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Abstract

In this paper, we present a novel parallel implementation of ex-
trinsic initially rigid cohesive elements in an explicit finite element
solver designed for the simulation of dynamic fracture events. The
implementation is based on activating instead of inserting the co-
hesive elements and uses ParFUM, a parallel framework specifically
developed for simulations involving unstructured meshes. Aspects of
the parallel implementation are described, along with an analysis of
its performance on 1 to 512 processors. Important cache effects and
communication costs are included in this analysis. The implemen-
tation is validated by simulating the trapping of a crack along an
inclined material interface. Keywords: Cohesive Finite Elements,
Parallel Programming, Dynamic Fracture

1 Introduction

Due to its flexibility in capturing complex geometries, loading conditions,
and material models, the cohesive finite element (CFE) scheme has been
the method of choice for simulating a wide range of dynamic fracture events
over the last decade [CO97, Nee97, GB98, PSV03]. In this finite element
formulation, conventional (volumetric) elements are used to capture the
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bulk mechanical response of the material while interfacial (cohesive) ele-
ments are used to model the progressive failure of the material and the
associated propagation of cracks in the discretized domain. Cohesive ele-
ments basically act as distributed non-linear springs, resisting the separa-
tion of volumetric elements, i.e., the introduction of displacement jumps
in the domain, according to a prescribed traction-separation cohesive law.
In two-dimensional (2D) problems, triangular volumetric elements are usu-
ally adopted to maximize the number of potential crack paths, while the
cohesive elements are collapsed quadrilateral elements introduced at the
interface between two adjacent volumetric elements, as shown in Figure
1(a). In that schematic, ∆ denotes the displacement jump across the cohe-
sive element and ∆n and ∆t are the corresponding normal and tangential
components.

Two types of cohesive constitutive laws have been used in the cohe-
sive finite element modeling of dynamic fracture events. The first cohe-
sive model, usually referred to as intrinsic, relates the cohesive traction to
the displacement jump through a phenomenological relation that typically
starts from the origin, reaches a maximum (corresponding to the failure
strength) and then decays back to zero, at which point the failure process
is completed (Figure 1(b)). The second model, referred to as extrinsic, typ-
ically assumes that the cohesive response is initially rigid and therefore only
models the failure process through a monotonically decreasing relation be-
tween the failure strength and the displacement jump (Figure 1(c)). These
two approaches thus differ in the way they capture the initial response of
the cohesive element. In the intrinsic scheme, the cohesive elements are
present in the finite element mesh from the start and, due to their finite
initial stiffness, contribute to the deformation of the medium even in the
absence of damage. In the extrinsic scheme, the cohesive elements are ini-
tially rigid and are only introduced in the finite element mesh based on an
external traction-based criterion.

The key characteristics of the failure process are, however, identical
for both models: in both cases, the failure process is captured with the
aid of a phenomenological traction-separation law defined primarily by the
failure strength (denoted by σmax for the tensile failure case depicted in
Figures 1(b) and (c)) and the critical value of the displacement jump (∆nc)
beyond which complete failure is assumed. The area under the cohesive
failure curve defines the fracture toughness (usually denoted by GIc in the
tensile (mode I) case). Although various cohesive laws have been used
in the past (linear, bilinear, exponential, polynomial, trapezoidal, etc.),
the actual shape of the cohesive failure curve is considered to play only a
secondary role on the failure process in many situations, especially in brittle
materials for which the cohesive failure zone is very small. A discussion of
the similarities and differences between the two cohesive failure models can
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Figure 1: (a) Cohesive finite element concept, showing two 3-node trian-
gular volumetric elements tied by a 3-node cohesive element shown in its
deformed configuration. In its initial form, the cohesive element has no
area and the adjacent nodes are superposed. (b) Schematic of an intrinsic
cohesive failure law for the tensile failure case, for which the tangential
displacement jump ∆t is zero. (c) Generic extrinsic cohesive law.
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be found in [KG03].
Due to its relative simplicity of implementation, the intrinsic cohesive

finite element scheme has been more widely adopted than its extrinsic coun-
terpart. However, as shown in [PSV03, FNR01], intrinsic elements suffer
from convergence issues associated with the impact of the initial cohesive
stiffness on the computed strain and stress fields, and thereby, on the frac-
ture process. To achieve convergence, intrinsic cohesive elements should be
used only to simulate dynamic fracture problems for which the crack path
is prescribed (such as in interfacial fracture events). In the case of arbitrary
crack motion and branching, a finite distance should be introduced between
cohesive failure surfaces. The issues of spatial and temporal convergence for
intrinsic and extrinsic cohesive elements are discussed in [PSV03, BRN06].

