
1

Scalable Interaction with Parallel Applications
Filippo Gioachin, Chee Wai Lee and Laxmikant V. Kalé

Department of Computer Science
University of Illinois at Urbana-Champaign

gioachin@uiuc.edu, cheelee@uiuc.edu, kale@cs.uiuc.edu

Abstract—A range of tools, from parallel debuggers to per-
formance analysis/visualization to simulation visualizers, can
benefit from interaction with a running parallel application.
To be effective, this live interaction needs to be highly scal-
able. Such scalability for parallel applications is available in
the form of the Charm++/AMPI runtime system. Charm++
is an object-based, message-driven model of parallel program-
ming that has enabled high levels of scalability for complex
applications like NAMD, a production bio-molecular simula-
tion code frequently used on Teragrid systems. External tools
may communicate via a socket connection with an executing
parallel Charm++ application through our Converse Client-
Server (CCS) interface and framework. We demonstrate var-
ious tools that exploit the scalable properties of Charm++’s
adaptive runtime to intersperse interaction activity and com-
munication with the running application’s work. We show
how this allows tools to interact effectively and scalably with
parallel applications running on thousands of processors.

I. Introduction
There are several situations where an application de-

veloper, or even an end-user, can benefit from interact-
ing with a live parallel application. For example, de-
bugging an application that exhibits the faulty behav-
ior only on a large number of processors, or visualizing
application performance or application behavior during
its operation. Often such capabilities, when they exist,
suffer from scalability limits. There are multiple rea-
sons for such limits. These include: inability to share
the same network used by the application to perform
communication for data collection, limits on number of
connections clients can maintain, and performance bot-
tlenecks in the communication infrastructure.

We present our experience with scalable interaction
in the context of the Charm++/AMPI runtime system,
and its client-server interface called CCS. By exploiting
the fact that our runtime system is message-driven and
allows effortless interspersing of “in-band” and “out-of-
band” communication (i.e. the application’s commu-
nication and the communication needed for the inter-
active functionality can be interspersed), we overcome
some of the traditional limitations. CCS intrinsic capa-
bility to communicate with the parallel application, with
data collections from all (or any subset) of processors,
as well as the ability to inject a message onto any spe-
cific processor, makes it feasible to interact with large
number of processors.

We will enumerate a few use-cases of this scalable

interaction framework, and demonstrate the scalability
of the interactive functionalities with metrics including
response time and impact on application performance.
The use-cases include: a parallel debugger, a perfor-
mance analysis tool, and live application-level visualiza-
tion/analysis applications.

II. Converse Client-Server Model
Converse Client-Server (CCS)[3] is a communica-

tion protocol that allows parallel applications to receive
requests from remote clients. This protocol is part
of Charm++’s underlying system specifications and
is therefore available to any Charm++ application.
Note that “application” does not mean only the user
written code, but also the Charm++ runtime system
and its modules that run as part of the application it-
self. In this scenario, if a system module decides to use
CCS, the user code does not require any change, unless
it want to explicitely take advantage of the feature. We
shall see some examples of this in later sections.

CCS obeys normal Charm++ semantics. Upon a
request made by a CCS client, a message is generated
inside the application. Computation by the application
is triggered by the delivery of this message. As such,
CCS requests are serviced asynchronously with respect
to the rest of the application which can proceed unaf-
fected. When an application, or Charm++ module,
desires to use the CCS protocol, it must register one
or more handlers, each with an associated tag. This
ensures that requests sent by clients can be correctly
matched and delivered to the intended handler. Regis-
tration is performed by calling a function into the CCS
framework. Moreover, at startup, a flag must be passed
to the application to ensure that the runtime system
opens a socket and listens for incoming connections.
The connection parameters are printed to standard out-
put by the Charm++ RTS. Remote clients can send
requests to the parallel application using this informa-
tion. After receiving a CCS request message, the ap-
plication can perform any kind of operation, including
complicated parallel broadcast and reductions. Finally,
a reply can be returned to the client via the CCS pro-
tocol.

