
An Evaluative Study on the Effect of Contention on
Message Latencies in Large Supercomputers

Abhinav Bhatelé and Laxmikant V. Kalé
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

Email: {bhatele, kale}@illinois.edu

Abstract— Significant theoretical research was done on in-
terconnect topologies and topology aware mapping for parallel
computers in the 80s. With the deployment of virtual cut-
through, wormhole routing and faster interconnects, message
latencies reduced and research in the area died down. This paper
presents a study showing that with the emergence of very large
supercomputers, typically connected as a 3D torus or mesh,
topology effects have become important again. It presents an
evaluative study on the effect of contention on message latencies
on torus and mesh networks.

The paper uses three MPI benchmarks to evaluate the effect
of hops (links) traversed by messages, on their latencies. The
benchmarks demonstrate that when multiple messages compete
for network resources, link occupancy or contention can increase
message latencies by up to a factor of 8 times. In other words,
contention leads to increased message latencies and reduces
effective available bandwidth for each message. This suggests that
application developers should consider interconnect topologies
when mapping tasks to processors in order to obtain the best
performance. Results are shown for two parallel machines –
ANL’s Blue Gene/P and PSC’s XT3.

I. INTRODUCTION

Interconnect topologies and their effect on message latencies
in message-passing distributed supercomputers was an impor-
tant factor determining performance in the 80s. Significant
research was done on topology-aware mapping to restrict com-
munication to near-neighbors and optimize performance [1],
[2], [3]. With the deployment of virtual cut-through [4] and
wormhole routing [5] and emergence of faster interconnects
in the 90s, message latencies became relatively unimportant
and research reduced in this area.

The network topology of the largest and most scalable
supercomputers today is a three dimensional (3D) torus. Some
examples are IBM’s Blue Gene family and Cray’s XT family.
For large installations of such machines, the diameter of the
network can be large (somewhere between 20 to 60 hops
for Blue Gene/P and XT4/XT5.) and this can have a signif-
icant effect on message latencies. When multiple messages
start sharing network resources, this effect becomes more
pronounced, especially for medium to large sized messages.
Hence, it becomes necessary to consider the topology of the
machine while mapping tasks to processors.

This paper will demonstrate that contention for links by
multiple messages can significantly increase message latencies
(sometimes up to a factor of 8.) Hence, it might not be

wise to ignore the machine topology. Virtual cut-through and
wormhole routing suggest that, in absence of contention, mes-
sage latency is independent of the distance for most message
sizes [4], [5]. When virtual cut-through or wormhole routing
is deployed, message latency can be modeled by the equation:

Lf

B
∗D +

L

B
(1)

where Lf is the length of the flit or header packet, B is the
link bandwidth, D is the number of links (hops) traversed and
L is the length of the message. In absence of blocking and for
sufficiently large messages (where Lf << L), the first term is
very small compared to the second. But with large diameters
of very large supercomputers, this is no longer true for small
to medium-sized messages.

Moreover when there is contention on the network, distance
becomes an important factor affecting message latencies, even
with wormhole routing. This is because of sharing of network
links between messages. It is often assumed that contention is
inconsequential on some of the faster interconnects today and
hence application developers should not have to worry about
network latencies and hence about topology-aware optimiza-
tions. This is evident from the fact that job scheduling on Cray
XT machines is not topology-aware (on Blue Gene machines,
users are allocated complete tori for their jobs). Also, there
is no easy mechanism to obtain topology information on XT
machines and for the same reason the MPI_Cart functions
are not implemented efficiently. This paper will demonstrate
that an application does not have to utilize close to the avail-
able bandwidth to suffer from increased message latencies.
Through a simple benchmark which compares near-neighbor
to random-processor communication, we will show that as
soon as two processors share a common link to send messages,
messages take significantly longer to reach their destination.

