
Towards a Framework for Abstracting Accelerators in
Parallel Applications: Experience with Cell

David M. Kunzman
University of Illinois

201 N. Goodwin Ave.
Urbana, IL 61801

kunzman2@illinois.edu

Laxmikant V. Kalé
University of Illinois

201 N. Goodwin Ave.
Urbana, IL 61801

kale@illinois.edu

ABSTRACT
While accelerators have become more prevalent in recent
years, they are still considered hard to program. In this
work, we extend a framework for parallel programming so
that programmers can easily take advantage of the Cell pro-
cessor’s Synergistic Processing Elements (SPEs) as seam-
lessly as possible. Using this framework, the same appli-
cation code can be compiled and executed on multiple plat-
forms, including x86-based and Cell-based clusters. Further-
more, our model allows independently developed libraries to
efficiently time-share one or more SPEs by interleaving work
from multiple libraries. To demonstrate the framework, we
present performance data for an example molecular dynam-
ics (MD) application. When compared to a single Xeon
core utilizing streaming SIMD extensions (SSE), the MD
program achieves a speedup of 5.74 on a single Cell chip
(with 8 SPEs). In comparison, a similar speedup of 5.89 is
achieved using six Xeon (x86) cores.

1. INTRODUCTION
In the era of multicore, there has been a movement to spe-
cialized cores that are able to exploit parallelism inherent
in various algorithms. These specialized cores, or accel-
erators, come in various forms such as Graphics Process-
ing Units (GPUs), the Cell processor’s Synergistic Process-
ing Elements (SPEs), and Field Programmable Gate Arrays
(FPGAs). One of the challenges facing the widespread adop-
tion of accelerator technologies is the difficulty in program-
ming these devices. The various accelerator technologies are
quite different from one another. There are numerous hard-
ware differences that force the programmer to become an ex-
pert in each architecture to effectively use the accelerators.
Ideally, a programmer would just use a single programming
model to utilize all cores present in the system, accelerator
cores included. In the absence of any accelerator, the host
or standard core is used to execute the portions of the code
that could have otherwise been executed on the accelerator.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee.

SC09 November 14-20, 2009, Portland, Oregon, USA
(c) 2009 ACM 978-1-60558-744-8/09/11... $10.00

Our work extends the Charm++ programming model [12] to
include accelerated entry methods, making Charm++ appli-
cations portable to systems that include accelerators while
decreasing programmer burden by abstracting away archi-
tecture specific details. Accelerated entry methods are sim-
ilar to standard entry methods (member functions of C++
classes) in Charm++, with the main difference being that
they can execute on an accelerator if one is present. This
paper will focus on using the SPEs as accelerators avail-
able to the Power Processing Element (PPE) within the Cell
processor [11], treating the PPE as a host core. While the
work presented here mainly focuses on Cell-based systems,
we are working to generalize the approach to support addi-
tional accelerators, including currently available GPUs and
the unreleased Larrabee design [18].

Although our work is in the context of the Charm++ pro-
gramming model, we believe that the ideas presented here
can be incorporated into other programming languages and
models. Charm++ presents a way of breaking down a pro-
gram such that it is easy for build tools, such as preproces-
sors, compilers, and linkers, to manipulate the code. Be-
cause the build tools are able to manipulate the code and
the underlying runtime system has information on the ap-
plication data, expressed through the programming model,
the program becomes portable between various core types.
Additionally, by breaking down the program into schedu-
lable chunks of computation (entry methods in Charm++),
the runtime system is able to schedule these chunks in par-
allel across the available cores based on actual data depen-
dencies expressed via messages (entry method invocations in
Charm++).

The main contributions of this paper are as follows. We
have developed extensions to the Charm++ programming
model which, when used to write application code, allows
the code to be portable between Cell-based and non-Cell-
based platforms with no changes to the code. Addition-
ally, pieces of code (chare objects, libraries, and modules)
which are independently written, are able to share the same
SPE or set of SPEs by interleaving the execution of accel-
erated entry methods. We demonstrate that the framework
achieves good performance by analyzing the performance of
an example molecular dynamics application. Further, be-
cause our extensions are compatible with the Projections
[13] visualization tool provided by Charm++, the runtime
system can provide detailed performance information that
the application developer can use to analyze and improve

overall application performance.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. Section 3 provides some background
information for the reader, including a short introduction
to the Charm++ programming model. Section 4 introduces
our extensions to Charm++ and describes how they are used
in a Charm++ program. Section 5 demonstrates the use of
accelerated entry methods through an example molecular
dynamics code to give the reader a more concrete under-
standing of their usage. Code examples are given along with
performance data on both x86 processors and Cell proces-
sors. Finally, sections 6 and 7 discuss conclusions and future
work, respectively.

2. RELATED WORK
The CellSs programming model [3] most closely resembles
our approach. CellSs allows a programmer to annotate ex-
isting code by marking functions as candidates to be exe-
cuted in parallel. The annotations indicate which parame-
ters contain input data and output data generated by the
function. A runtime system then determines data depen-
dencies during runtime and schedules these functions on the
SPEs based on these data dependencies. These annotated
functions in CellSs resemble the accelerated entry methods
discussed here. However, they differ in that accelerated en-
try methods do not implicitly synchronize with a calling
function (i.e. values are not returned to the caller). More
generally, programs written using Charm++ are explicitly
written to be parallel while the CellSs approach is more anal-
ogous to using OpenMP[7] pragmas to annotate sequential
C/C++ programs. In our approach, data dependencies are
satisfied via messages (i.e. entry method invocations ex-
pressed in the application code) instead of analysis by the
runtime system. Programs written using the CellSs model
are portable to other platforms, including common multicore
architectures by using the SMPSs [1] runtime. However, our
approach also includes a SIMD instruction abstraction which
allows the programmer to write portable code that takes ad-
vantage of various SIMD instruction extensions (e.g. SSE,
AltiVec/VMX, and so on). Furthermore, our approach al-
lows programs to run in parallel across multiple Cell proces-
sors using the same abstractions (i.e. there is no difference in
the code for using one Cell or using a cluster of Cell proces-
sors). Our approach also addresses supporting the sharing
of SPEs between independently written pieces of code.

Numerous other high-level programming models have also
been developed or extended to support the Cell processor.
The Sequoia [9] programming model exposes the memory
hierarchy to the programmer by decomposing tasks. If a
task is too large to fit in a particular level of the memory
hierarchy, it is broken down into subtasks that will fit. The
subtasks are self-contained and cannot directly communicate
with one another. This approach focuses on distributing a
single large task across the SPEs while our approach allows
for multiple large tasks to be broken down and executed
concurrently on the SPEs. In the RapidMind model [16],
the programmer specifies operations through program con-
structs. These program constructs are then applied to arrays
of data structures in a data parallel manner. In Mercury’s
Multicore Framework [6], large multi-dimensional arrays of
data are broken down into tiles which are then streamed

through the SPEs and operated on independently of one
another. Both approaches differ from ours in that they op-
erate on array based data structures while our approach al-
lows the programmer to specify multiple arbitrary pieces of
code, performing different operations, to be executed on the
SPEs. The MPI programming model has also been extended
to support Cell by allowing the programmer to use MPI mi-
crotasks [17] to program the SPEs.

3. BACKGROUND
In this section, we provide background information on the
Cell processor, the Charm++ programming language, and
the Offload API.