More recently, we created a new extension to CCS in
the context of high-level scripting languages. This al-



2

lows Python scripts to be dynamically uploaded into a
running parallel application. These scripts are executed
by the parallel application into Python interpreters cre-
ated on demand, and can interact with the applica-
tion in various ways, as described in [4]. This extension
allows greater flexibility to determine the functionality
needed by the application past compile time.

III. Large-Scale Parallel Debugging
Debugging applications is known to be a difficult task

for programmers. Errors in parallel applications are even
harder to track: to the list of problems found in se-
quential programs, others appear due to the distributed
nature of parallel applications. Major parallel debug-
gers, like TotalView [13] or DDT [1], maintain individ-
ual connections between the client and each node in the
parallel application. This hinders usability when using
thousands of processors due to the large response time
for even simple operations. Other tools like STAT [10],
based on MRNet, has shown excellent scalability to very
large machines. Unfortunately, STAT is not a full de-
bugger, and it can only focus the programmer toward
a set of processors to look at. Moreover, the range of
errors detected is limited.

CharmDebug [6] is a graphical tool written in Java.
It targets applications written in Charm++, allow-
ing programmers to remotely debug them. In a typical
scenario, the programmer starts CharmDebug on her
own workstation. Then, through CharmDebug, she
can select and start an application on a remote parallel
machine where she has previously compiled it. Inside
Charm++ there is a built-in CharmDebug plugin.
The combination of the graphical tool and this plugin
allows the programmer to visualize information perti-
nent to her code. Such information includes, but is not
limited to, the messages queued in the system, the ob-
jects present on a processor, and the state of any object.
Moreover, the programmer can set breakpoints on any
entry method.

By using CCS as underlying communication layer,
CharmDebug can connect as easily to a ten thou-
sand processor parallel application as to one running
on just a few processors. The sequential client only
manages meta-data of the application, and does not
need to maintain a debugging connection to each sin-
gle process allocated. The application notifies the client
CharmDebug when breakpoints and other events oc-
cur. One such event is also the crash of one of the
processor. If the application were to crash and disap-
pear, debugging would be impossible. Thus, we rely
on the Charm++ RTS to freeze the faulty processors
upon error, and make it available to CharmDebug for
inspection.

Another feature available thanks to the Python script-

ing interface is introspection [4]. The programmer can
upload a script to check for out-of-band values in the
application data structures. When such anomalies are
discovered, Charm++ will stop the application and
give the user the possibility to analyse further. For ex-
ample, he could attach a sequential debugger to the
faulty processor.

To prove the capabilities of CharmDebug at scale,
we ran tests using Kraken, a TeraGrid Cray XT4 ma-
chine at NICS (University of Tennessee/ORNL). We
used a simple Hello World program, and froze it at
the beginning of execution. Since we used the MPI
build of Charm++ (the only one currently available
on the system), we had to rely on the system launcher
to start the parallel application. Once the application
was started, we attached to it, submitted a few test
queries, and timed them. Each query gathered the to-
tal amount of memory allocated by all processors, there-
fore involving all the processors in the operation. We
ran queries from tens of processors up to 4,096 proces-
sors, and in all cases the response time perceived by the
client has been between 12 and 20 milliseconds. The
attach process itself took only tens of millisconds for
the considered range of processors, in comparison to
other tools where either direct connections or indirect
communication networks have to be established. Note
that this time includes the processing time inside the
java client itself, the communication between the client
and the parallel application, and the parallel operation
to gather the memory information.

In the future, we are looking at enhancing the features
provided by CharmDebug to help the programmer fo-
cus on the faulty processors, and isolate them from the
whole. For example, by integrating the Charm++
checkpoint-restart mechanisms [14] we can store and
retrieve checkpoints using the full power of the paral-
lel machine, and even extract single processors to re-
execute on a local workstation.