The phenomenon of network resource sharing leading to
contention can be explained with a simple example. Let us
consider a 3D torus network of size 8×8×8. The total number
of uni-directional links on the system is 512 × 6 = 3, 072.
The diameter of this network is 4 + 4 + 4 = 12 and hence,
if messages travel from one random node to another, they
will traverse 6 hops on the average. Now, if we have four
processors per node and every processor sends a message at
the same time, all these messages require 512×4×6 = 12, 288



links in total and hence every link will be used for four
messages on the average. This leads to contention for each
link and hence increases message latencies. Describing this
scenario in terms of bandwidth requirements, to operate at
minimum latency, we need four times the total raw bandwidth
available. But that is not the case and hence the delivered
bandwidth is one-fourth of the no-load maximum bandwidth.
The results will demonstrate that effective bandwidth can
decrease by up to 8 times in presence of contention.

The problem of network congestion and efficient PE map-
pings to avoid it have been explored on the Cray T3D and
T3E systems [6], [7], [8]. IBM systems like Blue Gene/L and
Blue Gene/P have acknowledged the dependence of message
latencies on distance and encourage application developers
to use topology of these machines to their advantage [9],
[10]. On Blue Gene/L, there is a 89 nanoseconds per hop
latency attributed to the torus logic and wire delays. This
fact has been used by application developers to improve
performance on Blue Gene/L [11], [12], [13]. The authors
have also presented improvements from topology mapping for
a simple stencil application and a real application through a
preliminary study [14].

The effect of topology on application performance and the
effect of congestion in the network on IBM and Cray systems
has been reported by Hoisie et al. [15], although using a
different approach. Results in [15] and comparisons of Natural
Ring and Random Ring results in HPC Challenge [18] support
the findings in this paper. This paper has a detailed study
on contention for different message sizes and machines. We
believe that the set of benchmarks we have developed would be
useful for the HPC community to assess message latencies on
a supercomputer and to determine the message sizes for which
number of hops makes a significant difference. The effective
bandwidth benchmark in the HPC Challenge benchmark suite
measure the total bandwidth available on a system but does
not analyze the effects of distance or contention on message
latencies [18].

We do not consider fat-tree topologies in this paper. Torus
topologies are not asymptotically scalable because the raw
available bandwidth increases as a function of P , whereas
the required bandwidth (assuming communicating processors
are randomly chosen) increases as a function of P 4/3, where
P is the number of nodes. In contrast, on fully-provisioned
fat-trees, the available bandwidth keeps pace with required
bandwidth - the diameter is logP and the number of links is
proportional to P.logP . However in practice, torus topologies
perform well provided that mapping of tasks to processors
takes the physical topology into account [12].

II. PARALLEL MACHINES

Two large supercomputers, one each from the IBM Blue
Gene family and the Cray XT family were used to perform
the set of experiments described above. Both are three-
dimensional torus or mesh topologies but have different pro-
cessor speeds and network characteristics.

Fig. 1. Communication Patterns in the WOCON Benchmark

IBM Blue Gene/P: The smaller installation of Blue Gene/P,
Surveyor at Argonne National Lab (ANL), was used for runs in
this paper. It has 1, 024 compute nodes, each of which has four
850 MHz PowerPC cores. The nodes are connected by a low-
latency 3D torus network with a uni-directional link bandwidth
of 425 MB/s [16]. The nodes use a DMA engine to offload
communication on the torus network, leaving the cores free
for computation. A midplane composed of 512 nodes forms
a torus of size 8× 8× 8 in all directions. Smaller allocations
than a midplane are a torus in some dimensions and mesh in
others. Larger allocations than a midplane are complete tori.