3.1 Cell Processor
The Cell Broadband Engine Architecture (CBEA) [11], com-
monly referred to simply as Cell, was jointly developed by
Sony, IBM, and Toshiba. The Cell processor has been used
in several products, including IBM’s QS20 and QS22 Cell
Blades, Sony’s Playstation 3 (PS3) game console, and the
SpursEngine by Toshiba. The Cell processor is also used in
Roadrunner [2], currently one of the largest supercomputers.
The CBEA defines two types of cores in the Cell processors,
the Power Processing Element (PPE) and the Synergistic
Processor Element (SPE). The PPE is similar to a typical
core found in modern Power-based processors. In particular,
load and store instructions issued from the PPE access sys-
tem memory via a typical cache hierarchy. In current Cell
processor implementations, there is a single PPE core per
chip.

The SPEs are smaller, less complex cores designed to be ac-
celerator cores to the PPE. With each Cell processor having
several SPEs, the SPEs provide the great majority of the
chip’s processing power (peak GFlops/sec). However, the
SPEs have several architectural differences from the PPEs
that make them harder to program. First, the SPEs do not
have direct access to system memory. Instead, loads and
store instructions access a local scratchpad memory called
the local store. The local store is 256KB in size, fully con-
trolled by the application code, and must contain all code
and data used by the SPE. Second, data is moved between
an SPE’s local store and the main system memory via Di-
rect Memory Accesses (DMAs) that are explicitly issued via
the application code. Third, the SPEs have a different in-
struction set architecture (ISA) and, as such, use a differ-
ent binary image than the PPE. A binary image that con-
tains instructions for an SPE is embedded into the PPE’s
binary image at compile time and loaded into one or more
SPEs at runtime by application code. Additionally, similar
to many other core designs, the SPEs make use of single
instruction multiple data (SIMD) extensions that are nec-
essary to achieve the majority of the core’s peak floating
point performance. These architectural differences require
architecture specific code to be interleaved within the ap-
plication code, reducing the general portability of the ap-
plication code. Simply recompiling an application (e.g. a
program written using C/C++) for the Cell processor is not
sufficient to take advantage of the processor’s full potential.
The opposite is also true, porting code from a Cell-based
system to a non-Cell-based system requires removing all the
architecture specific code.

3.2 Charm++ Programming Model
With this work, we are extending the Charm++ program-
ming model to include accelerated entry methods. Accel-
erated entry methods will be discussed in more detail in
sections 4.1 and 4.2. The Charm++ programming model
has been in use for over a decade and has been used in
the development of multiple production scientific simula-
tions, including NAMD [4], OpenAtom [5], and ChaNGa
[10]. Furthermore, Charm++ applications account for a sig-
nificant number of cycles in supercomputing centers. The
remainder of this section gives a short description of the
Charm++ programming model. A more complete descrip-
tion of Charm++ can be found in Kalé et al. [12] and the
Charm++ tutorial.1

The Charm++ programming model is based upon C++. In
Charm++, the application is decomposed into a set of ob-
jects called chare objects or simply chares. Chare classes can
be basically thought of as C++ classes, having encapsulated
member variables and member functions just like classes in
C++. Chare objects are instances of the chare classes. Be-
yond standard C++ methods, chare classes also have entry
methods. Entry methods are special member functions of
the chare class that can be invoked asynchronously by other
chare objects, regardless of whether or not the two chare
objects are on the same physical processor. When an entry
method is invoked, a message is created and passed to the
the target chare object with any data needed by the target
entry method. Forward progress in a Charm++ applica-
tion is made as the chare objects receive messages, do work
in response to receiving the messages, and send out more
messages to other chare objects.

Because this work focuses on creating a new type of entry
method, we would like to point out some of the key at-
tributes of standard entry methods. Entry methods are spe-
cial member functions of chare classes. I.e. entry methods
do not behave in the same manner as standard member func-
tions in C++ classes. One of the main differences is that
entry methods are scheduled, not simply called. Member
functions are called, execute immediately, and return a value
once they have completed. C++ code calls a member func-
tion in the following way: myCPPObject.myMemberFunc-
tion(...). Entry methods are called in a similar way: my-
ChareObject.myEntryMethod(...). However, the call to the
entry method does not actually result in the entry method
being executed (invoked or called) directly. Instead, a mes-
sage, containing the parameters passed to myEntryMeth-
od(...), is created and sent to the processor that contains the
chare object represented by myChareObjectProxy.2 From
the caller’s perspective, the entry method returns immedi-
ately with no return value. The message, when it arrives at
the target processor, is queued by the Charm++ runtime
system. Typically, there are many chare objects per phys-

1http://charm.cs.uiuc.edu/tutorial/
2Because objects only exist on a single processor, they have
proxy objects, or just proxies, that represent them on other
processors. These proxy objects simply relay the messages
or entry method invocations to the actual chare object, on
whichever processor that object happens to actually exist.
From the programmer’s perspective, a proxy for a chare ob-
ject can be treated as if it were the object itself for the
purposes of invoking entry methods.

ical processor. The runtime system, on a per processor or
per core basis, dequeues messages one by one and executes
the associated entry method on the target chare object, ef-
fectively virtualizing the physical processors.

From the point of view of the programmer, invoking an entry
method means scheduling the execution of an action (entry
method) on a set of data (chare object’s local data and data
contained in the message itself) at some point in the future.
In other words, it triggers the target object to start doing
a piece of work in parallel with other entry methods exe-
cuting on other chare objects. Another difference, which
has already been mentioned, is that entry methods do not
return a value. More to the point, entry methods do not
implicitly synchronize in any way with the invoking code. If
the invoked entry method needs to send information back to
the invoking entry method, the invokee will need to invoke
another entry method on the object that originally sent the
message. The only way to pass data between chare objects
is to send the data by invoking an entry method on the chare
object that is to receive the data.

Charm++ does not use special compiler extensions or pre-
compiler macros to implement the programming model. The
Charm++ runtime system and other related frameworks are
implemented as libraries that are linked to the application.
Member functions that are also entry methods are speci-
fied, with their signatures (i.e. parameter types), in inter-
face files. Interface files also specify which classes are chare
classes along with various message types, readonly global
variables, and so on. The information in the interface files is
used by the Charm++ build tools to generate various pieces
of code that are included into the application, such as code
to pack and unpack (serialize) entry method parameters to
and from messages.

3.3 The Offload API
Prior to this work, some Charm++ applications were ported
to Cell-based platforms by directly making use of the Offload
API [14, 15]. The Offload API is a C library that allows a
programmer to submit work requests to the SPEs. The work
requests represent independent chunks of computation in a
manner that is similar to the accelerated entry methods de-
scribed in section 4.1. In this sense, the Offload API is a
C library that can be used by general C/C++ programs to
make use of the ideas presented in this paper. It should
be noted that our modifications to the Charm++ build pro-
cess automatically take care of some extra programmer effort
that will not be handled automatically by simply using the
Offload API directly, as discussed in section 4.5. For exam-
ple, the Charm++ build process incorporates a mechanism
for registering function indexes (used by the Offload API)
dynamically at program startup. This registration mecha-
nism, along with the nature of accelerated entry methods,
allows for independently written pieces of code (chare ob-
jects, libraries, modules, etc.) to effectively share a single
SPE by interleaving accelerated entry methods with one an-
other. The accelerated entry methods that are presented in
this work make use of the Offload API behind the scenes.
The functionality of the Offload API could be used by other
programming models.

http://charm.cs.uiuc.edu/tutorial/
http://charm.cs.uiuc.edu/tutorial/

module myModuleName {
array [1D] myChareArray {

entry [accel] void myAccelEntryMethod (int passedParam1 , f loat passedParam2 [passedParam1])
[readonly : int localParam0 <impl obj−>memberVar0>,

readwrite : f loat localParam1 [localParam0] <impl obj−>memberVar1>] {
// entry method code has access to passedParam1 , passedParam2 , localParam0 , and localParam1

} myAccelEntryMethod callback ;
. . .

