
Continuous Performance Monitoring for
Large-Scale Parallel Applications

Isaac Dooley
Department of Computer Science

University of Illinois
Urbana, IL 61801

Email: idooley2@illinois.edu

Chee Wai Lee
Department of Computer Science

University of Illinois
Urbana, IL 61801

Email: cheelee@uiuc.edu

Laxmikant V. Kale
Department of Computer Science

University of Illinois
Urbana, IL 61801

Email: kale@uiuc.edu

Abstract—Traditional performance analysis techniques are
performed after a parallel program has completed. In this paper,
we describe an online method for continuously monitoring the
performance of a parallel program, specifically the fraction of
the time spent in various activities as the program executes.
Our implementation of both a visualization client and the
parallel performance framework that gathers utilization data are
described. The data gathering uses a scalable and asynchronous
reduction with an appropriate lossless compressed data format.
The overheads in the initial system are low, even when run on
thousands of processors. The data gathering occurs in an out-of-
band communication mechanism, interleaving itself transparently
with the execution of the parallel application by leveraging a
message-driven runtime system.

I. CONTINUOUS PERFORMANCE MONITORING

A. Importance of Continuous Performance Monitoring

Postmortem performance monitoring is the norm in parallel
computing. In this common performance analysis approach, a
parallel program is run. During the run, or at its completion,
performance data is written to files which can then be used by
analysis tools. This common approach is used primarily due to
the lack of availability of continuous performance monitoring
tools. Continuous performance monitoring is an approach
where performance characteristics of a running parallel appli-
cation are used as the program runs by a performance analyst.
This approach has several benefits when used either by itself
on in conjunction with postmortem analysis tools. Continuous
performance monitoring, although not yet widely used, could
become more popular if it were technically feasible, and
if it could be deployed without significantly degrading the
performance of the running application. Some of its benefits
are discussed below.

One benefit of continuous performance monitoring is that
the power of a parallel computer can be applied towards por-
tions of the analysis as performance data is produced. Portions
of the analysis can be quickly executed while the performance
data is still in memory. One such example of this beneficial
scenario would be a monitoring tool that can add up profile
information across all processors using reduction operations
on the parallel computer itself. In contrast, a postmortem tool
would have to spend considerable time processing potentially
large per-processor trace files on disk to generate the same
information.

For a long running job, a continuous performance moni-
toring tool can be used to look for unacceptable performance
degradation. In some applications, without a built in adaptive
runtime system, the evolution of the application may cause its
performance to degrade due to gradual or abrupt factors such
as adaptive refinement, change in material properties (for finite
element structural simulations), etc. If the user can check the
performance characteristics from time to time as the program
runs, they will be able to terminate the job when such a
scenario is reached. Typically, they can restart the simulation
from the last saved checkpoint (with a new modified mesh
partitioning, for example).

A continuous performance monitoring tool is a prerequisite
for online performance steering: visual performance feedback,
and specific details emerging from it, may be used by the
programmer to tell the application to adjust some parameters
or to trigger a runtime load balancing phase, etc.

For long running jobs, a long performance trace or profile,
obtained at the end of the run, will take time to transfer all at
once at the end via the file systems. A pre-processed efficiently
compressed performance stream, coming continuously from
the parallel computer throughout the run, could be stored
during the program’s run, possibly reducing the time spent
at the end of the job.

Furthermore, a continuous performance monitoring tool
could be used to quickly alert a programmer to an error
state in the program. For example when a program hangs,
the utilization displayed in a continuous monitoring tool will
change. A continuous performance monitoring tool could also
help the programmer detect other program specific anomalies.
The continuous performance analysis tool could be standalone
or integrated into existing or future debugging tool.

B. Types of Existing Performance Analysis Tools

Postmortem performance systems store raw performance
data into the memory buffers of a parallel machine while
an application executes. The performance data is written out
to the filesystem when buffers fill or when the application
terminates. The performance logs can then be post-processed,
manipulated and displayed by standalone performance tools.
The performance log formats generated can be broadly cate-
gorized as detailed event logs or profile logs.

Detailed event logs store the faithful, usually chronologi-
cal, time-stamped recording of performance metrics per pre-
defined event (eg. function call, message sends) encountered
in the application. These logs tend to be extremely large and
care has to be taken to control the generated data volume
for effective postmortem analysis. Vampir [1], Jumpshot [2],
Paradyn [3], KOJAK [4], Pablo [5] and Projections [6] are
examples of tools and systems that can use various forms of
detailed event logs.