Cray XT3: The other machine used was the XT3 installation
(Bigben) at Pittsburgh Supercomputing Center (PSC.) This
installation has 2068 compute nodes arranged in a 3D torus
of dimensions 11 × 12 × 16. Each node has two 2.6 GHz
AMD Opteron processors and the nodes are connected by a
custom SeaStar interconnect. The processors are connected
to the SeaStar chip through a Hyper Transport (HT) link.
The unidirectional bandwidth of the HT link is ∼ 1.6 GB/s
whereas that of the network links is 3.8 GB/s [17]. Since the
job scheduler on XT3 does not allocate cuboidal partitions,
nodes allocated for a particular job may not be contiguous.
For results reported in this paper, the whole machine was
reserved and then nodes were allocated (with help from PSC
staff) to get contiguous cuboidal shapes. These partitions did
not have any IO nodes or failed nodes in the middle. The
largest partition used was 8 × 8 × 16 which is 1024 nodes
or 2048 cores and smaller sub-partitions were made from this
one. The 1024 node partition has torus links in one dimension
(which is of size 16) and mesh links in the other two. For
any allocation smaller than 1024 nodes, we had a mesh in all
dimensions.

A set of benchmarks were developed to test the claims
made in this paper. The next three sections discuss these
benchmarks and the results obtained from running them.
Finally we compare across the two machines and provide
broad conclusions from this work.

III. WOCON: NO CONTENTION BENCHMARK

This benchmark records message latencies for varying num-
ber of hops in absence of contention. One particular node is
chosen from the allocated partition to control the execution.
We will call this node the master node or master rank. It
sends B-byte messages to every other node in the partition,



 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048
 4096

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

30

La
te

nc
y 

(u
s)

%
 D

iff
er

en
ce

Message Size (Bytes)

Latency vs. Message Size: Without Contention (8 x 4 x 4)

Message Latency
% difference

 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048
 4096

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

30

La
te

nc
y 

(u
s)

%
 D

iff
er

en
ce

Message Size (Bytes)

Latency vs. Message Size: Without Contention (8 x 8 x 4)

Message Latency
% difference

 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048
 4096

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

30

La
te

nc
y 

(u
s)

%
 D

iff
er

en
ce

Message Size (Bytes)

Latency vs. Message Size: Without Contention (8 x 8 x 8)

Message Latency
% difference

 2
 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048
 4096

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

30

La
te

nc
y 

(u
s)

%
 D

iff
er

en
ce

Message Size (Bytes)

Latency vs. Message Size: Without Contention (8 x 8 x 16)

Message Latency
% difference

Fig. 2. Plots showing the effect of hops on message latencies in absence of contention (for torus sizes ranging from 4 × 4 × 4 to 8 × 8 × 16 on Blue
Gene/P, Benchmark: WOCON)

and expects same-sized messages in return (Figure 1). The
messages to each node are sent sequentially, one message at
a time (pseudo-code in Figure 3). For machines with multiple
cores per node, this benchmark places just one MPI task per
node to avoid intra-node messaging effects. The size of the
message, B is varied and for each value of B, the average
time for sending a message to every other node is recorded.
Since the distance from the master node to other nodes varies,
we should see different message latencies depending on the
distance.

Wormhole routing suggests that message latencies are in-
dependent of distance in the absence of contention, for suffi-
ciently large message sizes. The benchmark WOCON was used
to quantify the effect of the number of hops on small-sized
messages. Figure 2 presents the results obtained from running
WOCON on four allocations of BG/P, ranging in size from 128
to 1024 nodes (torus sizes 8 × 4 × 4 to 8 × 8 × 16.) There
are two patterns on the plot: 1. For each message size on the
x-axis, the circles represent the time for a message send from
the master rank to different nodes on the allocated partition.
Note that the vertical bars are actually a cluster of circles, one
each for a message send to a different node; 2. Each point
on the line represents the percentage difference between the

minimum and maximum time for message send for a particular
message size.

Message latencies should vary depending on the distance of
the target rank from the master rank for very short messages.
As expected, we see a regular pattern for the distribution of
circles for a particular message size in the four plots (Figure 2).
For small and medium-sized messages, message latencies are
spread over a range, the range decreasing with increasing mes-
sage sizes. This is what one would expect from the wormhole
routing model. To have a clearer perception of the range in
which message latencies lie, the percentage difference between
the minimum and maximum latencies was calculated with
respect to the minimum latency for each message size. These
values have been plotted as a function of the message size. The
difference between the maximum and minimum values (shown
by the line) decreases with increasing message size for all the
plots. We see a kink in the lines and a corresponding jump
in the message latencies at the 2 KB message size. This can
be explained by the use of different routing protocols on Blue
Gene/P for different message sizes [10]. For message sizes
greater than 1200 bytes, the MPI rendezvous protocol is used
where an initial handshake is done before the actual message
is sent.