Figure 1: Structure of an accelerated entry method.

4. EXTENSIONS TO CHARM++
In this section, we describe the extensions we made to the
Charm++ programming model, build process, and runtime
system to support this work. Our extensions include accel-
erated entry methods, accelerated blocks, and an abstraction
for SIMD instructions commonly supported by modern pro-
cessors.

4.1 Accelerated Entry Methods
We have extended the Charm++ programming model by
introducing accelerated entry methods. Accelerated entry
methods are entry methods which can be executed on accel-
erator hardware when such hardware is present. Otherwise,
when no accelerator is present, the accelerated entry meth-
ods will be executed using the same host cores as the rest of
the non-accelerated entry methods in the application.

By using accelerated entry methods, Charm++ programs
can be written once without the programmer having to be
concerned about the underlying hardware architecture. If
the program is compiled for a Cell-based platform, the ac-
celerated entry methods are compiled both for the PPEs and
SPEs. Currently, while both the PPE and SPE versions of
the accelerated entry methods are created, only the SPE
version is actually used by the application. In the future,
we plan to allow the runtime system, through the help of
a load balancing framework, to make dynamic decisions on
how much work should be pushed to the SPEs and how much
work should remain on the PPEs. Furthermore, if the SPE’s
local store cannot hold all the data associated with an accel-
erated entry method, the accelerated entry method could be
executed on the PPE instead. However, this failover mech-
anism has not yet been fully implemented in the Charm++
runtime system.

An additional advantage of this approach is that the pro-
grammer does not need to be concerned about the interac-
tions of various portions of the code and how independent
pieces of code are going to share the available accelerators.
That is to say, the programmer does not have to worry about
time-sharing the accelerator between different portions of
the code. Instead, the programmer simply programs each
portion of the application to use accelerated entry methods
when possible. During runtime, the Charm++ runtime sys-
tem will schedule the entry methods on the accelerator. This
allows entire portions of the application (i.e. modules and
libraries) to be written independently from one another and
to still utilize the accelerator. As various modules, objects,
libraries, etc. are brought together to form the overall appli-
cation, the programmer need not worry how the components
will interact or even how many accelerators are available to
the application. Programmers can then use the idea of accel-

erated entry methods to develop accelerated libraries. Ap-
plications can be programmed to use the accelerator directly
and link to multiple libraries that all make use of the same
accelerator. All of these software components then share the
accelerator resources without burdening the programmer to
explicitly code the components to share the accelerator re-
sources.

Accelerated entry methods are meant to be used for the
computationally intensive portions of the application. This
follows directly from the fact that accelerators are designed
to work on the computationally intensive portions of an
application. In our implementation, the accelerated entry
methods do not currently support entry method invocation.
That is to say, other entry methods cannot be invoked di-
rectly from accelerated entry methods. For one chare object
to pass data generated by an accelerated entry method to
another chare object, the accelerated entry method needs
to fill in a buffer which can later be sent via a message in
the accelerated entry method’s callback function (a member
function of the object that is called when the accelerated
entry method completes). Invoking other entry methods di-
rectly from accelerated entry methods may be supported in
the future as these extensions continue to develop.

So that the build tools provided by Charm++ can manip-
ulate the code included in accelerated entry methods (dis-
cussed in section 4.1), the function bodies for accelerated
entry methods are specified along with the entry method
declaration in the interface file. Other languages with spe-
cialized compilers and/or compiler extensions could have the
function bodies for accelerated entry methods in the source
code file itself. This is a current drawback of our specific im-
plementation, but is a result of the Charm++ build process
and not a limitation of accelerated entry methods them-
selves. The interface files are processed by the Charm++
build tools during compile time, at which point the build
tools generate the required code needed by the accelerated
entry methods. This generated code is then included with
the application code written by the programmer.

4.2 Structure of Accelerated Entry Methods
Figure 1 illustrates the general structure of an accelerated
entry method. The code section is from an interface file
which declares a single chare class, myChareArray. This
particular chare class is declared as a chare collection (specif-
ically, a one dimensional array of chare objects). The my-
ChareArray chare class has a single accelerated entry method
declared, called myAccelEntryMethod.

There are several differences between declaring a standard
entry method and an accelerated entry method. First, the

// In t e r f a c e F i l e : Declare pro to type so the runtime system understands what the parameters are
entry void accumValues (int inArrayLen , a l i g n (s izeof (vecf)) f loat inArray [inArrayLen]) ;

// Source F i l e : Accumulate the incoming f l o a t i n g po in t va lue s in to the l o c a l array o f va lue s
// NOTE: localArrayLen and loca lArray are member member v a r i a b l e s o f ChareObjClass
void ChareObjClass : : accumValues (int inArrayLen , f loat ∗ inArray) {

i f (inArrayLen != loca lArrayLen) return ;
vecf ∗ inArrayVec = (vecf ∗) inArray , ∗ loca lArrayVec = (vecf ∗) l o ca lAr ray ;
int arrayVecLen = inArrayLen / vecf numElems ;
// Add as many elements us ing SIMD opera t ions as p o s s i b l e
for (int i = 0 ; i < arrayVecLen ; ++i)

loca lArrayVec [i] = vaddf (loca lArrayVec [i] , inArrayVec [i]) ;
// Add remaining e lements v ia s ca l a r opera t ions (i f inArrayLen % vecf numElems != 0)
for (int i = arrayVecLen ∗ vecf numElems ; i < inArrayLen ; ++i)

l o ca lAr ray [i] = loca lAr ray [i] + inArray [i] ;
}

(A) Standard Entry Method Version

// Chare Class Dec larat ion
class MyChareClass : public CBase MyChareClass { . . . friend class CkIndex MyChareClass ; . . . } ;

// In t e r f a c e F i l e : Accumulate the incoming f l o a t i n g po in t va lue s in to the l o c a l array o f va lue s
// NOTE: localArrayLen and loca lArray are member member v a r i a b l e s o f ChareObjClass
entry [accel] void accumValues (int inArrayLen , a l i g n (s izeof (vecf)) f loat inArray [inArrayLen])

[readonly : int loca lArrayLen <impl obj−>localArrayLen >,
readwrite : f loat l o ca lAr ray [loca lArrayLen] <impl obj−>l oca lArray>] {

// Function body same as Standard Entry Method Version (not repeated f o r b r e v i t y)
} accumValues ca l lback funct ion ;

(B) Accelerated Entry Method Version

Figure 2: Comparison of a standard entry method version and an accelerated entry method version of the
same operation.

accel keyword is used to declare the entry method as being
accelerated, as shown in figure 1. Second, the return value
of an accelerated entry method must be void. Third, in ad-
dition to the passed parameters, accelerated entry methods
have local parameters. Standard entry methods only declare
passed parameters and resemble parameters being passed by
value as one function calls another function in C/C++. Ac-
celerated entry methods also have local parameters which
list the local member variables of the chare object that the
entry method code will access as it executes. Fourth, the
function body of the accelerated entry method needs to be
located in the interface file instead of the source file so the
Charm++ build tools are able to manipulate it. Both the
third and fourth requirements stem from the fact that the
Charm++ build process does not have a custom C/C++
compiler which could otherwise do these tasks automatically
for the programmer. Finally, a callback function is specified.
The callback function is a member function of the chare class
that will be called on the same chare object when the ac-
celerated entry method completes. Callback functions are
executed on the host cores.