Profile logs capture some summary of performance metrics,
over an application’s lifetime. Profiles could be generated
based on statistical sampling like the gprof tool [7] or based
on direct measurement of performance metrics of pre-defined
events, as is done in Projections [6] summaries or TAU profiles
[8] using the Paraprof tool. Profile-based tools generally do
not capture dynamic performance changes to the application
over time. It is possible to take “snapshots” [9] of profiles,
allowing the capture of performance changes over time, but at
the cost of storing an additional profile for each snapshot in
the buffers.

Tools that monitor application performance at runtime in-
clude Autopilot [10] and TAU, through a series of development
projects leading to TAUg and TAUoverSupermon [11], [12],
[13], [14]. Autopilot attempted to tune the performance of
a long-running application through the use of “sensors” and
“actuators” to allow a remote client to adjust the performance
properties of the application. Its approach is targeted at grid
applications whose performance would change unpredictably
over a long period of time, requiring the intervention of
an external agent. Our focus is, instead, on acquiring as
much detailed application performance information as pos-
sible in a long running application. Our approach requires
techniques for effective low-overhead data collection in the
parallel runtime. TAUg implements an abstraction of a global
view of performance data and introduced an interface for
MPI programmers to gather and act on the data. This differs
from our approach, which exploits the natural ability of the
runtime system to adaptively schedule and interleave the data
collection collective operations with application work. Our
approach requires no changes to user code. TAUg has shown
low overheads up to 512 processors. TAUoverSupermon takes
a different strategy from TAUg, using the Supermon cluster
monitoring framework [15] as the data aggregation mechanism
(referred to in their paper as the “transport”). It too, shows low
overhead up to 512 processors.

C. Message Driven Execution Facilitates Continuous Perfor-
mance Monitoring

To implement the continuous performance monitoring tool
described in this paper, we used the Charm++ runtime system.
The Charm++ runtime system allows programs to be writ-
ten in multiple parallel languages including Charm++ [16],
SDAG [17], Charisma [18], Multiphase Shared Arrays [19],
and AMPI [20]. Different portions of a program can even be
written using different languages [21]. In all of the languages
supported by the Charm++ runtime system, the execution

of the program proceeds primarily through the execution of
methods or threads when an arriving message is processed.
Each processor contains a scheduler and a queue of messages
awaiting execution. The scheduler executes the task specified
by each message. Because different messages can result in the
execution of different tasks, multiple program modules can
interleave their execution and send messages using the same
underlying runtime system.

Thus a runtime system such as Charm++ makes it easy for
a performance monitoring module to send messages that are
independent of the messages being sent by the rest of the
parallel program. Such out-of-band communication is useful
in implementing continuous performance monitoring tools. We
describe an example of such a tool in section II.

II. UTILIZATION PROFILE TOOL

Of the many possible types of continuous performance
monitoring that could be implemented, this paper describes
a new tool that efficiently streams utilization profiles from
a parallel program to a visualization client. The new tool is
comprised both of the first generic continuous performance
analysis system built into the Charm++ parallel runtime
system, and a corresponding visualization client. The new
tool works by gathering utilization statistics about a running
parallel program, efficiently compresses this utilization data,
and merges the compressed data in a reduction from all the
processors. A visualization client, run on a workstation, can
connect to the running parallel program over a potentially
low bandwidth network and retrieve continuously updating
utilization profiles from the parallel program. Because the tool
is implemented as a Charm++ module, any Charm++ program
can be used with the tool without any code modifications.

The utilization profile data gathered in this new system
describes the fraction of the execution time spent in each
activity over some period of time. The utilization profiles
produced by the tool contain a number of bins, each repre-
senting 1ms slices of the execution of the program. Some
fine-grained information about the execution of the activities
will be lost, but the resolution of 1ms should be suitable for a
variety of analysis tasks, including visualization. The activities
themselves, as instrumented by our tool, are Charm++ Entry
Methods. An entry method is a method that is can be remotely
called via an asynchronous method invocation on a migratable
Chare object.