 4

 8

 16

 32

 64

 128

 256

 512

 1024

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

La
te

nc
y 

(u
s)

%
 D

iff
er

en
ce

Message Size (Bytes)

Latency vs. Message Size: Without Contention (256 nodes)

Message Latency
% difference

 4

 8

 16

 32

 64

 128

 256

 512

 1024

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

La
te

nc
y 

(u
s)

%
 D

iff
er

en
ce

Message Size (Bytes)

Latency vs. Message Size: Without Contention (512 nodes)

Message Latency
% difference

 4

 8

 16

 32

 64

 128

 256

 512

 1024

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

La
te

nc
y 

(u
s)

%
 D

iff
er

en
ce

Message Size (Bytes)

Latency vs. Message Size: Without Contention (1024 nodes)

Message Latency
% difference

 4

 8

 16

 32

 64

 128

 256

 512

 1024

4 16 64 256 1K 4K 16K 64K 256K 1M
0

5

10

15

20

25

La
te

nc
y 

(u
s)

%
 D

iff
er

en
ce

Message Size (Bytes)

Latency vs. Message Size: Without Contention (2048 nodes)

Message Latency
% difference

Fig. 4. Plots showing the effect of number of hops on message latencies in absence of contention (for 256 to 2048 nodes of XT3, Benchmark: WOCON)

if(myrank == MASTER_RANK) {
for(i=0; i<numprocs; i++) {
if(i != MASTER_RANK) {

// warm up

sendTime = MPI_Wtime();
for(j=0; j<num_msgs; j++) {
MPI_Send(send_buf, msg_size, MPI_CHAR, i,

1, MPI_COMM_WORLD);
MPI_Recv(recv_buf, msg_size, MPI_CHAR, i,

1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
}
recvTime = MPI_Wtime();
time[i] = (recvTime-sendTime)/(num_msgs*2);

}
}

} else {
// warm up

for(i=0; i<num_msgs; i++) {
MPI_Recv(recv_buf, msg_size, MPI_CHAR, MASTER_RANK,

1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Send(send_buf, msg_size, MPI_CHAR, MASTER_RANK,

1, MPI_COMM_WORLD);
}

}

Fig. 3. Code fragments showing the core of WOCON Benchmark

The important observation is that the difference is in the
range of 10 to 30% for message sizes up to 8 KB (in the

1024 nodes plot, Figure 1). Most fine-grained applications use
messages which fall in this range and hence it is not wise to
blindly assume that message latencies do not depend on hops
for most practical message sizes. Strong scaling of problems to
very large number of processors also brings us in this range
of message sizes. Another observation is that the difference
increases for a particular message size with the increase in
diameter of the partition. 128 and 256 node partitions are not
complete tori in all dimensions and hence their diameter is the
same as that of the 512 node partition – 12. The diameter of
the 1024 node partition is 16 and hence a steep increase in the
percentage difference for the small and medium messages (as
an example the % difference for a 64 byte message increases
from 19 to 27 as we go from the third plot to fourth). As we
increase the size of the partition from 1K to 64K nodes, the
diameter would increase from 16 to 64 and we can imagine
the impact that will have on message latencies.