IV. Scalable Runtime Performance
Analysis and Visualization

Projections is the built-in parallel performance
instrumentation and analysis framework [7] of the
Charm++ runtime. As a Charm++ application exe-
cutes, relevant performance information on each proces-
sor is tracked and recorded into a local memory buffer.
This information can be in the form of a highly de-
tailed trace event log or a more compact profile that
captures a summary of performance metrics for each
pre-determined time-interval.

The traditional parallel performance analysis process
for Charm++ applications typically involves three
steps. Performance data is first written out to disk at
the termination of the parallel application. The files are



SCALABLE INTERACTION WITH PARALLEL APPLICATIONS 3

then transferred from the supercomputing facility to a
local workstation. Finally, an analyst uses the visualiza-
tion component of Projections to read the files in
order to find performance problems or bottlenecks.

There are scalability problems with the traditional
process. We frequently conduct scaling studies for
our key Charm++ applications like NAMD [11] and
OpenAtom [2] on a wide variety of very large ma-
chines. For large simulations executed on very high
processor counts, the total volume of performance data
can grow extremely large. This directly impacts the time
needed to transfer the files to a workstation for analy-
sis. It also affects the time taken to load an appropriate
portion of the data, particularly when the information
needs to sum metrics across all processors. As a part
of the solution to these scalability problems, we have
investigated techniques to reduce the volume of data
generated at the end of an application while preserving
the necessary performance information [9].

In the case of the traditional performance analysis
process, we observe that performance data stays unused
in its buffers until written out to disk at the end of the
application. The CCS interface to an external software
agent presents an opportunity for scalability improve-
ments. We exploit the Charm++ runtime’s ability to
adaptively schedule work while overlapping computation
with communication. Captured performance data could
be processed on each processor and gathered to a sin-
gle root processor through a global reduction. Depend-
ing on the size of the gathered data, the frequency of
data gathering and the nature of the application at large
scales, the impact on the application’s performance pro-
file could be minimal. An external client can then ac-
quire the gathered performance data through CCS com-
munication with that root processor.

This approach yields two immediate benefits. The
first is we can now choose to re-use buffer space cleared
by the data gathering process. The second benefit is the
ability to start sending performance data early to an ex-
ternal client while the Charm++ application is still
running. The external client could, in turn, provide im-
mediate visualization support and/or write the incoming
data into files for subsequent analysis.

We have implemented a very basic initial scheme that
provides an external client with a CCS hook directly into
the Projections performance instrumentation frame-
work. Commensurate with the goals of live analysis, the
implementation supports only profile summary perfor-
mance data, which is more compact and easier to ma-
nipulate than full event traces. The framework, from
processor 0, requests performance data from each pro-
cessor every 1 second. A simple text-based external
client makes requests to the framework on processor 0.
Each time a request arrives, the framework sends to the

Num. Cores exec time (no CCS) exec time (with CCS)
4095 21.44 s 21.46 s
8191 37.84 s 37.71 s

TABLE I: Impact of performance data gathering (for CCS
interaction) on program time. A global reduction of 8 kB

messages from each processor occurs every second.

client whatever complete data is gathered.
We conducted our initial tests on up to 8,191 Kraken

XT5 processors at NICS. Our preliminary results us-
ing a simple Charm++ program are promising. Even
on 4,095 and 8,191 processors, the program was able
to tolerate continuous live streaming of performance
data with no significant overhead over a normal profile-
generating execution of the same program (Table I).

Future work will involve a more complete overhead
study by varying the volume of data contributed by
each processor. We will use more complex applica-
tions like NAMD and OpenAtom at far larger scales.
We will explore more flexible schemes for communicat-
ing performance data to a root processor, for exam-
ple, one which seeks windows of opportunity when no
application-based work is being performed on a pro-
cessor. We will also aim to demonstrate a more full-
featured client which can make use of this feature. In
the longer term, we can use CCS as a mechanism to con-
duct post-mortem analysis of in-memory performance
data just prior to normal application termination. This
exploits the availability of both the large memory pool
of a supercomputer as well as the computational power
after an application is done with its work. Post-mortem
analysis could involve the analyst interactively guiding
the analysis framework in its data reduction work. This
could improve the quality of the performance data re-
tained while maintaining the scalability benefits.