The local parameter list contains additional information that
the passed parameter list does not contain (refer to figure 1).
First, an optional access specifier indicates if the data will be
accessed in a readonly, readwrite (the default), or writeonly
manner. All passed parameters are readonly. This speci-
fier is used to direct how the data should be moved between
system memory and the accelerator’s local memory. Next,
the data type for the local parameter is specified. After the
data type, the programmer indicates the local parameter
name as it will be used in the function body. If the local

parameter is an array, the size of the array is indicated in
square brackets directly after the local name. Finally, the
member variable of the chare class that will be associated
with the local parameter name is indicated. Even though the
local parameter and member variable names do not match
in figure 1 (e.g. localParam0 and memberVar0), there is no
restriction requiring the names to be different. The impl obj
(implied object) keyword is similar to the this keyword in
C/C++ and points to the instance of the chare object that
the entry method is operating on. The function body of an
accelerated entry method should only access the passed and
local parameters it specifies, along with any local variables
that are declared within the scope of the function body it-
self. This is what we mean when we refer to the accelerated
entry methods being self contained and clearly defined.

When an accelerated entry method completes executing, a
callback member function is called on the same object on the
host core. The callback entry method that is to be called is
specified at the end of the declaration of the accelerated en-
try method and may invoke other entry methods. In figure
1, the callback entry method myAccelEntryMethod callback
will be called on the same chare object when myAccelEn-
tryMethod finishes executing on the chare object.

Figure 2 presents another example of an accelerated entry
method which makes use of the SIMD instruction abstrac-
tion discussed in section 4.4. Both versions of the entry
method are invoked in the same way, myChareObj.accum-
Values(arrayLen, arrayData), by another entry method, ac-
celerated or not. Only one version of the entry method needs
to be included in the application code, however, the accel-

erated entry method version can be executed on an acceler-
ator. Both versions of the entry method perform the same
operation which is to add the contents of an array passed
to the object to an array of the same length local to the
same object. As can be seen from the figure, the difference
in the code between the two versions is fairly minor, mainly
in the entry method declaration itself, demonstrating how
accelerated entry methods resemble standard entry methods
in application code. It should be pointed out, however, that
not all translations from standard entry method to acceler-
ated entry method will result in code that is as similar as
the versions presented in figure 2 (i.e. it is not always the
case that the function bodies will be identical for both ver-
sions, which is the case in this particular example). There is
one additional difference pointed out by figure 2 (B), which
is the declaration of the friend class so that the generated
code can access the data within the chare object.

A disadvantage of our extensions is that they currently do
not have any mechanism that supports storing data in the
SPEs’ local stores across accelerated entry method execu-
tions. Currently, if persistent data is required, the program-
mer is required to declare a static data structure in an ac-
celerated block (described in section 4.3) and use Offload
API work requests to fill in the data structures. Although
possible, it would be more natural for the programmer if our
programming model extensions incorporated mechanisms to
support this type of activity directly. However, the develop-
ment of this mechanism is further complicated by the fact
that we are targeting other accelerators in addition to the
Cell’s SPEs, such as currently available GPUs and the fu-
ture Larrabee GPU. As such, we leave the development of
this mechanism as future work. Another disadvantage of
our approach is that we currently leave the granularity of
the accelerated entry methods to the programmer (vs. the
Sequoia model [9] which automatically determines task grain
size based on hardware constraints).

4.3 Accelerated Blocks
In addition to accelerated entry methods, we have also in-
troduced accelerated blocks to the Charm++ programming
model. Accelerated blocks are simply blocks of code that
are accessible to the accelerated entry methods. For exam-
ple, one could write one or more functions in an accelerated
block of code. These functions are then available to be called
from an accelerated entry method. Accelerated blocks can
also be used to include external files and define macros to be
used by multiple accelerated entry methods. Figure 3 has
an example of an accelerated block which simply includes
a header file containing defines used by the doCalc() accel-
erated entry method. Section 5 will discuss the specifics of
this example code in more detail.

4.4 Abstraction of SIMD Instructions
To fully take advantage of accelerators such as the SPEs
on the Cell, we also had to develop an abstraction for the
SIMD instructions supported by both the accelerators and
host cores. While the idea of an abstraction for portability
of SIMD code, by itself, is not a novel one, this work repre-
sents the introduction of a SIMD instruction abstraction to
the Charm++ programming model. Various types are de-
fined that represent packed data elements such as four single-
precision floating point numbers, two double precision float-

ing point numbers, four 32-bit integer values, and so on. Op-
erations such as addition, subtraction, multiplication, shift,
insert, extract, fused-multiply-add, and so on that oper-
ate on one of these types are also defined. When possible,
these types and operations are mapped to the SIMD in-
structions supported by the underlying hardware such as Al-
tiVec/VMX on Power (including the Cell’s PPE), the SIMD
instructions supported by the SPEs, and streaming SIMD
extensions (SSE) on x86 processors. Generic C/C++ ver-
sions of all these types and operations are defined and used
by default on platforms that do not directly provide support
for SIMD instructions. Figure 2 illustrates some of the data
types and operations that are provided (e.g. vecf which rep-
resents a packed set of single-precision floating point values).
It should also be pointed out that the code in figure 2 works
regardless of how many float point values are packed into
the vecf data structure (i.e. vecf numElems).

4.5 Scheduling and Execution
Scheduling an accelerated entry method occurs as a two
stage process. The first stage of the process is the same
for all entry methods. The second stage involves scheduling
the accelerated entry method on the accelerator device (SPE
in this case) and is specific to the type of accelerator being
used. For the Cell processor, we leverage our previous work
on the Offload API along with additional modifications we
have made to the Charm++ build process in this work.

The first stage of scheduling an accelerated entry method
involves queueing the message. For accelerated entry meth-
ods, this stage is the same as the scheduling process for other
standard entry methods in general. The Charm++ runtime
system keeps a message queue of all the yet to be executed
messages. For standard entry methods, as a message reaches
the head of the message queue and is dequeued, the associ-
ated entry method is executed on the associated object with
the message data being passed into the entry method. The
programmer may influence the ordering of the messages in
the message queue by assigning them a message priority.3

For accelerated entry methods, if no accelerator is present,
the accelerated entry methods are executed on the host core
as they are pulled from the message queue, just as standard
entry methods are executed. However, if an accelerator is
present, the accelerated entry methods enter into a second
stage of scheduling.

In the second stage of scheduling, the information provided
by the programming model, including our extensions, is used
by the runtime system to identify the data that will be re-
quired by the accelerator. Our modifications to the build
process create two versions of the accelerated entry method,
one for the PPE and one for the SPE. In the future work, as
part of the dynamic load balancer, we plan to have the run-
time system make dynamic decisions about load balancing
the work between the PPE and the SPE cores. However, at
this time, we currently execute all accelerated entry methods
on the SPEs. The second stage of scheduling is managed by
the Offload API directly. To understand how this occurs,

3Other methods can be used to influence the order of mes-
sage execution, such as indicating a queueing scheme (first-
in-first-out (FIFO) ordering, last-in-first-out (LIFO) order-
ing, and others) and using immediate or expedited messages.

one needs to understand how we have modified the build
process.

