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Abstract. Programming paradigms are designed to express algorithms
elegantly and efficiently. There are many parallel programming paradigms,
each suited to a certain class of problems. Selecting the best parallel pro-
gramming paradigm for a problem minimizes programming effort and
maximizes performance. Given the increasing complexity of parallel ap-
plications, no one paradigm may be suitable for all components of an
application. Today, most parallel scientific applications are programmed
with a single paradigm and the challenge of multi-paradigm parallel pro-
gramming remains unmet in the broader community.
We believe that each component of a parallel program should be pro-
grammed using the most suitable paradigm. Furthermore, it is not suf-
ficient to simply bolt modules together: programmers should be able
to switch between paradigms easily, and resource management across
paradigms should be automatic. We present a pre-existing adaptive run-
time system (ARTS) and show how it can be used to meet these chal-
lenges by allowing the simultaneous use of multiple parallel programming
paradigms and supporting resource management across all of them. We
discuss the implementation of some common paradigms within the ARTS
and demonstrate the use of multiple paradigms within our feature-rich
unstructured mesh framework. We show how this approach boosts per-
formance and productivity for an application developed using this frame-
work.

1 Introduction

A parallel programming paradigm defines how concurrent tasks in a parallel
program access data and interact with each other and how those interactions are
expressed by the programmer. Such paradigms are created to address the needs
of specific classes of problems in parallel computing, making implementations
easier to develop. A programmer often develops a parallel algorithm with a
certain parallel programming paradigm in mind. Programmers have a wide range
of paradigms to choose from, such as message passing (e.g. MPI), shared address
spaces (e.g. Global Arrays[28], UPC[9], OpenMP[7], HPF[11]), message-driven
(active messages, actors, Charm++) and stream processing. This variety exists
because not all paradigms are suitable for all problems. Choosing the correct
paradigm for an application yields benefits in terms of lower programming effort,
elegant, easily maintained code, and better performance.



As parallel applications become increasingly complex with multiple con-
stituent algorithms, no single paradigm is suitable for all the different parts of
an application. Most programmers currently choose a paradigm that is suitable
for the bulk of the application and force the rest into the same paradigm. This
results in reduced programmer productivity via inelegant code, potentially more
errors, longer development time and lower maintainability. It can also result in
poor performance when the inherent parallelism in the problem could be more
naturally and fully expressed in some other paradigm.

Developing each application component with the most suitable paradigm
would require a multi-paradigm parallel programming system in which different
paradigms can be tightly coupled. In such a system, the application would allow
different paradigms to be used concurrently. In addition, the components of an
application would not be restricted to a single paradigm, nor would components
of a certain paradigm be restricted to a subset of the physical processor space.
Without a tightly coupled multi-paradigm environment, performance and pro-
ductivity are adversely affected when software components cannot be cleanly
expressed within one paradigm. Moreover, this multi-paradigm system should
enable resource management across all the paradigms on all the processors. This
is important for scaling applications to even moderately sized machines, since
resource management issues like computational load imbalance and communica-
tion bottlenecks are often the biggest roadblocks to scaling.

A programmer faces further challenges when selecting a non-mainstream
paradigm that may be ideally suited to her problem. There is a huge barrier
to entry for alternative paradigms caused by the relative dominance of MPI. In
the absence of decisive performance benefits, the best way for new models to
gain traction is to interoperate cleanly with existing models, both to allow the
use of existing libraries and to facilitate reuse of new code.

2 Background

Approaches to multi-paradigm parallel programming roughly fall into four cat-
egories: 1) multi-paradigm parallel languages; 2) extensions to existing parallel
programming models; 3) interoperability libraries; and 4) run-time systems.

Multi-paradigm parallel programming languages have primitives that let a
user take advantage of different paradigms in a tightly coupled fashion. One
major disadvantage of this approach is that existing software implemented in
various paradigms is difficult or impossible to reuse, and conversely, software
developed in such languages may not be reusable in other applications developed
with other languages. As an example of a multi-paradigm language, mpC[23] is
a C superset that provides network objects to describe data and communication
layouts in a parallel environment. It supports both task and data parallelism
and enables both computation and communication optimizations.