Figure 4 shows similar plots for Bigben, the Cray XT3 ma-
chine. The XT3 plots were obtained from runs on contiguous
allocations of 256 to 2048 nodes of Bigben. Since runs were
performed under similar conditions on XT3 as on‘ BG/P, we
would expect similar results. As expected, dependence on hops
is significant for message sizes up to 8 KB as seen by the lines
on the plots. The only difference from the BG/P numbers is



 4

 16

 64

 256

 1024

 4096

 16384

 65536

4K 16K 64K 256K 1M

La
te

nc
y 

(u
s)

Message Size (Bytes)

Latency vs. Message Size: With Contention (BG/P)

4096 RND: Avg
RND Error Bars

4096 NN: Avg
NN Error Bars

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

4K 16K 64K 256K 1M

La
te

nc
y 

(u
s)

Message Size (Bytes)

Latency vs. Message Size: With Contention (XT3)

2048 RND: Avg
RND Error Bars

2048 NN: Avg
NN Error Bars

Fig. 5. Plots showing the results of WICON on Blue Gene/P and XT3

Fig. 6. Communication Patterns in the WICON Benchmark

that message latencies on XT3 are significantly greater than
the observed latencies on BG/P for very small messages. This
will be discussed in detail in Section VI.

IV. WICON: RANDOM CONTENTION BENCHMARK

The second benchmark is used to quantify message latencies
in presence of contention which is a regime not handled by
the basic model of wormhole routing discussed earlier. It
should be noted that unlike WOCON, this benchmark places
one MPI task on each core to create as much contention
as possible. All MPI tasks are grouped into pairs and the
smaller rank in the pair sends messages of size B bytes to its
partner and awaits a reply. All pairs do this communication
simultaneously (Figure 6). The average time for the message
sends is recorded for different message sizes (pseudo-code in
Figure 7). To quantify the effect of hops on message latencies
this benchmark is run in two modes:

• Near Neighbor Mode (NN): The ranks which form a pair
only differ by one. This ensures that everyone is sending
messages only 1 hop away (in a torus).

• Random Processor Mode (RND): The pairs are chosen
randomly and thus they are separated by a random
number of links.

Figure 5 shows the results of running WICON in the NN
and RND modes on Blue Gene/P and XT3. The first plot
shows the results of WICON on 4, 096 cores of BG/P. It
is clear that the random-processor (RND) latencies are more
than the near-neighbor (NN) latencies (by a factor of 1.75
for large messages.) This is expected based on the assertion
that hops have a significant impact on the message latencies

pe = partner[myrank];
if(myrank < pe) {

// warmup

sendTime = MPI_Wtime();
for(i=0; i<NUM_MSGS; i++)
MPI_Send(send_buf, msg_size, MPI_CHAR, pe,

1, MPI_COMM_WORLD);
for(i=0; i<NUM_MSGS; i++)
MPI_Recv(recv_buf, msg_size, MPI_CHAR, pe,

1, MPI_COMM_WORLD, &mstat);
recvTime = (MPI_Wtime() - sendTime) / NUM_MSGS;
// cooldown

} else {
// warmup

sendTime = MPI_Wtime();
for(i=0; i<NUM_MSGS; i++)
MPI_Recv(recv_buf, msg_size, MPI_CHAR, pe,

1, MPI_COMM_WORLD, &mstat);
for(i=0; i<NUM_MSGS; i++)
MPI_Send(send_buf, msg_size, MPI_CHAR, pe,

1, MPI_COMM_WORLD);
recvTime = (MPI_Wtime() - sendTime) / NUM_MSGS;
// cooldown

}

Fig. 7. Code fragments showing the core of WICON Benchmark

in the presence of contention, which increases with larger
messages because of a proportional increase in packets on
the network. Error bars show the minimum and maximum
values for message latencies for the two cases for the different
processor pairs. The error bars for the RND case go even
below the NN latencies because unlike the NN case, we can
have a pair on the same node. This data might be useful for
applications where the slowest process determines the overall
runtime.

Similar experiments were repeated on XT3 to understand
the effects of contention on Cray XT machines. The second
plot in Figure 5 presents the results for WICON benchmark on
2, 048 cores of XT3. We see a significant difference between
the NN and RND lines (a factor of 2.25 at 1 MB messages
which is greater than that on BG/P.) This is not unexpected
and a quantum chemistry code has shown huge benefits (up
to 40%) from topology-aware mapping on XT3 [12].