Our modifications to the build process generate code asso-
ciated with the accelerated entry methods and make use of
the Offload API to execute the accelerated entry methods
at runtime. The generated code includes (1) PPE code to
create an Offload API work request at runtime that encap-
sulates the execution of the accelerated entry method on
the accelerator, (2) a lookup function required by the Of-
fload API, (3) registration functions and tables, and (4) a
SPE function that will do the actual work of the accelerated
entry method. First, the generated PPE code, using the in-
formation supplied by the programming model, creates an
Offload API work request which encapsulates both the data
to be operated on (in our case message and object data)
and the function that will be applied (an SPE function gen-
erated from the accelerated entry method’s function body).
For the purposes of this discussion, the terms accelerated en-
try method and work request can be used interchangeably.
Once the work request has been created, the Offload API
takes over for scheduling the work request on one of the
accelerators (the second stage of scheduling). The Offload
API decides which SPE the work request will be executed
on, currently in a round-robin manner, with a fixed maxi-
mum number of work requests specifically assigned to each
SPE at any given moment. Excess work requests are queued
on the PPE and later assigned to the SPEs as the SPEs fin-
ish previously issued work requests. A small runtime on
each SPE identifies the work requests that are currently as-
signed to that SPE and moves each work request through
a simple state machine which basically allocates memory
in the local store for the work request, DMAs input data
into the work request’s memory, executes the work request
(accelerated entry method), DMAs output data back to sys-
tem memory, releases the work request’s local store mem-
ory, and finally notifies the PPE that the work request has
been completed and any resulting output data is in system
memory. The Offload API itself, along with how the SPE
runtime handles data movement and work request schedul-
ing, is discussed in more detail in Kunzman 2006 [14] and
Kunzman et al. 2006 [15]. The overlap of data movement to
and from the SPE’s local store while the SPE executes work
requests naturally follows from the fact that, at any given
moment, multiple work requests are moving through differ-
ent stages of the state machine on an SPE. As work requests
move through the state machine, some are transferring data
(input or output) while others are ready for execution. Be-
cause the Offload API is a library, when a work request is
ready to execute, the SPE runtime requires a lookup func-
tion (number 2 above) to call into application code. The
lookup function we generate at build time uses a lookup ta-
ble generated at application startup by our generated regis-
tration functions (number 3 above) which uniquely identifies
the various accelerated entry methods via function pointers.
The function pointers are used to call into the generated SPE
code which executes the accelerated entry methods’ function
bodies (number 4 above). The net result is that accelerated
entry methods, along with their data, are streamed through
the available SPEs (i.e. self contained tasks are streamed
through the SPEs).

To summarize, our modifications extend the Charm++ pro-

gramming model to include accelerated entry methods along
with related extensions. We have modified the Charm++
build process to generate code to execute the accelerated
entry methods on host and accelerator cores, making ac-
celerated entry methods portable between systems with and
without accelerators. The SIMD instruction abstraction fur-
ther increases the portability of entry methods, accelerated
or not, that make use of SIMD instruction extensions. For
the Cell processor, our build process modifications generate
code that leverages the SPE runtime provided by the Of-
fload API to stream accelerated entry methods through the
available SPEs as messages are dequeued from the general
message queue. Furthermore, we generate code that regis-
ters accelerated entry methods at startup, allowing indepen-
dently written accelerated entry methods to time-share the
available accelerators. In section 5, we discuss an example
molecular dynamics code used to illustrate the performance
achieved by an application that utilizes accelerated entry
methods.

5. MOLECULAR DYNAMICS EXAMPLE
To illustrate how accelerated entry methods would be used
in an actual application, we developed a simplified molecular
dynamics (MD) code. Charm++ has been used in the de-
velopment of production molecular dynamics applications,
including NAMD [4] and OpenAtom [5], and, as such, we
initially chose an MD code for testing our extensions. We
plan on developing other Charm++ applications that make
use of accelerated entry methods in the future. The source
code for our MD example program, along with other ex-
amples, can be found in the Charm++ distribution. For
brevity, only a small portion of the program is presented
along with performance results.

5.1 Description of MD Example Code
The structure of the MD example program is based on the
nonbonded force computation in NAMD [4], a production
molecular dynamics code. However, our MD example is
quite a bit less complex. There is a three dimensional volume
of space with a fixed number of particles randomly placed
within the space. During each timestep of the simulation,
each particle interacts with every other particle in the overall
system according to Coulomb’s Law (electrostatic force be-
tween two charged particles). Each timestep advances the
simulation time by one femtosecond. The list of particles
in the overall system is divided into a set of objects called
patches. Unlike NAMD, the particles are divided evenly be-
tween the patches with no regard to their spatial position.
The electrostatic forces between the particles are calculated
by compute objects. Compute objects come in two varieties:
self computes, which calculate the forces among particles
within a single patch, and pair computes, which calculate
the forces between particles in two different patches.

In the MD example, because all particles interact with one
another each timestep, the number of compute objects grows
at a rate of O(N2), where N is the number of patch objects.
NAMD uses a cutoff-based calculation (i.e. particles only
interact with particles within a certain cutoff distance) and
thus the number of compute objects grows at a rate of O(N),
where N is the number of patch objects. However, we have
chosen a problem size, as described in section 5.2, compa-
rable to the ApoA1 benchmark commonly used by NAMD

module pairCompute {
accelblock { #inc lude ”md config . h” } ;
entry [accel] void doCalc () [readonly : int numPart ic les <impl obj−>numPartic les >,

readonly : f loat p0 x [numPart ic les] <impl obj−>par t i c l eX [0] > ,
readonly : f loat p1 x [numPart ic les] <impl obj−>par t i c l eX [1] > , . . .

writeonly : f loat f 0 z [numPart ic les] <impl obj−>f o r ceZ [0] > ,
writeonly : f loat f 1 z [numPart ic les] <impl obj−>f o r ceZ [1] >

] {
// Cast f l o a t arrays to vec tor f l o a t arrays
vecf∗ p1 x vec = (vecf ∗) p1 x ; int p1 x vec l eng th = numPart ic les / vecf numElems ;
. . .
// Ca l cu la t e r and rˆ2 between the p a r t i c l e s
vecf p x d i f f v e c = p1 x vec [i] − p0 x vec [i] , p y d i f f v e c = . . .
vecf p x d i f f 2 v e c = p x d i f f v e c ∗ p x d i f f v e c , p y d i f f 2 v e c = . . .
vecf r2 vec = p x d i f f 2 v e c + p y d i f f 2 v e c + p z d i f f 2 v e c ;
vecf r v e c = vsqrtf (r 2 v e c) ;
. . .

} doCa l c ca l lback ;
. . .

}

Figure 3: Portion of the pair compute object’s doCalc() accelerated entry method.

which keeps the number of compute objects relatively simi-
lar. In particular, NAMD using a default configuration for
the ApoA1 benchmark has 92224 particles divided across
144 patches and creates 6017 compute objects to perform
the force calculation (with PME). For our MD program, we
use a problem size of 92160 particles divided evenly across
144 patches, resulting in 10440 compute objects (less than a
factor of 2 more than ApoA1 in NAMD). We simply point
this out to put the problem size into some context given the
fact that the MD example code has O(N2) computes com-
pared to NAMD’s O(N) computes. The amount of paral-
lelism in both applications is directly related to the number
of compute objects created, which execute one entry method
each per timestep.