Figure 1 shows an overview of the architecture of the
utilization profile tool. It shows the two independent mech-
anism that comprise the utilization profile tool, a performance
statistic gathering portion in the parallel runtime system, and a
mechanism for the visualization client to retrieve the statistics
produced by the first mechanism.

A. Observing Utilization On Each Processor

On the parallel system, each processor creates and updates a
utilization profile containing the amount of time spent in each
entry method. To observe and record the utilization for each
of the entry methods, we created a trace module enabled with

Root Processor

ProcessorProcessor ...Trace
Module

Trace
Module

Trace
Module

(1) Broadcast Request for
Utilization Profiles
Once Per Second

(2) Reduction Merges Compressed Utilization Profiles

(3) Buffer
Utilization
Profiles

Periodic
Requests

A) Gathering Performance Data in Parallel Runtime System:

B) Visualizing Performance Data:

Root Processor

CCS
Handler

Visualization Client (1) Send Request via
TCP using CCS protocol

(3) CCS Reply Contains
Utilization Profile

(4) Update Display

(2) Retrieve a
Buffered Utilization

Profile

Fig. 1. An overview of the Utilization Profile Tool. The tool is comprised of two separate mechanisms. The first mechanism (A) periodicially gathers
performance data in the parallel runtime system. The second mechanism (B) allows a visualization client to retrieve the previously buffered performance data
from the parallel program.

a single link time option -tracemode utilization.
This module is responsible for accumulating the time spent
executing each entry method into the appropriate utilization
profile bins. Each bin, representing 1ms of walltime, contains
a double precision floating-point value for each of the entry
method. Hooks in the trace module are called after each entry
method completes its execution, at which point the execution
time is accumulated into the one or more bins spanning the
execution of the entry method.

In memory, the bins are allocated as a fixed-size contiguous
array which is treated as a circular buffer. We arbitrarily chose
to use a circular buffer with 215 = 32768 bins which spans
about 33 seconds. The circular buffer is not compressed, and
hence its size can be large. In typical Charm++ programs
there are hundreds of different entry methods, many of which
are never executed, and many that are only called at startup.
In a run of the NAMD application, with our trace module
enabled, there are 371 distinct entry method. The size of the
circular buffer allocated on each processor for this program
would therefore be about 32768 bins× 371 entry methods

bin ×
8 bytes

entry method ≈ 93 MB. Although this buffer is somewhat
large, the sparse data it contains is compressed before being
merged across all the processors. Section III shows that the
actual cost of this approach is low when used with the NAMD

application.
If memory constraints are critical for a program, then the

circular buffer could be reduced by a number techniques.
The number of bins could be reduced, the bins could cover
larger amounts of execution time, and the set of entry methods
could be reduced either by reducing the set of entry methods
registered by the programs, or by reordering the entry methods
and only recording information for the most important ones. A
further way to shrink the memory requirement for this buffer
would be to use single precision floating-point values instead
of the 8-byte double precision values used currently.

B. Compressing Utilization Profiles

Although each processor gathers its own utilization statistics
in its trace module, the tool described in this paper reports the
overall utilization across all processors. In order to efficiently
combine the data from all processors, it is important to use an
efficient data storage format for the communication intensive
part of the data merging and transmission.

We created a compressed utilization profile format to use
when transmitting the usage profiles between processors and to
the visualization client. This format, which is shown in figure
2, represents the utilization for many timeslice bins for one
or more processors. The compressed format has a length that
depends upon the number of bins and the number of entry

of Bins # Processors Bin 1 Bin m

of Records E ID 1 Utilization 1 E ID n Utilization n...

...
4 bytes 4 bytes

2 bytes 2 bytes 1 byte 2 bytes 1 byte

Fig. 2. Compressed utilization profile format.

methods active during the timeslice represented by each of
the bins. Within each bin, the utilization for each active entry
method is stored using 3 bytes. One byte stores the utilization
in a range from 0 to 250, a resolution that is reasonable for
onscreen displays. Two bytes store the entry method index
(E ID). The records within each bin are in sorted order by
the entry method index. As mentioned in section II-A, typical
programs have more than 256 entry methods, and hence more
than one byte is required to represent them all.

The compressed format has a header which contains 4 bytes
specifying the number of bins and it 4 bytes specifying how
many processors produced the utilization profile.