V. Visualizing Realtime
Application-generated Images

Scientific simulations typically produce large output
files that need to be analyzed to make breakthough dis-
coveries. As the outputs’ size grows faster than the
memory and pocessing capability of a single machine,
the need for a parallel visualization and analysis tool in-
creases. Moreover, in many situations, scientific appli-
cations can benefit from human steering while running.
In order to steer the application, the scientist must to
be able to inspect the progress of the application, and
make decisions accordingly.

LiveViz is a visualization tool that allows Charm++
applications to easily compose and deliver images to
clients requesting them. An application can decide
to run in one of two modes. In pull mode, a client
request triggers the generation of an image. A pre-
registered callback function is used by LiveViz to collect



4

sub-images from a collection of Charm++ objects in
the application. In push mode, the application gener-
ates images when needed, and posts them to LiveViz. A
client can collect posted images at any later time. The
LiveViz module provides all the functionality to interact
with clients. Internally, LiveViz uses the Charm++
broadcast and reduction framework to combine portions
of an image from the scattered object into a single lo-
cation. While combining the final image, different com-
position mechanism are selectable.

LiveViz has been effectively used in Salsa [12], a par-
allel analysis tool for particle-based datasets. An ana-
lyst can load a large dataset onto a parallel machine,
visualize it, and apply either predefined filters or ad-
hoc Python scripts to the data under analysis. LiveViz
is also under integration into ChaNGa [5] as a way to
follow the progress of a simulation. In its design, Live-
Viz had some drawbacks that might cause reduced per-
formance under certain circumnstances: such as when
a client is either at a great distance from the parallel
machine (long latency), or on a slower network (small
bandwidth), the framerate may be too small for produc-
tive analysis. While small bandwidth can be tolerated by
using compressing techniques, long latencies are harder
to tolerate in LiveViz.

More recently, a new scheme based on CCS and us-
ing Parallel Impostors, described in Lawlor’s thesis [8],
has been developed. In this scheme, the client does not
reload a complete image at every frame, but maintains
2-dimensional images in a local cache. These images
are moved accordingly to the observer’s camera move-
ment. When the relative position between an image
and the camera exceeds a predetermined threshold, a
new image is generated in the server and delivered to
the client. This mechanism allows the client to run at
a higher framerate than what is currently possible with
LiveViz, while still maintaining accuracy in the visualiza-
tion. Large delays in the network or network congestion
can be easily tolerated by the client using the cached
images. For a comparison with other parallel visualiza-
tion tools, we refer to Lawlor’s thesis.

LiveViz and Parallel Impostors are lively project cur-
rently funded. Along with our collaborators, and we are
looking at integrating the new scheme into Salsa and
ChaNGa. We expect the applications to benefit from
the higher framerate enabled by the improved latency
and bandwidth tolerance. We are also testing the sys-
tem on many thousands of processors to validate its
performance.

VI. Conclusion and Future Work
We presented several case studies of scalable interac-

tion between a client, be it a visualization tool, debug-
ger, or performance analysis tool, with a remote parallel

application acting as a server. The common underly-
ing framework providing scalability and interactiveness
is the Charm++ parallel runtime system and CCS,
its client-server communication protocol. In each case,
we showed how we addressed and effectively dealt with
the issue of scalability. The metric considered is depen-
dent on the application requirements: response time for
parallel debugging, overhead/response time for perfor-
mance analysis, and framerate for remote visualization.

Acknowledgements: This work have been made
possible in part by grants NSF OCI-0725070, NASA
NNX08AD19G, and NSF ITR-0205611. We would like
to thank TeraGrid for the compute time granted through
allocation TG-ASC050039N. The authors are grateful
to Prof. Tom Quinn (Univ. of Washington) and Prof.
Orion Lawlor (Univ. of Alaska), who are collaborators
with them on the scientific visualization applications.