A given timestep is started by each of the patch objects
updating the compute objects with the particles’ position
data. This is done via proxy patches. Each patch has a rep-
resentative or proxy on each of the physical processors. The
patch first sends the updated particle position data to all of
its proxies. The proxy patches then send the position data
to any compute objects local to that processor that require
the patch’s data. This technique, essentially an object-based
multicast, reduces the total amount of data being sent over
the interconnect. Once a compute object has received all the
particle data it requires (from one patch for self computes,
from two patches for pair computes), the compute object
calculates the forces experienced by the particles that it is
responsible for. It then passes this force information back to
the patches via the patch’s proxy objects. That is, the proxy
patches combine all forces for a patch local to a particular
processor and then send the combined set of forces back to
the patch. Once the patch has received force data from all
of the compute objects that it initially sent position data to,
via its proxy patches, it updates the velocity and position
data of its particles, effectively ending the timestep. If there
are more timesteps to be calculated, the patch starts the
process again by sending out the updated particle data to
the compute objects.

It should be noted that the patch objects, the self compute
objects, and the pair compute objects all make use of accel-

erated entry methods for their respective work (force inte-
grations for patches, force calculation for computes). There
is no coordination between the code for these chare classes.
For example, whether or not the patch object uses the ac-
celerator via accelerated entry methods, the code for the
compute objects remains exactly the same. All the chare
classes are written independently and internally make use of
accelerators when available. In the same manner, libraries
which make use of accelerators can be developed indepen-
dently of application code or other libraries without regard
to whether or not the code it will eventually be linked to also
makes use of accelerators. The runtime system takes care
of scheduling the accelerated entry methods on the available
accelerators.

Figure 3 contains a small portion of code from the MD exam-
ple program. In particular, this is the declaration of the pair
compute object’s doCalc() accelerated entry method along
with a few lines of code from the function body to illustrate
the SIMD instruction abstraction. First, there is an accel-
erated block which includes the file md config.h. This gives
the accelerated entry methods access to all the #defines and
other macros that are declared in the md config.h header
file. Second, the doCalc() accelerated entry method itself is
declared (within the PairCompute chare class, which is not
shown). The declaration of doCalc() defines no passed pa-
rameters and several local parameters that will be accessed
by the entry method. There are several readonly buffers
that contain the particle’s position data from both patches
for each of the three dimensions (not all shown). There are
also several writeonly buffers that will contain the resulting
force data for both patches for each of the three dimensions
(not all shown). The body of the accelerated entry method
takes advantage of the SIMD abstractions described in sec-
tion 4.4. Using the SIMD abstraction allows this code to be
portable between core types while still allowing it to take
advantage of the different SIMD instructions supported by
the various cores.

5.2 Testing Methodology
Two systems were used to test the performance of the MD
example program, an x86-based system and a Cell-based

system. The x86-based system is a single workstation com-
prised of two quad core processors (two Intel Xeon E5320
chips running at 1.86GHz). The Cell based system is a clus-
ter of four IBM Cell Blades (QS20s; each having two Cell
chips running at 3.2GHz and 8 SPEs per chip) and four
Playstation 3s (PS3s; each running at 3.2GHz and using 6
SPEs per chip). In addition to running on the Cell proces-
sors individually, we make runs which utilize both the QS20s
and the PS3s in a single execution. The Blades and PS3s
are connected via a gigabit Ethernet network.

To illustrate the performance, we made several runs on the
hardware configurations described. The parameters used to
make the runs are outlined in figure 4. The problem size
chosen mimics the commonly used ApoA1 benchmark.

Number of Patches 144 patch objects
Number of Particles 640 per patch (92160 total)

Self Computes 144 SelfCompute objects
Pair Computes 10296 PairCompute objects

Number of Timesteps 128 (128 femtoseconds)
Total Flops (128 steps) 16851 GFlops

Figure 4: Simulation Parameters

All optimizations in the application code are applied to both
systems since a single set of source code files is being used
with no architectural specific code. This helps keep the com-
parison between the x86-based and the Cell-based systems
as fair as possible, in addition to being more convenient for
the application programmer since the application code is
only written once. The first optimization is reducing the
number of messages being sent between processors by using
the proxy patch objects as described in section 5.1. The sec-
ond optimization is loop unrolling and applying the SIMD
instruction abstraction to the computes’ force calculation
code and the patch objects’ integration code. Additionally,
the pair compute force calculation code’s innermost loop,
which makes up the majority of the work performed by the
program, was software pipelined.

5.3 Performance Results
We achieve a speedup of 5.74 when using a single QS20 Cell
chip compared to a single x86 core. This is similar to the
speedup of 5.89 achieved when using six x86 cores compared
to a single x86 core. That is to say, a single Cell processor
with eight SPEs is performing on par with six x86 cores for
this example MD program. Once again, both platforms are
taking advantage of SIMD instructions. Because of this, the
main differences between an x86 core and an SPE are the
clock speeds, characteristics of the pipelines, and the mem-
ory/cache hierarchies. We believe these to be good results
considering both software characteristics of the MD example
program and architecture differences between the SPE and
x86 cores, as discussed in the remainder of this section.

Figure 5 contains these data points along with others to il-
lustrate the general performance trends of the MD example
program. The single PS3 case is particularly slow. Upon
closer examination, we noticed that the program was swap-
ping pages out to disk, which is likely causing the poor per-
formance. As a result, for the PS3 runs, speedup is normal-
ized against the two PS3 case instead of the single PS3 case.

For all other hardware configurations, the speedups are nor-
malized to the single chip/core case for the same hardware
configuration. There is a second speedup reported, Speedup
(vs. 1 x86 core), which can be used to relate the performance
of the x86 configurations to the Cell configurations. In ad-
dition to these speedups, figure 5 also lists the number of
cores (SPEs or x86 cores), execution time for the simulation
(averaged execution time of multiple runs), average GFlops
per second (GFlops/sec) over the course of the simulation,
and the average percent of peak GFlops/sec achieved. The
GFlops count flops that go towards useful physics calcula-
tions. That is, it does not include flops from reduction of
force data or any other non-physics-flops the code performs.
The execution time is from the start of the simulation to the
end of the simulation. It does not include startup time for
the application. However, it does include all code related to
the simulation steps themselves such as sending of messages
over the network, Charm++ runtime system overheads, all
synchronization, and so on.

To better understand our speedups between the Cell-based
and x86-base hardware configurations, we consider the dif-
ferences between the two types of cores: SPE and x86. On
the Cell-based platforms, we focus on the SPEs since the
SPEs are doing all of the physics calculations. The SPEs
have a clock speed of 3.2 GHz, have dual-issue in-order
pipelines, and can only access their associated local store.
The x86 cores have a clock speed of 1.86 GHz, have 4-issue
out-of-order pipelines, and can access system memory via
a cache hierarchy. The SPEs are designed to be simple
cores that can execute a well structured binary code effi-
ciently. Because the SPEs have simpler in-order pipelines,
it is important for performance that the compiler optimizes
the code well [8]. The x86 cores are designed to be more
complex cores that can speed up the sequential portions of
the application code (the entry methods in our case) quite
well.