Because there will be some entry methods that contribute
only tiny amounts to a bin, we decided to compress all such
entry methods into a single other category which is stored
just as any of the other entry methods in the bin but with
a reserved entry method index. The entry method stored in
this other category are any that fail to contribute more than a
specified threshold to a bin. The threshold used for the results
shown in this paper is 10%. This merging of entry methods
that contribute little to the result can reduce the sizes of the
compressed utilization profiles.

C. Merging Utilization Profiles from Many Processors

Periodically the compressed utilization profiles from all
processors are merged together and stored on processor zero
from which the visualization client can retrieve them. At
startup, processor zero will instruct the runtime system to call
a specified function once per second. This function in turn
will broadcast a request to all processors. Each processor,
upon receiving such a request, will compress a utilization
profile of 1000 bins, and contribute the compressed profile to
a reduction. The reduction is a standard Charm++ reduction
with a custom reduction operation that merges any number of
compressed utilization profiles into a single new compressed
utilization profile. The reduction proceeds over a spanning tree,
so it is scalable to large numbers of processors. The result of
the reduction arrives at processor zero, at which point it is
stored in a queue awaiting a request from a visualization client.
The incoming reduction message containing the compressed
utilization profile is itself saved, so no copying of the usage
profile is required at the end of the reduction.

The custom reduction merging operation simply marches
through all of the incoming compressed utilization profiles bin
by bin, appending resulting merged bins to a new compressed
utilization profile. Merging bins is simple because the entry

method indices are already in a sorted order, so the minimal
entry method index from all the incoming bins is selected
and the utilization from any of the incoming bins for that
entry method index are averaged. This average is weighted by
the number of processors that have contributed to each of the
respective incoming bins. The weighted average is important
if the reduction tree is not a simple k-ary balanced tree.

Because Charm++ uses an asynchronous message driven
execution model, the broadcast, the compression of the utiliza-
tion profiles, and the following reduction will interleave with
the other work occurring in the program. This interleaving
could potentially produce adverse performance problems for
the running parallel program, but section III shows that the
overhead is low for one widely-used example application.

D. Sending Utilization Profiles to a Visualization Client

The communication of the utilization profiles from the run-
ning parallel program to the visualization client is performed
through the Converse Client-Server (CCS) system [22]. CCS
provides a server-side library, and client libraries in multiple
languages. The underlying communication mechanism is TCP,
so it will work over all common types of networks.

To run the parallel program, a command line option is used
to specify the TCP port to be used for the CCS server-side.
In our implementation, the parallel program will simply reply
to any incoming CCS request of the appropriate type with
the oldest stored utilization profile in the queue on processor
0. If no stored utilization profile is available, then an empty
message is sent back to the client.

The client will periodically send requests to the running
program. Once a compressed utilization profiles is returned,
the visualization windows of the client are updated. For
convenience, the visualization client also supports the ability
for the profiles to be written to a file for future analysis and
the ability to play back the profiles saved in a file.

E. Visualization Client

The visualization client created to work with the new
Charm++ trace module is implemented in Java, resulting in a
portable GUI based tool. The tool provides a both a graphical
interface to connect to a running parallel program and some
resulting graphical visualizations described below.

The first main display in the visualization client contains
a scrolling stacked utilization plot of coarse grained averaged
utilizations. This display shows 10 seconds worth of data at a
time, scrolling as new data is added. The plot is composed of
100 bars in the x-dimension. Each bar displays the average of
100 bins, or 100ms of execution time. This view provides a
high level view of the overall utilization of the program as it
runs. A second more detailed view displays data at the finer
grain 1ms resolution.

The second display in the visualization client contains a
higher resolution plot of the utilization. This view does not
scroll as new data arrives, but rather is replaced periodically
with a recent view representing 250ms of execution time.
Figures 6 and 7 show snapshots of two such views from a

Fig. 3. A screenshot of the streaming view in our tool. This view represents
10 seconds of execution during startup for NAMD on 1024 processors running
the STMV molecular system.

Fig. 4. This streaming view represents 10 seconds of execution during the
early steps when load balancing takes place. Two valleys, corresponding to
the two load balancing steps, are clearly seen. This screenshot comes later in
the execution of the same program run as in figure 3

single run of the NAMD application on 1024 processors. These
views are useful when more detailed fine-grain information
is required. For example, the plots in figures 3, 4, and 5
show only a high level utilization breakdown while figures
6 and 7 show how each step in the simulation is progressing.
Such a detailed view is necessary to identify certain types
of problems, such as those that affect the behavior at a sub-
timestep basis.