Extensions to parallel programming models enhance existing models to al-
low the use of additional paradigms. Efforts to merge OpenMP and MPI such
as Extended OpenMP (EOMP) [30] and MPI+OpenMP [6] fall into this cate-



gory. Codes developed using mixed-mode techniques have been quite successful
in some cases [29] Most extensions involve only two paradigms without a general
framework for adding more. Moreover, different paradigms are often executed
as different processes or kernel threads, increasing the cost of switching between
paradigms. Although MPI+OpenMP attempts dynamic load balancing by mov-
ing OpenMP threads among processes [6], it is restricted to moving them among
processors on the same node and cannot do truly global resource management.

Interoperability libraries provide interfaces between systems that implement
different parallel models. Fortran M uses MPCL (message-passing compatibility
library) to interface with other message passing libraries and HPF [12]. Here,
the freedom to use multiple paradigms is marred by the additional complexity
of the interface. Fortan M tackles the resource management issues by allowing
access to its resource management facilities through MPCL. Other attempts to
bolt multiple paradigms together, such as PVM with Solaris Threads, resulted
in poor performance and undue code complexity [25].

Parallel Adaptive Run-time Systems (ARTS) attempt to provide the set of
tools that are required to implement different parallel programming models.
Existing models and languages can be implemented on top of such a run-time
system and can interoperate using a common substrate. ARTS provide resource
management capabilities common to all models, thereby relieving the program-
mer of this task. TPVM[10] was an early extension to PVM that implemented
a thread-oriented, event-driven run-time and the notion of virtual processors. It
consistently outperformed PVM in several experiments.

Our approach relies on Converse [19], an ARTS which fully realizes the
tightly coupled interoperability of multiple paradigms. Converse meets many
of the goals mentioned in a recent report from Berkeley [3], including the need for
models to be independent of the number of processors, and it alleviates cognitive
load on programmers by performing automatic resource management.

3 A Multi-paradigm Runtime System

Object-based virtualization [18] is a flexible approach to implementing a variety
of interoperable programming paradigms. It encourages the decomposition of a
computation into a large number of interacting objects called virtual processors
(VPs). The task of mapping VPs to physical processors is handled by the ARTS,
which can change the mapping at run-time by migrating VPs between processors.
The ARTS is also responsible for message delivery between VPs. A scheduler on
each processor selects which local VP executes next. The scheduler is message-
driven and only schedules VPs that have pending messages.

Object-based virtualization does not dictate the paradigm used within a VP,
so different VPs may use different paradigms. Converse [19] provides the tools
for implementing different paradigms in a message-driven system with object-
based VPs. Apart from providing a scheduler on each processor, Converse
also provides a messaging framework with primitives for point-to-point commu-
nication and multicasts, and methods for handling a message on the receiving



processor. Converse also offers user-level threads[32] with low context switch
overhead and the ability to migrate threads between processors. Local Con-
verse threads share the scheduler with incoming messages.

Fig. 1. The Converse ARTS allows multi-
ple VPs with different paradigms on the same
processor.

Programming paradigms de-
veloped using the Converse
ARTS give programmers the
ability to efficiently compose
independently-developed com-
ponents into a single applica-
tion or higher-level component.
Components developed using
separate paradigms can over-
lap their execution in time and
over processors. Since multi-
paradigm VPs share the same
address space on a processor, a
flow of control can switch paradigms cheaply via function calls or local messages
within a processor. Therefore different paradigms implemented on Converse
can be tightly coupled within a single application.