To get a more concrete picture of the performance observed
from the Cell-based hardware configurations, we examined
the compiler output for the pair compute object’s force cal-
culation code. This code makes up the great majority of the
work performed by the application. The innermost loop,
which represents four particle-to-particle interactions, has
a total of 54 instructions. Of the 54 instructions, 29 are
SIMD single precision floating-point instructions, only two of
which are fused-multiply-adds, representing 124 total flops
per iteration of the inner loop. By using the SPE timing
tool provided in the Cell SDK, we can see that these 54 in-
structions will take 56 cycles to execute4. We can then see
that the sequential physics code as optimized by the SPE
compiler achieves approximately 2.2 flops/cycle on average
(124 flops / 56 cycles). If the SPE had infinite memory (no
DMAs, all data in the local store, etc.) and could contin-
uously run the inner loop of the pair compute code for the
entire problem, the code output by the SPE compiler would
reach approximately 27.7% of the SPE’s peak performance.

4This assumes that the first instruction for iteration i will
be issued the cycle after the branch instruction for iteration
i-1. In other words, we assume perfect branch prediction
and are thus giving the SPE as much credit as possible.
56 cycles represents the number of cycles between the first
instructions being issued for two consecutive iterations.

PS3 Cells # SPEs Execution Time GFlops/Sec % Peak Speedup Speedup (vs. 1 x86 core)
1 6 782.56 21.53 14.02% 0.59 2.47
2 12 229.79 73.33 23.87% 2.00 8.41
3 18 151.78 111.03 24.09% 3.03 12.73
4 24 114.94 146.61 23.82% 4.00 16.81

QS20 Cells # SPEs Execution Time GFlops/Sec % Peak Speedup Speedup (vs. 1 x86 core)
1 8 336.45 50.09 24.46% 1.00 5.74
2 16 174.39 96.63 23.59% 1.93 11.08
3 24 118.66 142.01 23.11% 2.84 16.28
4 32 94.55 178.22 21.76% 3.56 20.43

QS20 & PS3 Cells # SPEs Execution Time GFlops/Sec % Peak Speedup Speedup (vs. 1 x86 core)
1 & 1 14 225.34 74.78 20.87% 1.00 8.57
2 & 2 28 112.48 149.82 20.90% 2.00 17.17
3 & 3 42 75.34 223.68 20.80% 2.99 25.64
4 & 4 56 58.57 287.69 20.07% 3.85 32.98

x86 Cores (SMP) # Cores Execution Time GFlops/Sec % Peak Speedup Speedup (vs. 1 x86 core)
1 1 1931.75 8.72 58.56% 1.00 1.00
4 4 485.93 34.68 58.20% 3.98 3.98
6 6 327.70 51.42 57.53% 5.89 5.89
8 8 257.95 65.33 54.82% 7.49 7.49

Figure 5: Performance Data for an Example MD Program. The results for each configuration (row) are
calculated by averaging the execution times of 10 separate runs.

For an entire QS20 chip, this means that the sequential code
can reach, at most, approximately 56.7 GFlops/sec. When
we add in all the overhead actually encountered by the pro-
gram (such as DMA overheads, runtime overheads, etc.) we
actually observe 50.1 GFlops/sec, or 24.46% of the chip’s
peak GFlops/sec. This is approximately 88.4% of the maxi-
mum performance one could achieve if the SPEs had infinite
memory and could continuously run the pair compute code.
This shows that our framework allows the application code
to effectively utilize the SPEs with little additional overhead.

Another more general point to consider is a comparison be-
tween the peak GFlops/sec for each type of core. A sin-
gle QS20 Cell has peak rate of 204.8 GFlops/sec achievable
by issuing one SIMD fused-multiply-add (MADD) each cy-
cle. A single x86 core has a peak rate of 14.9 GFlops/sec
achievable by dual-issuing one SIMD multiply (MUL) and
one SIMD addition (ADD) in a single cycle. This limits the
possible speedup of any application using SIMD instructions
to 13.76 on a QS20 Cell when compared to a single x86 core.
However, it is sometimes difficult for application code to take
advantage of MADD instructions which require related mul-
tiply and addition operations. This is not the case for the
x86 core since the MUL and ADD instructions do not have
to operate on related data.5 For any code that is not able
to take advantage of the MADD instructions, the maximum
speedup achievable by the code is automatically halved to
6.88 when moving from a single x86 core to a QS20 Cell pro-
cessor. The example MD program presented here falls into
this category of applications. The pair compute code in our
MD example program only has 2 MADD instructions per
29 SIMD instructions which will nearly halve the maximum
speedup for the MD example program on Cell compared to

5In codes where the data is related, techniques such as in-
struction scheduling and software pipelining can be used to
hide the latency between the data dependent instructions.

a single x86 core (to an estimated 7.36,6 since 7% of SIMD
instructions are MADD instructions). The actual observed
speedup of the example MD program including all overheads
is 5.74.

5.4 Visualizing the Program
The accelerated entry methods also work with Projections
[13]. Projections is a performance visualization tool that can
be used to visualize various aspects of a Charm++ program.
Figure 6 shows one of the supported views, called a timeline
graph. In a timeline graph, each core (PPE, SPE, and/or
x86 core) is represented by a separate row. For example, the
rows labeled as PE 0-3 in the upper portion of figure 6 are
the four PPEs in the 4 QS20 hardware configuration. The
rows labeled as PE 1-8 in the lower portion of figure 6 are
the eight SPEs associated with PE 1 in the upper portion of
the figure (i.e. the SPEs on the second of four Cell chips).

A timeline graph is a detailed view of what each core is
doing as the program progresses. For each row or core in
figure 6, time increases from left to right. Figure 6 show the
computation on the cores for almost seven timesteps. Each
block of color on a row represents the execution of a single
entry method on that associated core. In the case of the
SPEs, each entry method is an accelerated entry method.
The thinner white blocks represent idle time7 (the PPEs are
idle for the majority of the time). Black represents time that
the core is doing something related to the runtime system.
The timeline graph, along with other graphs that are avail-
able in Projections, can give the programmer deeper insight
into various performance characteristics of a program.

All Charm++ programs, including programs that use accel-
erated entry methods, can make use of the Projections tool

6(13.76 * 0.07) + ((13.76/2) * 0.93)
7Currently, for SPEs, both idle time and runtime overheads
are considered the same thing and are displayed as black.

Figure 6: Screenshot of timeline graph used when analyzing performance of the MD example code. The
upper window shows all four of the PPEs while the lower window shows the eight SPEs associated with PPE
1 (labeled as PE 1 in the upper window).

by simply linking an extra module to the application dur-
ing link time. No additional effort is required by the pro-
grammer to allow Projections to collect performance data
related to the entry methods. The code can be further in-
strumented to get sub-entry-method information giving per-
formance data related to specific sections of code within their
entry methods.

6. CONCLUSIONS
In this paper, we have presented a high level overview of the
extensions we made to the Charm++ programming model.
The extensions include accelerated entry methods, acceler-
ated blocks, and a SIMD instruction abstraction. When us-
ing these extensions, a programmer is able to easily utilize
the SPEs on a single Cell processors or a cluster of Cell pro-
cessors. Furthermore, code written with these extensions is
portable between various processor architectures (x86-based
and Cell-based systems presented here) without changing
the application’s source code. We also demonstrated that
our extensions are able to achieve good performance by pre-
senting an example molecular dynamics program which uti-
lizes these new extensions. The example MD program, run-
ning on a single QS20 Cell, reached 50.1 GFlops/sec of the
maximum 56.7 GFlops/sec possible for this application run-
ning sequentially on an SPE with infinite memory, as dis-
cussed in section 5.3.

