey. A
multi-platform co-array fortran compiler. In
Proceedings of the 13th International Conference of
Parallel Architectures and Compilation Techniques

[25]

(PACT 2004), Antibes Juan-les-Pins, France, October
2004.

T. El-Ghazawi, W. Carlson, T. Sterling, and

K. Yelick. UPC: Distributed shared memory
programming. books.google.com, Jan 2005.

M. Frigo and S. Johnson. FFTW: An adaptive
software architecture for the FFT. Acoustics, Jan 1998.
R. Helm, I. M. Holland, and D. Gangopadhyay.
Contracts: specifying behavioral compositions in
object-oriented systems. SIGPLAN Not.,
25(10):169-180, 1990.

C. Huang and L. V. Kale. Charisma: Orchestrating
migratable parallel objects. In Proceedings of IEEE
International Symposium on High Performance
Distributed Computing (HPDC), July 2007.

C. Huang, O. Lawlor, and L. V. Kalé. Adaptive MPI.
In Proceedings of the 16th International Workshop on
Languages and Compilers for Parallel Computing
(LCPC 2003), LNCS 2958, pages 306-322, College
Station, Texas, October 2003.

L. Huang, B. Chapman, and Z. Liu. Towards a more
efficient implementation of openmp for clusters via
translation to global arrays. Parallel Computing, Jan
2005.

P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and
T. R. Quinn. Massively Parallel Cosmological
Simulations with ChaNGa. In Proceedings of IEEE
International Parallel and Distributed Processing
Symposium 2008, 2008.

R. Jyothi, O. S. Lawlor, and L. V. Kale. Debugging
support for Charm++. In PADTAD Workshop for
IPDPS 2004, page 294. IEEE Press, 2004.

L. Kale. The Chare Kernel parallel programming
language and system. In Proceedings of the
International Conference on Parallel Processing,
volume II, pages 17-25, Aug. 1990.

L. V. Kalé. Performance and productivity in parallel
programming via processor virtualization. In Proc. of
the First Intl. Workshop on Productivity and
Performance in High-End Computing (at HPCA 10),
Madrid, Spain, February 2004.

L. V. Kale, M. Bhandarkar, and R. Brunner.
Run-time Support for Adaptive Load Balancing. In
J. Rolim, editor, Lecture Notes in Computer Science,
Proceedings of 4th Workshop on Runtime Systems for
Parallel Programming (RTSPP) Cancun - Mezico,
volume 1800, pages 1152-1159, March 2000.

L. V. Kale and A. Gursoy. Modularity, reuse and
efficiency with message-driven libraries. In Proceedings
of the Seventh SIAM Conference on Parallel
Processing for Scientific Computing, pages 738-743,
San Francisco, California, USA, February 1995.

L. V. Kale and S. Krishnan. Charm++: Parallel
Programming with Message-Driven Objects. In G. V.
Wilson and P. Lu, editors, Parallel Programming using
C++, pages 175-213. MIT Press, 1996.

L. V. Kale, S. Kumar, and K. Vardarajan. A
Framework for Collective Personalized
Communication. In Proceedings of IPDPS’03, Nice,
France, April 2003.

L. V. Kale, G. Zheng, C. W. Lee, and S. Kumar.
Scaling applications to massively parallel machines

30]

(31]

(32]

33]

(34]

(35]

(36]

37]

(38]

(39]

(40]

[41]

42]

(43]

using projections performance analysis tool. In Future
Generation Computer Systems Special Issue on:
Large-Scale System Performance Modeling and
Analysis, volume 22, pages 347-358, February 2006.
P. Keleher, S. Dwarkadas, A. L. Cox, and

W. Zwaenepoel. Treadmarks: Distributed shared
memory on standard workstations and operating
systems. In Proc. of the Winter 1994 USENIX
Conference, pages 115-131, 1994.

C. Koelbel, D. Loveman, R. Schreiber, G. Steele Jr.,
and M. Zosel. The High Performance Fortran
Handbook. MIT Press, 1994.

D. Kunzman, G. Zheng, E. Bohm, and L. V. Kalé.
Charm++, Offload API, and the Cell Processor. In
Proceedings of the Workshop on Programming Models
for Ubiquitous Parallelism, Seattle, WA, USA,
September 2006.

O. Lawlor, S. Chakravorty, T. Wilmarth,

N. Choudhury, I. Dooley, G. Zheng, and L. Kale.
Parfum: A parallel framework for unstructured
meshes for scalable dynamic physics applications.
Engineering with Computers, 22(3-4):215-235.

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh.
Basic Linear Algebra Subprograms for FORTRAN
Usage. ACM Transactions on Mathematical Software,
5:308-323, 1979.

J. Maddock and S. Cleary. Boost.StaticAssert. Boost
Library Project.

J. Nieplocha, R. J. Harrison, and R. J. Littlefield.
Global arrays: A nonuniform memory access
programming model for high-performance computers.
J. Supercomputing, (10):197-220, 1996.

R. Numrich and J. Reid. Co-array fortran for parallel
programming. ACM SIGPLAN Fortran Forum, 17,
August 1998.

S. J. Plimpton and B. A. Hendrickson. A new parallel
method for molecular-dynamics simulation of
macromolecular systems. J Comp Chem, 17:326-337,
1996.

C. Terboven, D. Mey, D. Schmidl, and M. Wagner.
First experiences with intel cluster openmp. Lecture
notes in computer science, Jan 2008.

T. von Eicken, D. Culler, S. Goldstein, and

K. Schauser. Active Messages: a Mechanism for
Integrated Communication and Computation. In
Proceedings of the 19th International Symposium on
Computer Architecture, Gold Coast, Australia, May
1992.

P. Wadler. Linear types can change the world! In

M. Broy and C. Jones, editors, Programming Concepts
and Methods. 1990.

L. Wesolowski. An application programming interface
for general purpose graphics processing units in an
asynchronous runtime system. Master’s thesis, Dept.
of Computer Science, University of Illinois, 2008.

http://charm.cs.uiuc.edu/papers/LukaszMSThesis08.shtml.

K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto,
B. Liblit, A. Krishnamurthy, P. N. Hilfinger, S. L.
Graham, D. Gay, P. Colella, and A. Aiken. Titanium:
A high-performance Java dialect. Concurrency:
Practice and Ezperience, 10(11-13), September —
November 1998.

	Introduction
	Programming Model
	Data Decomposition and Distribution
	Caching
	Access Modes
	Read-Only Mode
	Write-Once Mode
	Accumulate Mode
	Owner-Computes Mode

	Synchronization
	Safety Guarantees
	Composability

	Implementation
	Programming Interface
	Cache
	Asynchronous Message-Driven Execution
	Tools

	Example
	Optimization
	Programmer- and Compiler-driven Optimizations
	Prefetching
	Efficient Local Operations
	Tunable Cache Parameters

	Internal Optimizations
	Pushing
	Variable Data Movement Granularity
	Reductions
	Object Mapping

	Related Work
	Conclusions
	Acknowledgements
	References