Numerous models have already been implemented on the Converse ARTS.
These include the message-passing model via Adaptive MPI, the message-driven
model via Charm++, and a phase-based distributed shared memory model called
Multi-phase shared arrays (MSA). Figure 1 shows VPs using these models while
sharing the same processor. Similarly, global address space languages are sup-
ported via an implementation of ARMCI. An orchestration model called Charisma
allows for clear expression of control and data flows between serial components.

Object-based virtualization enables a number of performance benefits such as
adaptive overlap of computation and communication [18], dynamic measurement-
based runtime load balancing [31] and dynamic communication optimizations [22].
Since all paradigms in an application use Converse, resource management need
not be limited to one paradigm. For example, 1) the load balancer takes into
account work loads of the VPs belonging to all paradigms while trying to bal-
ance load; 2) if two VPs using different paradigms send each other many small
messages, the communication optimization library can merge these into fewer
larger messages.

Charm++ and MPI have both been described extensively, and their rela-
tive merits and deficiencies have been explored [20, 13, 26, 2, 14, 4]. Therefore we
will not describe them further except to say that both have proven suitable for
developing complex parallel applications. Charm++ is implemented on top of
Converse, and AMPI [17] is an implementation of MPI on Converse. To-
gether with Multiphase Shared Array (MSA), a simple shared memory model
which we will now describe, these models make up the bulk of our unstructured
meshing framework.

MSA consists of shared arrays that can change between three possible access
modes. An MSA array can be constructed from any user-specified type. The



lifetime of an MSA array is divided into phases, with all threads accessing the
array in the same access mode during each phase. Phase boundaries are marked
by synchronization. The phase based nature of MSA programs means that they
can never have deadlocks or race conditions. The three possible access modes
(shown in Figure 2) are:

(a) Read only mode (b) Write by one mode (c) Accumulate mode

Fig. 2. The three different access modes of a MSA array

Read-only mode: All threads can only read from the MSA array during
this phase. Each element can be read by multiple threads.

Write-by-one mode: In this mode, all threads are permitted to write to
the MSA array, but no element can be written to by multiple threads.

Accumulate mode: All threads can update the MSA array and multiple
threads can update a single element. For each element, the data provided by
different threads is accumulated using a user defined associative commutative
operation such as addition, multiplication, max, set union and set intersection.

MSA represents a compromise between the convenience of a global address
space and the performance and correctness problems associated with unfettered
access to shared data [5]. The restrictions imposed by the access phases allow
for more efficient communication while also preventing common shared memory
programming hazards. MSA has proven useful in codes varying from matrix
multiplication to distributed hashtables to molecular dynamics and has provided
significant advantages to parallel programmers across many problem domains.

The Converse runtime has also been used to implement a variety of other
parallel programming paradigms. One example is Charisma [15], an orchestration
language that lets the programmer specify the control and macro data flows of
a parallel program separately from the sequential portions. Charisma is built on
top of Charm++. The user expresses the global message flow in the orchestration
code without fragmenting it among all the different types of objects in a com-
plicated parallel application. The orchestration code can express all commonly
used communication patterns, including point-to-point, broadcast, multicast, re-
ductions, scatter and gather. The sequential portions are normal C++ code. A



Charisma program can be combined with any library written using one of the
parallel programming paradigms supported by the Converse runtime system.

Aggregate Remote Memory Copy Interface (ARMCI) [27] supports high per-
formance remote memory copy on multiple platforms. It offers blocking and
non-blocking versions of data transfer operations, synchronization operations
and memory allocation and deallocation routines. ARMCI is used as the foun-
dation for a number of global address space languages such as Global Arrays [28]
and Co-Array Fortran [8]. ARMCI is implemented on the ARTS by encapsulat-
ing each ARMCI process within a threaded Charm object [16]. The ARTS can
perform intelligent resource management for any application using ARMCI.