Dynamic fracture simulations need a very fine mesh near the failure
zone to accurately capture the stress concentrations and the failure process,
especially for brittle systems. Also, there is often a need for a large domain
to capture the loading accurately. A large domain combined with fine mesh
requirements make the problem computationally very challenging. Parallel
simulations, where the problem domain can be partitioned into smaller
domains and solved for on different processors, provide a powerful tool to
solve these problems. Parallel computing can be used in conjunction with
adaptive mesh refinement and coarsening [MWC+07].

The objective of this paper is to develop and implement a parallel CFE
scheme based on activated extrinsic cohesive elements. As mentioned ear-
lier, extrinsic cohesive elements are chosen over intrinsic elements to pre-
vent the effects of artificial compliance due to the initially elastic part of
intrinsic cohesive elements. The parallel implementation of this scheme
poses a set of challenges pertaining to the partitioning of the finite element
mesh and to inter-processor communication due to the presence of cohesive
elements at the interfaces. The complexities of communication are further
increased with extrinsic cohesive elements because there are multiple types
of elements in the discretization, each containing different fields.

To implement the CFE code in parallel, we use the Parallel Frame-
work for Unstructured Meshing (ParFUM) [LCW+06], a portable library
for building parallel applications involving unstructured finite difference,
finite element, or finite volume discretizations. The parallel framework is
used in this work to partition the unstructured mesh, to distribute the
partitions to processors and to setup the inter-processor communication
lists. ParFUM is built on the Charm++/AMPI Adaptive Runtime System
and thereby provides additional features such as dynamic load balancing
between processors and adaptive overlapping of communication and com-
putation [KK96].

This paper describes the use of ParFUM to implement the CFE scheme.
Only a small number of libraries for handling parallel unstructured meshes
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exist. There are other large parallel mesh frameworks, but these are not
options for various reasons. Unfortunately, some of the most fully fea-
tured production level frameworks are not currently available to the public
and thus would not be suitable candidates for our application. Sandia
National Laboratories’ SIERRA [SE04] and the University of Heidelberg’s
UG [BBJ+97] are two such publicly unavailable frameworks. Both SIERRA
and UG support fully unstructured meshes on distributed memory super-
computers with a variety of compatible solvers. deal.ii is a common finite
element framework, which unfortunately works in parallel only on shared
memory machines. Although deal.ii cannot utilize a distributed memory
computer system, it does interface with solver libraries such as PETSc
which are parallelized for clusters [BGMS97]. Some frameworks do not
support fortran codes. AOMD [RKFS01] and libMesh do not support for-
tran. The extrinsic scheme proposed in this paper requires just support
for partitioning, distributing, ghost layer creation, and accessing an un-
structured mesh on a distributed memory computer cluster. A framework
supporting fortran was desired because the authors had an existing serial
fortran CFE code. Another desired feature for the mesh framework is the
ability for the existing fortran code to maintain control over its own existing
data arrays. Some mesh frameworks unfortunately maintain all mesh data
internally, and only expose it through a specified API. ParFUM supplies
all these required and desired features.

The emphasis of this work is on the inter-process communication in
parallel simulations performed with the extrinsic CFE scheme. Though
mesh adaptivity would further improve the efficiency of the proposed par-
allel implementation, only the parallel implementation of extrinsic cohesive
elements is discussed here. This paper provides in Section 2 the extrinsic
constitutive law and the associated CFE formulations along with the sta-
bility conditions. Section 3 describes our parallel methodology and imple-
mentation for the extrinsic cohesive elements that overcomes various issues
of partitioning and inter-processor communications. Section 4 presents a
series of test simulations to validate the developed parallel extrinsic CFE
scheme. The validation study involves the numerical simulation of dynamic
fracture experiments performed on brittle specimens bonded along an in-
clined interface [XR03]. Finally, in Section 5, we present scaling results for
the interface problems using the current parallel implementation.

2 Cohesive constitutive law and cohesive fi-
nite element formulations

The cohesive failure law adopted in this work is the linear extrinsic rela-
tion used by [RPO01], in which the cohesive traction T during the failure
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process is described by

T =
T

∆
(β2∆t + ∆nn), (1)

where T denotes the effective cohesive traction defined by

T =
√

β−2|Tt|2 + T 2
n (2)

and Tn and Tt are the normal and tangential tractions, respectively. In
(1), ∆, ∆n and ∆t are defined by

∆ =
√

β2∆2
n + ∆2

t ∆n = ∆ · n∆t = |∆t| = |∆ − ∆nn| (3)

where n is the normal vector defining the undeformed orientation of the
cohesive element. The parameter β in (1)-(3) assigns different weights to
the sliding and normal opening displacements.