One final display in the initial visualization client shows
the sizes of the incoming compressed utilization profiles. This
view is useful mostly just when determining the overhead of
our system. Figure 8 contains a plot that was generated by the
visualization client.

The client uses the CCS Java client-side library to create
a CcsThread which is used to send requests to the parallel
program. When the visualization client receives a CCS reply,
it saves the message, and computes the data for the scrolling
display. For this display, the values in 100 bins are averaged

Fig. 5. This streaming view represents 10 seconds of execution during the
later simulation steps once a more uniform load balance has been achieved.
Each bar represents the average utilization for 100ms of execution time.
For this program, the timesteps are shorter than this duration and hence the
utilization doesn’t reach 100% in this plot. This screenshot comes later in the
execution of the same program run as in figures 3 and 4.

together and the plot data is updated. Periodically, the begin-
ning 250ms of the most recent CCS reply is plotted directly
in the high resolution display.

The names corresponding to each of the entry method
indices is recorded by the trace module into a file. The user
of the visualization client can point the visualization client to
an appropriate file containing these names, and the legends
for the plots will use the names instead of the entry method
indices. In the future, the names will be sent through the CCS
connection when requested by the client.

III. PERFORMANCE IMPACT

To determine the actual performance impact of our perfor-
mance metric gathering scheme, we ran the parallel NAMD
molecular dynamics application [23] on 512 up to 8192
processors of the Cray XT5 system Kraken at the National
Institute for Computational Sciences managed by the Univer-
sity of Tennessee. We compared the application performance
of a baseline version of NAMD containing no tracing modules
to a version using the tracing module that gathers utilization
profiles as described in section II. We ran the baseline program
once, and on the same allocation of processors we ran the
version that gathers utilization profiles twice, once with a
visualization client connected, and once without any visual-
ization client connect. The NAMD program ran the Satellite
Tobacco Mosaic Virus (STMV) example simulation [24]. It
is a large molecular system that is useful for demonstrating
scaling to thousands of processors. Timings were analyzed for
400 application timesteps well after the initial load balancing
steps.

Our results show that for up to 8192 processors, the over-
head of recording the utilization profiles and sending them to
a visualization client is at most 1.14%. The results appear to
contain a slight amount of noise in that sometimes baseline
version is slower than the version that gathers performance

Fig. 6. This detailed view plots the full 1ms resolution utilization profile for 0.25 seconds of execution time for a NAMD STMV run on 1024 processors.
This snapshot captures steps with poor load balance.

Processors 512 1024 2048 4096 8192
Overhead Without Visualization Client 0.94% 0.17% -0.26% 0.16% 0.83%

Overhead With Visualization Client 0.58% -0.17% 0.37% 1.14% 0.99%

TABLE I
OVERHEAD OF COLLECTING UTILIZATION PROFILE INSTRUMENTATION

stastics. These variations are likely caused by intereference
from other parallel jobs sharing the same interconnect and
causing contention in the network.

We examined some projections trace logs for a 1024
processor run of NAMD to determine the cost of creating
the compressed utilization profiles. The time to create the
compressed utilization profile from the uncompressed circular
buffer was 9.3 ms. Because the uncompressed buffer is created
once per second, we expect the overhead of our approach to be
around 9.3ms

1s = 0.93%. The cost of the reductions was almost
nonexistent in comparison to the compressing of the utilization
profiles. The estimated 0.93% overhead seems to correspond
well with the results actually obtained, modulo the noise.

The messages sent along the reduction tree when combining
the utilization profiles for all processors have sizes that range
from 3.5KB up to almost 12KB. Figure 8 shows a plot of
the resulting utilization profiles that were received by the
visualization client when running NAMD on 1024 proces-
sors. This figure shows that the sizes of the messages vary

throughout different phases of the application. During startup,
the computation involves few entry methods, and hence the
message sizes are smaller. When the fine-grained timesteps
are executing toward the end of the program, the utilization
profile combined from all processors is approximately 12KB
in size.