 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y 

(u
s)

Message Size (Bytes)

Latency vs. Message Size: With varying hops (8 x 8 x 16)

8 hops
7 hops
6 hops
5 hops
4 hops
3 hops
2 hops
1 hops

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y 

(u
s)

Message Size (Bytes)

Latency vs. Message Size: With varying hops (8 x 8 x 16)

8 hops
7 hops
6 hops
5 hops
4 hops
3 hops
2 hops
1 hops

Fig. 8. Plots showing the results of WICON2 on Blue Gene/P and XT3

Fig. 9. Communication Patterns in the WICON2 Benchmark

V. WICON2: CONTROLLED EXPERIMENT

The benchmark in the previous section injects random con-
tention on the network. To quantify the effects of contention
under controlled conditions, WICON was modified to conduct
a controlled experiment. Again, all ranks are divided into pairs
but now the pairs are chosen such that they are a fixed number
of hops, say n, away from each other. Again, all pairs send
messages simultaneously and the average time for message
sends of different sizes for varying hops is recorded. Pairs are
chosen only along one dimension of the torus, in this case,
the Z dimension (Figure 9).

Figure 8 shows the results of running the WICON2 bench-
mark on BG/P and XT3. On each plot there are several lines,
one each for a specific pairing which is n hops away. The tests
were done on a torus of dimensions 8×8×16. Since messages
are sent along Z, maximum number of hops possible is 8 and
hence there are 8 lines on the plot. The Blue Gene/P plot on
the left shows that the message latencies for large messages
for the 1 hop and 8 hops case can differ by a factor of 8!
As all messages travel more hops, links are shared by more
and more messages increasing the contention on the network
and decreasing the available effective bandwidth. This is what
applications have to deal with during communication. This
huge difference between message latencies indicates that it
is very important to keep communicating tasks close by and
minimize contention on the network. This is especially true

TABLE I
COMPARISON OF MESSAGE LATENCIES (IN MICROSECONDS) ON BLUE

GENE/P AND XT3

Msg Size (bytes) 32 1024 16384
NN RND NN RND NN RND

WOCON BG/P 3.253 3.732 6.947 7.415 49.38 50.82
WOCON XT3 8.116 8.606 8.785 9.348 19.52 20.03
WICON BG/P 5.238 5.823 24.67 37.56 337.1 487.4
WICON XT3 11.48 12.98 13.05 13.99 56.94 127.5

for communication bound applications.
The second plot shows the results from the same benchmark

on XT3. In this case, the difference between latencies for
large messages is around 2 times. This deviation from the
results on BG/P needs further analysis. One possible reason
for this might contention for the Hyper Transport (HT) link
which connects the nodes to the SeaStar router instead of the
network links. Section 3.5 in [15] uses a similar benchmark
and demonstrates results similar to ours.

VI. COMPARISON ACROSS MACHINES

It is interesting how the two machines compare against each
other in terms of message latencies in absence and presence of
contention. Let us keep in mind that XT3 cores are much faster
than BG/P cores (2.6 GHz versus 850 MHz) and the network
bandwidth on XT3 is much higher than on BG/P (3.8 GB/s
versus 450 MB/s) and hence we would expect XT3’s network
to perform better than BG/P. Table I presents data from the first
two benchmarks on these machines for three different message
sizes, 32 bytes, 1 KB and 16 KB. All runs were done on 1.024
nodes. These message sizes fall in different regimes where the
MPI short, eager and rendezvous routing protocols are used
respectively on BG/P.

In the absence of contention, both NN and RND messaging
on BG/P is two times as fast as on XT3 for 32 byte messages.
They are still faster on BG/P up to 1 KB messages. For the
larger 16 KB messages, XT3 becomes 2.5 times faster than
BG/P. In presence of contention, for 32 bytes messages, BG/P
is still faster than XT3. But this time, XT3 is faster than BG/P



for a 1 KB message. Further, the difference is significant: XT3
is twice as fast for NN and thrice as fast for RND messages.
As we go to 16 KB messages, the NN message latency on
XT3 is six times better than on BG/P. This happens because
the NN message latencies rise steeply (up to seven times) in
presence of contention for BG/P but not for XT3. The RND
latencies for XT3 also four times better than on BG/P.