The traction vector T before the activation of a cohesive element is
computed from the stress fields of the neighboring volumetric elements as

T = σavern, (4)

where σaver is the average stress tensor of the two adajacent volumetric
elements.

The failure process is initiated when either the normal traction Tn across
the cohesive interface reaches the critical tensile failure strength σmax or
the tangential component Tt, while Tn > 0 (i.e, failure is initiated only
for tensile loading), reaches the corresponding shear failure strength τmax.
A cohesive element completely fails when either of the displacement jump
components ∆n or ∆t reaches the corresponding critical opening displace-
ments ∆nc or ∆tc. The critical energy release rate of failure in mode I
(GIc) and mode II (GIIc) are related to the corresponding components of
strength and critical displacement jump as follows:

GIc =
σmax∆nc

2
, GIIc =

τmax∆tc

2
. (5)

When a cohesive element is not active, each pair of nodes across its
width effectively represent a single regular finite element (FE) node thus
introducing a discontinuity in the mesh representation. As every internal
edge in the mesh is a cohesive element, inactive cohesive elements result
in a situation where a single node of a regular FE mesh has multiple node
copies in the CFE implementation as shown in Figure 2. To overcome this
problem, a random node is chosen amongst the multiple node copies as the
representative root node and it represents all nodes at the location for all
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Figure 2: One root is chosen as a representative for the multiple node
copies. When surrounding cohesive elements are inactive the node copies
have identical displacements and velocities as the root node.

computational purposes. The masses and internal forces of all the nodes
represented by this node are added together and the cumulative values are
assigned to this representative node. Thus continuity of the mesh across
inactive cohesive elements is ensured.

The basis of the finite element formulation is the following principle of
virtual work defined over the deformable solid Ω:∫

Ω

(S : δE − ρoü.δu) d Ω −
∫

Γex

Tex.δu d Γ −
∫

Γin

T.δ∆ d Γ = 0, (6)

where Tex denotes the external tractions on the external boundary Γex and
T corresponds to the cohesive tractions acting along the internal boundary
Γin across which the displacement jumps ∆ exist. In (6), ρo is the material
density, u is the displacement field, a superposed dot denotes differentia-
tion with time, S and E are the second Piola-Kirchoff stress tensor and
the Lagrangian strain tensor, respectively. The principle of virtual work
described by (6) is of standard form except for the presence of the last
term, which is the contribution from cohesive tractions. The semi-discrete
finite element formulation can be expressed in the following matrix form:

M a = Rin + Rex, (7)

7



where M is the lumped mass matrix, a is the nodal acceleration vector
and Rin, Rex respectively denote the internal and external force vectors
[GB98].

With the aid of the second-order central difference time stepping scheme
(see for instance [BCB76]), the nodal displacements, velocities and accel-
erations at every time step are computed as

dn+1 = dn + ∆tvn +
1
2
∆t2an, (8)

an+1 = M−1(Rin
n+1 + Rex

n+1), (9)

vn+1 = vn +
1
2
∆t(an + an+1), (10)

where a subscript n denotes a quantity computed at time t = n∆t. The
time step size ∆t is chosen such that it satisfies the CFL stability condition
(see for instance [CMP89])

∆t = χ
se

Cd
χ < 1, (11)

where se is the smallest edge in the mesh and χ is Courant number. Cd is
the dilatational wave speed, given in the plane strain isotropic case by

Cd =

√
E(1 − ν)

(1 + ν)(1 − 2ν)ρo
, (12)

where E is the stiffness of the material and ν is the Poisson’s ratio.
To reduce the numerical oscillations inherent in the explicit scheme,

artificial viscosity is also incorporated in the finite element formulation
[MWC+07].

3 Parallel implementation

The main goal for the parallel implementation of the CFE scheme is to
guarantee excellent parallel performance on hundreds of processors while
quickly parallelizing the initial serial Fortran code. The implementation
adopted in this work uses ParFUM, a flexible framework for building par-
allel unstructured mesh based Finite Difference, Finite Volume, or Finite
Element applications [LCW+06]. This section summarizes the steps used to
parallelize the extrinsic cohesive element scheme described in the previous
section, while section 5 describes the efficiency and scalability of the re-
sulting parallel implementation, which is portable across most major types
of high performance systems including clusters, shared memory machines,
and custom parallel machines.
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Figure 3: Task decomposition for a ParFUM application. init runs once,
and driver runs once for each partition of the mesh. Each driver is
associated with an MPI process, with potentially large and varying numbers
of driver routines on each physical processor.