IV. FUTURE WORK

The capabilities enabled by this work presents an opportu-
nity for a rich set of features to be deployed by a variety of
remote clients, visualization or monitoring tools. Visualizing
the time-varying profile of a complex application like NAMD
as demonstrated in this paper is just one such feature.

For example, a sorting filter could be applied to the data
stream, allowing a user to see in real-time the most significant
processor-outliers based on the amount of time they spent
being idle. Real time application load balance could also be
displayed using the data stream in the form of bar chart of
a fixed number of processors demonstrating the highest and

Fig. 7. This detailed view shows a later plot from the same run shown in figure 6, after load balancing improves the performance by shortening the time
per step.

Startup Early
Steps Load Balanced Steps

Fig. 8. Sizes of the compressed utilization profiles received by the
visualization client. The total bandwidth required to stream the data is thus
under 12KB/second for this program, namely NAMD simulating the STMV
system on 1024 processors.

lowest loads. Average, maximum and minimum loads can be
displayed as animated lines on that chart.

An analyst observing a degradation of performance in a
long-running application could choose to send a “termination”
signal through the CCS connection. While the traditional

purpose of such a signal is to prevent it from consuming
further computational cycles inefficiently, we can take this one
step further. The “termination” signal could tell the application
to terminate after the next application-supported checkpoint.
At the same time, the performance framework could respond
to the signal by changing from supplying low-overhead data
streams to an external client to recording a detailed event
trace. The detailed event trace can then be used postmortem to
understand the reasons for performance degradation, allowing
the analyst to re-tune the application and restart it from the
saved checkpoint.

In the future we hope to expand the type of continuously
monitored information to incorporate more fine-grained detail.
Towards this goal, we would like to be able to selectively
gather full trace data for subsets of processors.

Any type of performance data which is represented as
scalar values over time could be collected and displayed in
an identical manner to the utilization data described in this
paper. Such scalar values which are likely to be interesting
include: memory usage, CPU performance counters, and net-
work utilization.

V. CONCLUSION

This paper describes an method for continuously monitoring
the performance of parallel programs. Our example tracing

framework uses the Charm++ runtime system. Utilization
profiles are generated transparently to the application on each
processor and combined across processors in a reduction using
a compressed format. We created a new visualization tool
that displays both high resolution images of 250ms slices of
execution and a lower resolution scrolling view that shows the
utilization profile for the previous 10 seconds.

The overheads of gathering the performance measurements
are low, around 1%, even when running on thousands of
processors. The overheads for the performance measurement
collection both with and without a visualization client are
shown for runs on 512 up to 8192 processors. The required
network bandwidth from the parallel system to the visualiza-
tion client in our implementation is only 12 KB/second.

ACKNOWLEDGMENT

The authors would like to thank the Department of En-
ergy for its support of this project through the DOE HPCS
Fellowship program. This work is also supported in part by
grants from the National Institute of Health P41-RR05969.
NAMD was developed by the Theoretical and Computational
Biophysics Group in the Beckman Institute for Advanced
Science and Technology at the University of Illinois at Urbana-
Champaign.

REFERENCES

[1] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and
K. Solchenbach, “VAMPIR: Visualization and analysis of MPI
resources,” Supercomputer, vol. 12, no. 1, pp. 69–80, 1996. [Online].
Available: citeseer.ist.psu.edu/article/nagel96vampir.html

[2] O. Zaki, E. Lusk, W. Gropp, and D. Swider, “Toward scalable
performance visualization with Jumpshot,” The International Journal of
High Performance Computing Applications, vol. 13, no. 3, pp. 277–288,
Fall 1999. [Online]. Available: citeseer.ist.psu.edu/zaki99toward.html

[3] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth,
R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall, “The
paradyn parallel performance measurement tool,” Computer, vol. 28,
no. 11, pp. 37–46, 1995.

[4] F. Wolf and B. Mohr, “KOJAK - A Tool Set for Automatic Performance
Analysis of Parallel Applications,” in Proc. of the European Conference
on Parallel Computing (Euro-Par), ser. Lecture Notes in Computer
Science, vol. 2790. Klagenfurt, Austria: Springer, August 2003, pp.
1301–1304, demonstrations of Parallel and Distributed Computing.

[5] D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W.
Schwartz, and L. F. Tavera, “Scalable performance analysis : The pablo
performance analysis environment,” in Proceedings of the Scalable
Parallel Libraries Conference. IEEE Computer Society, 1993, pp. 104–
113.