Beyond portability and performance, our extensions allow
a programmer to write code that can make use of available
accelerators in a modular way. Independently written pieces
of code written using our extensions can make use of accel-
erated entry methods. Each portion of code can make use of

accelerated entry methods regardless of whether or not the
other portions of code are also doing so. At runtime, after
the pieces of code have been linked together to form a single
application, the runtime system can interleave the acceler-
ated entry methods on the available accelerators. Further-
more, accelerated entry methods are compatible with Pro-
jections. As a Charm++ application executes, the runtime
system can be instructed to gather detailed performance in-
formation. An application developer can later analyze the
performance data using the Projections visualization tool to
better understand the performance characteristics of the ap-
plication, including accelerated entry methods executing on
accelerators.

7. FUTURE WORK
The framework extensions added and the model in general
are still under development. For example, one additional
feature we would like to add is the ability of the runtime sys-
tem to automatically load balance work between host cores
and accelerator cores. Currently, on Cell-based platforms
the accelerated entry methods are compiled for both the
PPEs and SPEs. We are working on adapting the runtime
system to use dynamic performance information to direct
a fraction of the accelerated work to the PPEs when the
PPEs have idle time to spare, potentially providing a small
speedup.

We are also working towards being able to execute Charm++
programs on heterogeneous systems. The example Charm++
programs that use accelerated entry methods can already be
executed on a heterogeneous cluster comprised of Cell-based
and x86-based nodes with the x86 cores and the PPE cores

being treated as peers. The goal of this work is to allow for
the development of Charm++ programs on heterogeneous
clusters such as Roadrunner [2] at Los Alamos National
Lab. However, the Charm++ load balancing framework
does not currently ‘understand’ some architectural differ-
ences between cores.

8. ACKNOWLEDGMENTS
We would like to thank Gengbin Zheng, Lukasz Wesolowski,
Eric Bohm, Aaron Becker, Isaac Dooley, and Chao Mei of
the Parallel Programming Lab for their assistance with this
work. We would also like to thank IBM for the SUR grant
awarded to the University of Illinois which provided the
Cell hardware used for work presented in this paper. The
work was supported in part by the NIH grant PHS 5 P41
RR05969-04.

9. REFERENCES
[1] Barcelona Supercomputing Center. SMP Superscalar

(SMPSs) User’s Manual, July 2007.
http://www.bsc.es/media/1002.pdf.

[2] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson,
M. Lang, S. Pakin, and J. C. Sancho. Entering the
petaflop era: the architecture and performance of
roadrunner. In SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pages
1–11, Piscataway, NJ, USA, 2008. IEEE Press.

[3] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta.
CellSs: A Programming Model for the Cell BE
Architecture. In Proceedings of the ACM/IEEE SC
2006 Conference, November 2006.

[4] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips,
G. Zheng, and L. V. Kale. Overcoming Scaling
Challenges in Biomolecular Simulations across
Multiple Platforms. In Proceedings of IEEE
International Parallel and Distributed Processing
Symposium 2008, April 2008.

[5] E. Bohm, A. Bhatele, L. V. Kale, M. E. Tuckerman,
S. Kumar, J. A. Gunnels, and G. J. Martyna. Fine
Grained Parallelization of the Car-Parrinello ab initio
MD Method on Blue Gene/L. IBM Journal of
Research and Development: Applications of Massively
Parallel Systems, 52(1/2):159–174, 2008.

[6] B. Bouzas, R. Cooper, J. Greene, M. Pepe, and M. J.
Prelle. MultiCore Framework: An API for
Programming Heterogeneous Multicore Processors.
Mercury Computer System’s Literature Library
(http://www.mc.com/mediacenter/litlibrarylist.aspx).

[7] L. Dagum and R. Menon. OpenMP: An
Industry-Standard API for Shared-Memory
Programming. IEEE Computational Science &
Engineering, 5(1), January-March 1998.

[8] A. E. Eichenberger, K. O’Brien, K. O’Brien, P. Wu,
T. Chen, P. H. Oden, D. A. Prener, J. C. Shepherd,
B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, and
M. Gschwind. Optimizing compiler for the cell
processor. In PACT ’05: Proceedings of the 14th
International Conference on Parallel Architectures and
Compilation Techniques, pages 161–172, Washington,
DC, USA, 2005. IEEE Computer Society.

[9] K. Fatahalian, T. J. Knight, M. Houston, M. Erez,
D. R. Horn, L. Leem, J. Y. Park, M. Ren, A. Aiken,

W. J. Dally, and P. Hanrahan. Sequoia: Programming
the Memory Hierarchy. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, 2006.

[10] P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and
T. R. Quinn. Massively Parallel Cosmological
Simulations with ChaNGa. In Proceedings of IEEE
International Parallel and Distributed Processing
Symposium 2008, 2008.

[11] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,
T. R. Maeurer, and D. Shippy. Introduction to the Cell
Processor. IBM Journal of Research and Development:
POWER5 and Packaging, 49(4/5):589, 2005.

[12] L. V. Kalé. Performance and productivity in parallel
programming via processor virtualization. In Proc. of
the First Intl. Workshop on Productivity and
Performance in High-End Computing (at HPCA 10),
Madrid, Spain, February 2004.

[13] L. V. Kale, G. Zheng, C. W. Lee, and S. Kumar.
Scaling applications to massively parallel machines
using projections performance analysis tool. In Future
Generation Computer Systems Special Issue on:
Large-Scale System Performance Modeling and
Analysis, volume 22, pages 347–358, February 2006.

[14] D. Kunzman. Charm++ on the Cell Processor.
Master’s thesis, Dept. of Computer Science, University
of Illinois, 2006.
http://charm.cs.uiuc.edu/papers/KunzmanMSThesis06.shtml.

[15] D. Kunzman, G. Zheng, E. Bohm, and L. V. Kalé.
Charm++, Offload API, and the Cell Processor. In
Proceedings of the Workshop on Programming Models
for Ubiquitous Parallelism, Seattle, WA, USA,
September 2006.

[16] M. D. McCool. Data-parallel programming on the cell
be and the gpu using the rapidmind development
platform. In GSPx Multicore Applications Converence,
2006.

[17] M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and
T. Nakatani. MPI microtask for programming the cell
broadband engineTMprocessor. IBM Syst. J.,
45(1):85–102, 2006.

[18] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth,
M. Abrash, P. Dubey, S. Junkins, A. Lake,
J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: a many-core x86
architecture for visual computing. ACM Trans.
Graph., 27(3):1–15, 2008.

	Introduction
	Related Work
	Background
	Cell Processor
	Charm++ Programming Model
	The Offload API

	Extensions to Charm++
	Accelerated Entry Methods
	Structure of Accelerated Entry Methods
	Accelerated Blocks
	Abstraction of SIMD Instructions
	Scheduling and Execution

	Molecular Dynamics Example
	Description of MD Example Code
	Testing Methodology
	Performance Results
	Visualizing the Program

	Conclusions
	Future Work
	Acknowledgments
	References