To port the serial CFE application to the parallel ParFUM framework,
a key modification is to split the code into two parts as shown in Figure
3. The first part of the application is an init subroutine that loads an
unpartitioned mesh on a single processor. The second part is a driver
subroutine that performs the majority of the computation across multiple
processors. After init has finished, ParFUM partitions the mesh, creates
ghost layers, and builds communication lists. Then the user’s driver rou-
tine runs in parallel, with an instance associated with each partition of
the mesh. The driver routine creates some auxiliary data structures and
then performs the explicit integrations for the associated mesh partition
in a timestep loop. The driver routine also instructs ParFUM to syn-
chronize values along the partition boundaries during each timestep. This
synchronization is described later in more detail.

3.1 Parallelization issues

Parallelizing the serial CFE solver is complex because the scheme uses
an unstructured heterogeneous mesh containing both triangular volumet-
ric elements and quadrilateral cohesive elements. Furthermore, the mesh
is non-manifold because it contains topological holes. These holes are a
problem because a layer of ghost volumetric elements must be constructed
along each partition’s boundary. The ghost layer must be carefully con-
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structed so that the non-manifold topology of the mesh does not preclude
neighboring volumetric elements from being included in a ghost layer for a
partition. To create appropriate ghost layers, the implementation registers
only the homogeneous triangular mesh with ParFUM, while maintaining
its own auxiliary data structures and connectivity tables for the cohesive
elements. The ghost layers are then generated by ParFUM using this ho-
mogeneous manifold mesh.

In most parallel FE applications written for distributed memory ma-
chines, the mesh is partitioned and distributed across the nodes in the
machine with one or more partitions belonging to each processor. In addi-
tion to each partition, a set of ghost elements and nodes is required. These
ghost elements are essentially read-only copies of elements from a neigh-
boring partition. Values, such as displacements and forces, associated with
the elements in the ghost layer are updated from the original elements.
In ParFUM there are ghost elements and ghost nodes which are read-only
copies of elements and nodes from a neighboring partition. Collectively, the
set of ghost nodes and ghost elements comprise a partition’s ghost layer.

Different types of ghost layers need to be supported because FE ap-
plications have differing requirements depending upon the order of the
integration scheme. Common schemes require a ghost layer one or two
elements deep. ParFUM supports a generic specification for the ghost lay-
ers to generate when it partitions the initial mesh. In a triangular mesh,
two common types of ghost layers are used. Figure 4(a) displays the first
type which specifies that an element should be included in the ghost layer
if it has at least one node in common with a local element. Figure 4(b)
displays the second type of ghost layer which includes any element in the
ghost layer if it shares an edge with a local element.

The problem with the extrinsic CFE parallel implementation is that
after cohesive elements are added to the mesh, the heterogeneous mesh
contains topological holes at vertices of the original triangular mesh, as
illustrated in Figure 5. The presence of a hole causes problems when gen-
erating ghost layers. To solve this problem, only the manifold triangular
mesh is registered with ParFUM initialization routine. The ghost layers
are specified to be node-based as in Figure 4(a), so that any remote tri-
angular bulk element sharing a node with a local element is included in
the ghost layer. In the driver routine, auxiliary data structures are cre-
ated to represent the cohesive elements in the mesh. Thus the application
code maintains a heterogeneous mesh while the framework created ghost
elements for the simpler homogeneous triangular mesh. The creation of
the application’s cohesive element data structures in the driver routine is
identical to the initial mesh creation code used in the original serial version.

The nodal data associated with the ghost elements is synchronized at
each timestep. The application synchronizes only nodal data, such as forces
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Figure 4: Two types of ghost layers supported by ParFUM. a) Three el-
ements included in the ghost layer for Partition 1 because they share at
least one node with an element in Partition 1. b) Two elements included in
the ghost layer for Partition 1 because these two share edges with triangles
in Partition 1.
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Figure 5: A topological hole is present in the heterogeneous mesh wherever
a single node is present in the original triangular mesh.

and masses. The synchronization copies the data from the nodes where the
data is computed to any corresponding ghost copies on adjacent partitions.
Specifically this is done by treating the nodal data as element data because
of the non-manifold topology of the CFE mesh. There are multiple copies
of a node for each original node, but each with its own nodal data. Each of
these copies of a node is associated with one triangular element. The data
is copied to the elements prior to synchronization and then copied back
to the nodes after synchronization. This process is shown schematically in
Figure 6. Overall, only a small number of lines of code is required for the
whole ghost value synchronization process because the framework handles
the significant work of building all required send and receive lists as well
as the data packing and sending.