The case of random-processor (RND) messages in presence
of contention is interesting. BG/P shows an expected rise in
the message latencies from the no-contention case. But in
case of XT3 for 16 KB messages, the rise in RND message
latencies is more than the rise in NN message latencies. This
leads to a difference of 120% between the NN and RND
message latencies on XT3 compared to the 45% difference
on BG/P. These results suggest that both Blue Gene/P and
XT3 suffer losses with contention due to random neighbors but
XT3 behaves relatively better in presence of contention due to
multiple cores on neigboring nodes. This might provide some
insight into the results of the WICON2 benchmark on XT3.

VII. CONCLUSION AND FUTURE WORK

This paper analyzes the dependence of message latencies
on hops in absence and presence of contention. This study
is essential to determine if performance improvements can be
derived from topology-aware mapping of applications on a
machine. If topology-aware mapping is important, one would
like to identify the resource for which contention occurs and
the methods to avoid such contention in parallel algorithms.

We conclude that in presence of contention, message la-
tencies increase significantly with increasing number of hops
messages travel, due to increased contention. The difference
between the near-neighbor and farthest node latencies can be
as high as 800% sometimes. The results also suggest that
topology-aware codes might see more performance improve-
ment on the XT machines than BG/P (for certain message
sizes) although the absolute message latencies on those ma-
chines are small compared to BG/P. To summarize, both in
the absence and presence of contention, hops affect messages
latencies to different extents. This fact should not be neglected
by assuming that wormhole routing and high bandwidths
on the current machines make message latencies small and
independent of distance in all practical scenarios.

We wish to extend this work by evaluating other topologies
like fat-tree (NCSA’s Abe and TACC’s Ranger) and the Kautz
Graph (SiCortex machines.) Topology might not have such an
impact on performance in dynamically routed fat-tree networks
and this paper suggests that this needs a further empirical
study. We would also like to compare link contention with
other factors on the Cray XT machines, such as contention
for the HyperTransport link shared between different cores.
These issues need further analysis and will lead to a enhanced
understanding of interconnect topologies. Such information
will be beneficial to application developers writing topology-
aware algorithms.

ACKNOWLEDGMENTS

This work was supported in part by a DOE Grant B341494
funded by CSAR, DOE grant DE-FG05-08OR23332 through
ORNL LCF, and a NIH Grant PHS 5 P41 RR05969-04 for
Molecular Dynamics. The authors would like to thank Chad
Vizino from the Pittsburgh Supercomputing Center for setting
up a reservation on Bigben (under TeraGrid [19] allocation
grant ASC050040N supported by NSF) and allocating con-
tiguous partitions for the runs, which is not possible using the
default job scheduler. We also used running time on the Blue
Gene/P at Argonne National Laboratory, which is supported
by DOE under contract DE-AC02-06CH11357. We would also
like to thank Matt Reilly from SiCortex Inc., Sameer Kumar
from IBM Research, Larry Kaplan from Cray Inc. and Eric
Bohm from Parallel Programming Laboratory (UIUC) for the
numerous e-mail exchanges/discussions which enhanced our
understanding of the subject.

REFERENCES

[1] Shahid H. Bokhari. On the mapping problem. IEEE Trans. Computers,
30(3):207–214, 1981.

[2] S. Wayne Bollinger and Scott F. Midkiff. Processor and link assignment
in multicomputers using simulated annealing. In ICPP (1), pages 1–7,
1988.

[3] P. Sadayappan and F. Ercal. Nearest-neighbor mapping of finite element
graphs onto processor meshes. IEEE Trans. Computers, 36(12):1408–
1424, 1987.

[4] James W. Dolter, P. Ramanathan, and Kang G. Shin. Performance
analysis of virtual cut-through switching in harts: A hexagonal mesh
multicomputer. IEEE Trans. Comput., 40(6):669–680, 1991.

