
A Case Study in Tightly Coupled
Multiparadigm Parallel Programming

Sayantan Chakravorty
Aaron Becker (abecker3@uiuc.edu)
Terry Wilmarth
Laxmikant V. Kalé

Parallel Programming Lab (charm.cs.uiuc.edu)
University of Illinois, Urbana-Champaign

LCPC ‘08

mailto:abecker3@uiuc.edu
mailto:abecker3@uiuc.edu

MPI

OpenMP

Global Arrays

Unified Parallel C

Charm++
STAPL

BSP

High Performance Fortran

Chapel

There is no shortage of parallel programing models

Parallel Matlab

X10

NESL

HTA

DPJ

2

StreaMIT

3

Why so many?

• Each is good at something different

• Some aim for maximum performance,

others emphasize productivity and effective abstractions

• Some models are especially well-suited for particular problem domains

• Cilk: state-space search

• Co-Array Fortran: linear algebra

• MapReduce: data mining

• Many models, coexisting happily
• Easy interoperation and reuse (especially with MPI)
• Choose right level of abstraction, based on
performance requirements
• Shared resource management

4

5

Related Work

• Symponents

• MPI+OpenMP, Extended OpenMP

• TPVM

• Fortran M

• Lots of serial multi-language systems, e.g. .NET

ParFUM: a Multiparadigm Library

ParFUM

7

• Parallel Framework for Unstructured Meshing

• Goal: simplify common tasks for parallel unstructured meshing apps

• partitioning

• data distribution

• ghost generation and communication

• adaptivity

• collision detection

• etc.

• Implemented in Charm++ (message driven), AMPI (message passing), and
MSA (shared memory)

ParFUM Architecture

Converse Messaging Interface

Ethernet Infiniband Blue Gene etc.

Charm++ Runtime

MSA AMPI

PartitioningAdaptivity Ghosts

8

{Models

{ParFUM
Modules

{Substrate

M

AMPI

VP
MSA

Element
Charm++

Chare

Message
Queue

Scheduler

Charm RTS

• On each processor, there is a collection of parallel objects, each associated
with a lightweight thread

• Incoming messages are placed in a queue

• A scheduler looks at the queue and chooses which object will run next

9

Charm RTS

• Virtualization: overdecomposition (many objects per processor)

• overlap of communication and computation

• control over working set size by varying level of decomposition

• Common resource management and instrumentation

• Load balancing based on object migration

10

M

AMPI

VP
MSA

Element
Charm++

Chare

Message
Queue

Scheduler

Example Application:
Spacetime Discontinuous Galerkin Mesh

Typical 1D Finite Element Code

12

Space

T
im
e

!t

Spacetime Discontinuous Galerkin Code

13

Space

T
im
e

CPSD

1 2

3 4

14

15

SDG Code Structure

16

Partition and Distribute Mesh

Combine Results

...

V
irtu

a
l P

ro
c
e
s
s
o
rs

Local
Adaptivity

Pitch Local
Vertex

Local
Adaptivity

Pitch Local
Vertex

Local
Adaptivity

Pitch Local
Vertex

Incremental Adaptivity

17

Example: edge bisection
on a processor boundary

Incremental Adaptivity

18

Goal State

Incremental Adaptivity

19

Lock local neighbors, request
bisect from neighbor

Incremental Adaptivity

20

Receive request, lock local
elements

Incremental Adaptivity

21

Example: edge bisection
on a processor boundary

Performance

Benchmarking

• Unfortunately, existing benchmark suites do not lend themselves well to testing
multiparadigm systems

• too simple

• often designed with one particular paradigm in mind

• What are good examples of very small, realistic benchmarks for which a
multiparadigm approach makes sense?

• Since I don’t have benchmarks, I will present some results from the SDG
application

23

1 2 3 4 5 6 7 8

Processors

50

100

150

200

250

P
it
c
h
e

s
/s

Virtualized, Non-adaptive

Virtualized, Adaptive

Non-virtualized, Non-adaptive

Non-virtualized, Adaptive

Perfect Scaling, Non-adaptive

Perfect Scaling, Adaptive

SDG Workstation Performance

24

10 100

Processors

100

1000

P
it
c
h

e
s
/s

Non-adaptive, Weak scaling

Adaptive, Weak scaling

Perfect Scaling

SDG Cluster Performance

25

Summary

• Multiparadigm programs potentially offer advantages in terms of level of
abstraction, compatibility, and reuse

• Modules written using different parallel models can be effectively combined

• Application performance in ParFUM has been good, but still need better
multiparadigm benchmarking to identify and quantify overheads

• Number of models available when using Charm is still limited

26

A Case Study in Tightly Coupled
Multiparadigm Parallel Programming

Sayantan Chakravorty
Aaron Becker (abecker3@uiuc.edu)
Terry Wilmarth
Laxmikant V. Kalé

Parallel Programming Lab (charm.cs.uiuc.edu)
University of Illinois, Urbana-Champaign

LCPC ‘08

mailto:abecker3@uiuc.edu
mailto:abecker3@uiuc.edu

Virtualization and Cache Effects

10 100 1000

Virtual Processors(Partitions)

0

5x108

1x109

1.5x109

2x109

2.5x109

3x109
L

2
 C

a
c
h

e
 M

is
s
e

s

0

10

20

30

40

E
x
e

c
u

tio
n

 T
im

e

Runtime For 50 Iterations

L2 Total Number of Cache Misses

32 Processors, 1.2M Elements
28

A data distribution problem

After initial partitioning, we
need to determine which
boundary elements must be
exchanged.

29

A data distribution problem

After initial partitioning, we
need to determine which
boundary elements must be
exchanged.

What we would like:
an easily accessible
global table to look
up shared edges

30

What is MSA?

Idea: shared arrays, where only one type of access
 is allowed at a time

Access type is controlled by the array’s phase

Phases include:
read-only
write-by-one
accumulate

31

32

Read-only
mode

Write-by-one
mode

one thread could
write to many
elements

note:

33

Accumulate
mode

accumulation
operator must be
associative and
commutative

note:

34

Distributed MSA
Hash Table

Partitioned Mesh

35

Each shared
edge is hashed

36

Entries are added to the
table in accumulate mode

37

Now elements which
collide in the table
probably share an edge

38