3.2 Load Balancing

Maintaining a uniform load balance across processors is critical to obtaining
good performance and scalability to large numbers of processors. ParFUM
uses METIS[KK98] to partition the mesh. The result of the partitioning
technique is that each partition contains approximately the same number
of elements, and the sum of the lengths of the partition boundaries is ap-
proximately minimized. Because the size of the partition boundaries is
approximately minimized, the associated communication volume occurring
across the partition boundaries is also approximately minimized. Because
each partition contains approximately the same number of elements, the
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Figure 6: Nodal data is copied to the elements and the elements synchronize
their tuples of nodal data to their ghost copies. The synchronized data is
propagated to nodes from the recipient ghost elements.
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per-timestep computational costs for each partition are almost identical.
The n partitions are distributed to the p processors after partitioning. The
resulting distribution of partitions places n/p partitions on each proces-
sor. Because all processors contain the same number of partitions, each
processor will have a similar computational load. As expected, no sig-
nificant load imbalance was detected for executions of the parallel CFE
implementation. The parallel efficiency of the implementation is 95% on
256 processors. This necessarily means that the load is balanced well across
the processors. Further discussion regarding the scalability is in section 5.

3.3 Floating-point accuracy and stability

Dynamic fracture problems are unstable physically. This inherent instabil-
ity translates into a numerical instability where tiny differences in computed
forces can cause inconsistent results between different implementations of
the method. The inconsistent results are divergences in the crack paths and
times during which cohesive elements are activated. Both the floating point
precision, and the ordering of nodal force vector summations can impact
the results. The implementers of any similar dynamic fracture method
in serial or parallel should carefully consider the ramifications and costs
associated with their numerical methods in the context of floating point
math.

Floating point addition is neither associative nor commutative, [RBSF93].
The classic solution to numerical problems that arise when summing val-
ues, such as force contributions, is to sort all the values then sum them
from smallest to largest. Sorting however is expensive and significantly
complicates an application’s source code. FE codes commonly iterate over
all elements adjacent to a given node, accumulating a sum of forces. In
a parallel implementation, the elements in the mesh are partitioned, and
their relative orderings around a node may differ between two partitions.
When the relative orderings are different, the sum of the forces could also
be different.

To address these problems with floating-point arithmetic, two versions
of the CFE method were created. The first version simply sums contri-
butions as it iterates over the elements. 64-bit double precision is used
for all values. This version does not achieve identical results when the
mesh is partitioned into different numbers of partitions. The second ver-
sion retrieves all force contributions, sorts these force contributions, then
sums them, while using 128-bit precision for some operations. The code for
this second version is more complex and the resulting compiled program
uses more memory while executing slower. However, this slower version
produces consistent results when the original serial mesh is partitioned dif-
ferently. The first version executes 4.3 times faster than the slower version
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Figure 7: Schematic of the inclined interface fracture problem (not to scale).
The initial crack length is a0 = 29.58mm and the inclined interface is
located 46.82mm ahead of the initial crack tip.

when both operate on a single partition of 1554 volumetric elements. The
changes required to produce the consistent but slower version include sort-
ing the cohesive element force contributions before summing to the nodes,
sorting the volumetric element force contributions before adding to nodes,
sorting the mass contributions before summing to the associated nodes,
and computing the stresses for the volumetric elements in 128-bit preci-
sion. Although the faster version may be less accurate, section 4 shows
that it produces physically meaningful results, and therefore this version is
used instead of the slower version.

4 Validation study

The inherent instability of dynamic fracture processes tend to cast some
doubts on the ability of the extrinsic CFE scheme to provide accurate pre-
dictions of actual fracture events in which the crack path is not prescribed
a priori.

To address this issue, we now turn our attention to a validation ex-
ercise in which we use the parallel extrinsic CFE code to solve the dy-
namic fracture problem depicted in Figure 7. This problem, which has
been investigated experimentally [XR03], consists of a pre-notched compact
tension specimen made of Homalite 100, with length L = 0.457m, width
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W = 0.254m, initial crack length a0 = 0.02958m. Dividing the domain
almost diagonally, an inclined bonded interface has been introduced in the
specimen at an angle θ = 60 degrees, creating a straight material interface
that interferes with the propagation of the rapidly propagating crack. The
bonded interface has failure properties that are different from those of the
bulk material. The bulk material properties of Homalite-100 are defined
by the Young’s modulus E = 3.45GPa, Poisson’s ratio ν = 0.35 and ma-
terial density ρ0 = 1230kg/m3 [XR03]. Two interface strengths have been
investigated: a strong interface obtained with a Weldon-10 adhesive, and
a weaker one for which Loctite-384 was used. The failure properties of
the various constituents (bulk material and interface) have been extracted
experimentally and are listed in Table 1.