[5] Lionel M. Ni and Philip K. McKinley. A survey of wormhole routing
techniques in direct networks. Computer, 26(2):62–76, 1993.

[6] Thierry Cornu and Michel Pahud. Contention in the Cray T3D
Communication Network. In Euro-Par ’96: Proceedings of the Second
International Euro-Par Conference on Parallel Processing-Volume II,
pages 689–696, London, UK, 1996. Springer-Verlag.

[7] M. Muller and Michael Resch. PE mapping and the congestion problem
in the T3E. In Proceedings of the Fourth European Cray-SGI MPP
Workshop, Garching, Germany, 1998.

[8] Eduardo Huedo, Manuel Prieto, Ignacio Martı́n Llorente, and Francisco
Tirado. Impact of PE Mapping on Cray T3E Message-Passing Perfor-
mance. In Euro-Par ’00: Proceedings from the 6th International Euro-
Par Conference on Parallel Processing, pages 199–207, London, UK,
2000. Springer-Verlag.

[9] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Gi-
ampapa, P. Heidelberger, S. Singh, B. D. Steinmacher-Burow, T. Takken,
M. Tsao, and P. Vranas. Blue Gene/L torus interconnection network.
IBM Journal of Research and Development, 49(2/3), 2005.

[10] IBM System Blue Gene Solution. Blue
Gene/P Application Development Redbook, 2008.
http://www.redbooks.ibm.com/abstracts/sg247287.html.

[11] Francois Gygi, Erik W. Draeger, Martin Schulz, Bronis R. De Supinski,
John A. Gunnels, Vernon Austel, James C. Sexton, Franz Franchetti,
Stefan Kral, Christoph Ueberhuber, and Juergen Lorenz. Large-Scale
Electronic Structure Calculations of High-Z Metals on the Blue Gene/L
Platform. In Proceedings of the International Conference in Supercom-
puting. ACM Press, 2006.

[12] Eric Bohm, Glenn J. Martyna, Abhinav Bhatele, Sameer Kumar,
Laxmikant V. Kale, John A. Gunnels, and Mark E. Tuckerman. Fine
Grained Parallelization of the Car-Parrinello ab initio MD Method on
Blue Gene/L. IBM Journal of Research and Development: Applications
of Massively Parallel Systems, 52(1/2):159–174, 2008.

[13] Abhinav Bhatele, Sameer Kumar, Chao Mei, James C. Phillips, Gengbin
Zheng, and Laxmikant V. Kale. Overcoming Scaling Challenges in
Biomolecular Simulations across Multiple Platforms. In Proceedings
of IEEE International Parallel and Distributed Processing Symposium
2008, 2008.



[14] Abhinav Bhatelé and Laxmikant V. Kalé. Benefits of Topology Aware
Mapping for Mesh Interconnects. Parallel Processing Letters (Special
issue on Large-Scale Parallel Processing), 18(4):549–566, 2008.

[15] Adolfy Hoisie, Greg Johnson, Darren J. Kerbyson, Michael Lang, and
Scott Pakin. A performance comparison through benchmarking and
modeling of three leading supercomputers: Blue gene/l, red storm, and
purple. In SC ’06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, page 74, New York, NY, USA, 2006. ACM.

[16] IBM Blue Gene Team. Overview of the IBM Blue Gene/P project. IBM
Journal of Research and Development, 52(1/2), 2008.

[17] Cray Inc. Scalable Computing at Work: Cray XT4 Datasheet, 2006.
www.cray.com/downloads/Cray XT4 Datasheet.pdf.

[18] Jack Dongarra and P Luszczek. Introduction to the HPC Challenge
Benchmark Suite. Technical Report UT-CS-05-544, University of
Tennessee, Dept. of Computer Science, 2005.

[19] C. Catlett and et. al. TeraGrid: Analysis of Organization, System
Architecture, and Middleware Enabling New Types of Applications. In
Lucio Grandinetti, editor, HPC and Grids in Action, Amsterdam, 2007.
IOS Press.