References
[1] Allinea. The Distributed Debugging Tool (DDT).

http://www.allinea.com/index.php?page=48.
[2] Eric Bohm, Abhinav Bhatele, Laxmikant V. Kale, Mark E.

Tuckerman, Sameer Kumar, John A. Gunnels, and Glenn J.
Martyna. Fine Grained Parallelization of the Car-Parrinello
ab initio MD Method on Blue Gene/L. IBM Journal of Re-
search and Development: Applications of Massively Parallel
Systems, 52(1/2):159–174, 2008.

[3] Department of Computer Science,University of Illinois at
Urbana-Champaign, Urbana, IL. The CONVERSE program-
ming language manual, 2006.

[4] Filippo Gioachin and Laxmikant V. Kalé. Dynamic High-
Level Scripting in Parallel Applications. In To appear in
Proceedings of the 23rd IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), Rome, Italy, May
2009.

[5] Pritish Jetley, Filippo Gioachin, Celso Mendes, Laxmikant V.
Kale, and Thomas R. Quinn. Massively Parallel Cosmolog-
ical Simulations with ChaNGa. In Proceedings of IEEE In-
ternational Parallel and Distributed Processing Symposium
2008, 2008.

[6] Rashmi Jyothi, Orion Sky Lawlor, and L. V. Kale. Debugging
support for Charm++. In PADTAD Workshop for IPDPS
2004, page 294. IEEE Press, 2004.

[7] Laxmikant V. Kale, Gengbin Zheng, Chee Wai Lee, and
Sameer Kumar. Scaling applications to massively paral-
lel machines using projections performance analysis tool.
In Future Generation Computer Systems Special Issue on:
Large-Scale System Performance Modeling and Analysis,
volume 22, pages 347–358, February 2006.

[8] Orion Sky Lawlor. Impostors for Parallel Interactive Com-
puter Graphics. PhD thesis, University of Illinois at Urbana-
Champaign, December 2004.

[9] Chee Wai Lee, Celso Mendes, and Laxmikant V. Kalé.
Towards Scalable Performance Analysis and Visualization
through Data Reduction. In 13th International Workshop
on High-Level Parallel Programming Models and Supportive
Environments, Miami, Florida, USA, April 2008.

[10] Gregory L. Lee, Dong H. Ahn, Dorian C. Arnold, Bronis R.
de Supinski, Matthew Legendre, Barton P. Miller, Martin
Schulz, and Ben Liblit. Lessons learned at 208k: towards
debugging millions of cores. In SC ’08: Proceedings of the
2008 ACM/IEEE conference on Supercomputing, pages 1–9,
Piscataway, NJ, USA, 2008. IEEE Press.



SCALABLE INTERACTION WITH PARALLEL APPLICATIONS 5

[11] James C. Phillips, Rosemary Braun, Wei Wang, James Gum-
bart, Emad Tajkhorshid, Elizabeth Villa, Christophe Chipot,
Robert D. Skeel, Laxmikant Kalé, and Klaus Schulten. Scal-
able molecular dynamics with NAMD. Journal of Computa-
tional Chemistry, 26(16):1781–1802, 2005.

[12] Thomas Quinn, Laxmikant Kale, Filippo Gioachin, Orion
Lawlor, Graeme Lufkin, and Gregory Stinson. Salsa: a par-
allel, interactive, particle-based analysis tool. Poster at Su-
percomputing 2004.

[13] TotalView Technologies. TotalView R© debugger.
http://www.totalviewtech.com/TotalView.

[14] Gengbin Zheng, Chao Huang, and Laxmikant V. Kalé. Per-
formance evaluation of automatic checkpoint-based fault
tolerance for ampi and charm++. ACM SIGOPS Operat-
ing Systems Review: Operating and Runtime Systems for
High-end Computing Systems, 40(2), April 2006.