Table 1: Failure properties of the bulk material and of the weak and strong
interfaces used in the dynamic failure study of the inclined interface.

Homalite-100 Locite-384 Weldon-10
(weak) (strong)

[KM78] [XR03] [XR03]
σmax (MPa) 11.0 6.75 7.74
τmax (MPa) 25.0 7.45 22.0
GIc (J/m2) 250.0 41.9 46.4
GIIc (J/m2) 568.0 199.7 568.0

To model the wedge-induced loading used in the experimental study,
we adopt in this work a time-dependent vertical velocity V ∗(t) applied
upward (downward) along the upper (lower) left edge of the domain, as
illustrated in Figure 7. As earlier, the applied velocity follows a linear
ramp from 0 at t = 0 to V0 = 0.8m/s at t = tramp = 0.0093L/Cd and
then remains constant. Due to the tensile nature of the applied load, the
crack propagates primarily in mode I, and hence travels along a straight
line before meeting the interface. Then, depending on the strength of the
interface, the crack either deflects into the interface and propagates under
mixed-mode condition, or penetrates through the interface. It should be
noted at this point that this problem constitutes an excellent testbed for
the extrinsic CFE scheme since all the quantities entering the description
of the geometry, loading and material properties have been determined
experimentally, leaving absolutely no fitting parameters.

Due the relatively large size of the fracture specimen (and in the ab-
sence of mesh refinement), the domain is discretized into 1, 200, 414 3-node
triangular constant strain elements with 1, 801, 909 interfacial 4-noded co-
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Figure 8: Details of the deformed mesh in the vicinity of the initial crack
tip and the inclined interface for the domain in Figure 7.

hesive elements. A detail of the mesh in the vicinity of the initial crack
tip is shown in Figure 8. The average number of elements in the cohesive
zone for this discretization are 6.5 for Homalite-100, 3 for Weldon-10 and
10.5 for Loctite-384. The simulations are performed on 16-processors with
about 75, 000 elements per processor. A Courant number χ = 0.05 is used.

Figure 9 presents snapshot of the S22 stress contours at time t =
1.857L/Cd for the weak and strong interface cases, clearly illustrating the
existence of a sharp stress concentration in the vicinity of the propagat-
ing crack tip. Figure 10 shows the close-up view of Figure 9 showing the
details of crack trajectory near the inclined interface. At that moment in
the simulation, the crack has completed its motion along the interface and
has resumed its propagation in the right half of the Homalite specimen.
The difference in the resulting crack path, already apparent in Figure 9 is
further visualized in Figure 11, which presents a direct comparison between
the two crack trajectories. As anticipated, the weaker interface traps the
crack for a much longer time than its stronger counterpart, as its lower
fracture toughness makes it energetically more favorable for the crack to
propagate under mixed-mode conditions. In both cases, the mode I crack
propagation eventually prevails and the crack kinks out of the interface.
This predicted behavior is in good qualitative and quantitative agreement
with the observations by [XR03], especially for the strong interface case
for which the predicted crack length along the interface (5.0mm) compares
very favorably with the observed value (4.3mm).

The interaction of the crack with the interface is further illustrated in
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Figure 9: σ22 stress contour plot at time t = 1.857L/Cd for (a) weak
interface strength, showing the trajectory of the crack trapped momentarily
along the inclined interface and (b) for the strong interface case.
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Figure 10: Close-up view of the two cases from Figure 9, showing details
of crack path near the vicinity of the inclined interface: (a) weak interface,
(b) strong interface.
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Figure 13: Evolution of crack tip velocity for the weak interface. The
dashed vertical line shows the instant the crack hits the interface.

Figure 12, which shows the evolution of the total crack length vs time
obtained for the strong and weak interfaces. As expected, the initial stage
of the crack motion is identical for the two cases. As the crack reaches the
interface, however, the curve corresponding to the weak interface shows a
marked change in its slope, indicating a sudden acceleration of the crack.
This transient crack motion is also illustrated in Figure 13, which shows the
evolution of the crack speed for the weak interface case. After an incubation
period associated with the creation of the transient stress concentration
in the vicinity of the initial crack tip, the initially mode I crack quickly
accelerates to reach the experimentally observed speed of about 400m/s.
As it reaches the interface (at the time indicated by the dashed line), the
crack accelerates rapidly before decelerating to the observed value of about
650 to 700m/s. After kinking out of the interface, the crack velocity drops
back to its initial value of about 400m/s. It should be noted, however,
that the peak in the crack tip speed obtained during the initial stages of
the interfacial failure (about 1200m/s) exceeds substantially that observed
by [XR03]. This might be due to the inaccuracy in the description of
the loading conditions, and, in particular, with the absence of compressive
(lateral) component of the applied velocity. This error in peak velocity
also explains the discrepency of the calculated crack length along the weak
interface from the experimental value.
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5 Analysis of parallel performance