[6] L. V. Kale, G. Zheng, C. W. Lee, and S. Kumar, “Scaling applications
to massively parallel machines using projections performance analysis
tool,” in Future Generation Computer Systems Special Issue on: Large-
Scale System Performance Modeling and Analysis, vol. 22, no. 3,
February 2006, pp. 347–358.

[7] S. L. . Graham, P. B. Kessler, and M. K. McKusick, “GPROF: a
call graph execution profiler,” SIGPLAN 1982 Symposium on Compiler
Construction, pp. 120–126, Jun. 1982.

[8] S. Shende and A. D. Malony, “The TAU Parallel Performance System,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–331, Summer 2006.

[9] A. Morris, W. Spear, A. D. Malony, and S. Shende, “Observing
Performance Dynamics Using Parallel Profile Snapshots,” Lecture Notes
in Computer Science, vol. 5168, pp. 162–171, August 2008.

[10] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed, “Autopilot:
Adaptive Control of Distributed Applications,” in Proc. 7th IEEE Symp.
on High Performance Distributed Computing, Chicago, IL, Jul. 1998.

[11] T. J. Sheehan, A. D. Malony, and S. S. Shende, “A Runtime Monitoring
Framework for the TAU Profiling System,” Lecture Notes in Computer
Science, vol. 1732, pp. 170–181, December 1999.

[12] A. D. Malony, S. Shende, and R. Bell, “Online Performance Observation
of Large-Scale Parallel Applications,” in Proc. Parco 2003 Symposium,
Elsevier B.V, vol. 13, 2004, pp. 761–768.

[13] K. A. Huck, A. D. Malony, S. Shende, and A. Morris, “TAUg: Run-
time Global Performance Data Access Using MPI,” Lecture Notes in
Computer Science, vol. 4192, pp. 313–321, September 2006.

[14] A. Nataraj, M. Sottile, A. Morris, A. D. Malony, and S. Shende,
“TAUoverSupermon: Low-Overhead Online Parallel Performance Mon-
itoring,” Lecture Notes in Computer Science, vol. 4641, pp. 85–96,
August 2007.

[15] M. J. Sottile and R. G. Minnich, “Supermon: a high-speed cluster
monitoring system,” 2002, pp. 39–46.

[16] L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth, and G. Zheng,
“Programming Petascale Applications with Charm++ and AMPI,” in
Petascale Computing: Algorithms and Applications, D. Bader, Ed.
Chapman & Hall / CRC Press, 2008, pp. 421–441.

[17] L. V. Kale and M. Bhandarkar, “Structured Dagger: A Coordination
Language for Message-Driven Programming,” in Proceedings of Second
International Euro-Par Conference, ser. Lecture Notes in Computer
Science, vol. 1123-1124, September 1996, pp. 646–653.

[18] C. Huang and L. V. Kale, “Charisma: Orchestrating migratable parallel
objects,” in Proceedings of IEEE International Symposium on High
Performance Distributed Computing (HPDC), July 2007.

[19] J. DeSouza and L. V. Kalé, “MSA: Multiphase specifically shared ar-
rays,” in Proceedings of the 17th International Workshop on Languages
and Compilers for Parallel Computing, West Lafayette, Indiana, USA,
September 2004.

[20] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé, “Performance evaluation
of adaptive MPI,” in Proceedings of ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming 2006, March 2006.

[21] S. Chakravorty, A. Becker, T. Wilmarth, and L. V. Kalé, “A Case Study
in Tightly Coupled Multi-Paradigm Parallel Programming,” in Proceed-
ings of Languages and Compilers for Parallel Computing (LCPC ’08),
2008.

[22] The CONVERSE programming language manual, Department of Com-
puter Science,University of Illinois at Urbana-Champaign, Urbana, IL,
2006.

[23] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, “Scalable molecular
dynamics with NAMD,” Journal of Computational Chemistry, vol. 26,
no. 16, pp. 1781–1802, 2005.

[24] P. L. Freddolino, A. S. Arkhipov, S. B. Larson, A. McPherson, and
K. Schulten, “Molecular dynamics simulations of the complete satellite
tobacco mosaic virus,” vol. 14, pp. 437–449, 2006.