The parallel implementation of the CFE scheme exhibits excellent scaling
to hundreds of processors. This section describes the measured perfor-
mance and its dependence upon an interesting parameter called virtualiza-
tion. First the performance evaluation methodology is described. Then the
performance results and their relationships to degree of virtualization are
characterized. Specifically, cache effects are discussed in relationship to the
degree of virtualization. Finally this section shows that the parallel imple-
mentation scales almost perfectly to 512 processors. The communication
costs that can limit scalability are quantified to explain the good scaling
results.

The parallel scaling runs described in this section were performed on the
Turing cluster at the University of Illinois. Each node in the cluster is an
Apple Xserve with dual 2.0 GHz G5 processors. The nodes are connected
via a Myrinet network that provides an MPI latency of 3.5 µs between
pairs of nodes. The data bandwidth rates to and from each node’s network
interface are 250 GB/s. All performance results in this paper were obtained
by using both processors on a node for computation. For example, the 256
processor timings were performed on 128 dual-processor nodes. The test
problem used for the performance results presented in this section was the
same cohesive finite element problem described in Section 4 on a mesh
containing 1.2 million elements.

5.1 Benefits due to virtualization

Since the implementation uses the ParFUM framework to implement the
CFE method, the user can configure a runtime parameter called virtual-
ization. Virtualization in ParFUM is defined to be the average number
of mesh partitions per physical processor. The term virtualization comes
from AMPI [HZKK06] where multiple MPI processes, or virtual processors,
are run inside a single physical processor. ParFUM is built partially upon
AMPI, and accordingly it inherits this terminology.

Using multiple mesh partitions per processor decreases the runtime of
the implementation. On 8 physical processors, the execution time of 1000
timestep loop iterations is 145 seconds when using 1 partition per processor.
The time decreases by 20% to 116 seconds when using 32 partitions per
processor. Beyond 32 partitions per processor, the time increases due to
extra overhead. Figure 14 shows that the best number of partitions for 8,
16, and 32 processors are 256, 512, and 1024 respectively. This optimum
performance point or sweet spot can be determined experimentally, but
approximate rules of thumb can also be used for a particular application.
To maximize the performance of this implementation, each partition should
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Figure 14: Execution time (in seconds) with varying numbers of mesh
partitions (Virtual Processors).

contain between one thousand and four thousand elements. The two main
reasons that performance can improve when the number of mesh partitions
increases are that communication can overlap computation and that the
memory hierarchy access patterns change.

One reason that performance increases when using more than 1 par-
tition per processor is that the working set of data for smaller partitions
is smaller and hence can better fit in the smaller faster cache memory in
the processor [Kal04]. Figure 15 shows the cache performance of the CFE
implementation on 8 processor cores within a single SMP compute node of
the NCSA Abe cluster. This cluster was used to test cache performance
because it provides support for PAPI performance counters [BDG+00],
whereas Turing did not provide such support. The PAPI performance
counter library was used to measure the total number of L2 cache misses,
PAPI L2 TCM, for the driver calls on all 8 processor cores. The applica-
tion execution time was also measured with the PAPI counters disabled to
minimize any perturbations to these reported times. As expected, the L2
cache misses decrease when the mesh is divided into increasing numbers
of partitions. The cache performance correlates well with the application’s
speed on this system. As the number of partitions increases, other over-
heads eventually become larger and the overall application performance
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Figure 15: Over-decomposing the mesh into multiple partitions per proces-
sor increases application performance by using the smaller faster levels of
cache memory more effectively. With too much overdecomposition, other
overheads reduce performance.

degrades.

5.2 Scalability

The speedup gained by using virtualization is only one performance con-
cern. The most important performance concern is scalability to a large
number of processors. One common measure of the performance and scal-
ability of a parallel application is speedup which is defined to be the ratio
of the parallel runtime to the serial one processor runtime. For the results
presented in this section, the baseline serial one processor version is the
CFE application program run with only one partition on one processor.
Thus the serial version has no parallel communication overhead. Figure 16
displays the speedup of the CFE implementation for up to 512 processors
while using 512 partitions in all cases. Table 2 lists the same speedup data
along with corresponding execution times and parallel efficiencies. The par-
allel efficiency is a ratio of the speedup to the number of processors used.
A parallel efficiency of 1.0 on p processors means that the parallel version
perfectly scaled to be p times faster than the serial version.

The parallel CFE implementation scales almost perfectly to 256 pro-
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Figure 16: Speedup for CFE implementation up to 512 processors for dy-
namic fracture problem using a 1.2 M element mesh divided into 512 mesh
partitions (Virtual Processors). A detailed listing of these speedups along
with execution times and parallel efficiencies is found in Table 2.
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Table 2: Execution time, speedup, and parallel efficiency for CFE appli-
cation on up to 512 processors. This problem uses a 1.2 M element mesh
divided into 512 mesh partitions (Virtual Processors). The execution times
are for 1000 timestep iterations.

Processors Execution time (s) Speedup Parallel Efficiency
1 946.3
2 581.7 1.63 0.81
3 366.4 2.58 0.86
4 255.6 3.7 0.93
5 209.8 4.51 0.9
6 171.5 5.52 0.92
7 145.7 6.49 0.93
8 125.9 7.52 0.94

12 81.3 11.64 0.97
16 60.2 15.72 0.98
20 49.2 19.23 0.96
28 34.9 27.11 0.97
32 29.8 31.76 0.99
64 14.9 63.51 0.99

128 7.4 127.88 1.00
256 3.9 242.64 0.95
512 2.18 434.08 0.85
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cessors. At 512 physical processors, there is no benefit from virtualization
because the 512 partitions are mapped one-to-one onto the physical pro-
cessors. Thus there is one virtual processor on each physical processor
and hence no opportunity to gain the benefits of virtualization. The sub-
optimal parallel efficiencies for the small number of processors occur in the
CFE program because messages are sent between processors, unlike the
serial version which has no communication overhead. This extra communi-
cation cost incurred in the parallel implementation hurts performance for
small numbers of processors, but the cost is eventually amortized across
processors as the number of processors increases. The overall near perfect
speedups observed are expected, because there is enough work performed
for each mesh partition relative to the amount of communication required
for each mesh partition. The scalabilities of nearest-neighbor communicat-
ing parallel programs are expected to be high in such cases where enough
work is performed for each partition.

Because the parallel implementation scales well to 512 processors, the
communication costs of our program are not bottlenecks when scaling the
application with a 1.2 M element mesh. Figure 17 shows the number of
messages received and the total bytes received in a timestep by each of
32 processors. The maximum size of the messages destined for one of the
processors is 209 KB spread across 33 messages. In this case the communi-
cation volume per node is significantly lower than the maximum bandwidth
supported by the interconnection network. The network interface on each
node is able to receive 7.5 MB in the duration of a single timestep, 0.03s.
Thus with two processors per node, each processor has an available effec-
tive bandwidth of 3.75 MB. Then the maximum incoming communication
volume for any of the 32 processors, 209 KB, uses only 6% of the available
effective bandwidth. The communication costs become a bottleneck if they
become a large portion of the timestep duration. At 512 processors, 20%
of the effective bandwidth during a timestep is used. This higher com-
munication cost is starting to reduce parallel efficiency. Even though the
communication is starting to become important at 512 processors, the com-
munication volume is small enough that it does not dominate the overall
time of the parallel execution time.

6 Conclusion

This paper describes a novel methodology for parallel implementation of
extrinsic cohesive elements based on activation of elements, implemented
using the Parallel framework for Unstructured Meshes (ParFUM). The de-
veloped parallel CFE scheme was validated against the experimental studies
performed on the dynamic crack deflection-penetration behavior in inho-

27



0 5 10 15 20 25 30
Processor

0

5x104

1x105

1.5x105

2x105

By
te

s 
Re

ce
ive

d

0

5

10

15

20

25

30

35

Num
ber of M

essages Received

Number of Messages Received
Bytes Received

Figure 17: Number of messages and total bytes received by each of 32 pro-
cessors for a single timestep. Communication between multiple partitions
within a single processor is not included in this plot. The 1.2 M element
mesh is decomposed into 512 partitions (Virtual Processors).

28



mogeneous specimens by [XR03]. Simulated results are in very good agree-
ment with experimental observations both in terms of predicted fracture
path and crack speed. A detailed scalability study performed on up to 512
processors shows excellent speedup for the parallel cohesive finite element
solver. The scalability is expected because the quantified communication
volume does not dominate the time required for a timestep. The measured
cache effects for the code explain the observed speedup when increasing
the number of partitions on each processor. This paper also describes how
floating point arithmetic can produce different crack path results if forces
are summed in differing orders, as occurs when a mesh is partitioned into
differing numbers of partitions. A solution based on increasing floating
point precision and sorting forces is provided.
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