4 ParFUM: An example of multi-paradigm programming

ParFUM [24] is a framework for the parallelization of unstructured mesh ap-
plications. It provides the programmer with a rich set of features such as mesh
partitioning, communication between mesh partitions, mesh adaptivity, mesh
locking, collision detection and data transfer. Due to the complexity of these fea-
tures, each was implemented in the parallel paradigm most suited to it. These
differences in paradigm are largely hidden from the user, to whom the appli-
cation appears to be completely within the message-passing style. We describe
some of these features and our programming model choices for their implemen-
tation below. We also discuss situations in which multiple parallel programming
paradigms were used to provide a single feature.

In ParFUM, each mesh partition is associated with a single VP, and a
driver routine is invoked by each of these VPs. In most applications, mesh nodes
and elements (collectively, entities) along partition boundaries require data from
entities on neighboring partitions to compute local solutions. ParFUM provides
functionality for adding local read-only copies of remote entities, or ghosts, to the
partition boundary. A single collective ParFUM call updates all ghost entities
with data from the original entities on neighboring partitions.

Fig. 3. An unpartitioned
mesh.

ParFUM also provides synchronization primi-
tives to update the values of shared nodes during
a simulation. The user code in the driver routine
is typically written in a message passing style with
blocking ghost update calls and synchronization rou-
tines such as barriers and reductions, and makes use
of adaptivity and locking mechanisms which use the
message-driven style in a manner transparent to the
programmer. As a result, both serial codes and pre-existing MPI codes can be
easily modified to use the ParFUM library and its features.



4.1 Mesh Partitioning

Step 1: Compute a mapping of elements to partitions that produces approx-
imately balanced partitions and minimizes the number of boundary elements.
We start with an arbitrary mapping as an input to PARMETIS [21], a third-
party MPI library for parallel partitioning that we use without modification via
AMPI. As shown in Step 1 in Figure 4, PARMETIS takes in the connectivity
of the mesh elements and produces a mapping of elements to partitions. Here
multi-paradigm programming enables us to use a library developed by subject
matter experts without having to re-implement it in another paradigm.

Fig. 4. Steps to partition a mesh

ParFUM divides the entities of a se-
rial mesh into one partition per VP, using
a memory-efficient parallel partitioner to
handle large meshes with large numbers
of partitions. Figure 3 shows a simple 2D
mesh with triangular elements that is to
be partitioned between two VPs. We use
this simple mesh to illustrate the parallel
partition algorithm:

Step 2: Create partitions and send
them their entity data. This is easy for
elements because the mapping tells us
exactly which partition each element be-
longs to. However, a node belongs to all
partitions with an element adjacent to
that node (for e.g.. n1 and n4 belong to
both partitions in the example in Fig-
ure 4), so a node’s ownership information
is scattered across an unknown number
of VPs on different processors. Collect-
ing this information is simplified with a
global table indexed by VP which stores
all nodes owned by that VP’s partition.
This Partition-to-Node table has a list of
nodes for each VP. Step 2 in Figure 4
shows that for each element, its nodes are
added to the Partition-to-Node table at the entry for the element’s partition (the
partition to which PARMETIS has mapped this element in Step 1), with dupli-
cate nodes being deleted.

Thus, in the first phase of this step the Partition-to-Node table is populated
by all the VPs and in the second phase it is read by each VP. MSA, with its
separate accumulate and read modes, is ideally suited for this. The Partition-
to-Node table is implemented as a MSA array of node lists in accumulate mode.
A message passing implementation would have been more complex since a VP
does not know how many nodes to expect from other VPs. Before passing the



nodes, each VP would have to tell all the others how many to expect. This would
lead to less readable code, higher communication, and poorer performance.

Step 3: Find the nodes shared between different pairs of partitions. This can
be calculated by creating a global table (called the Node-to-Partition table) that
maps each node to all the partitions to which it belongs. As shown in Step 3 of
Figure 4, for every node owned by a VP, the VP adds itself to the node’s entry.
After all the VPs have finished writing to the table, each VP looks at the entry
each of its nodes to determine the other partitions sharing that node. This lets
ParFUM build up a list of nodes shared by every pair of neighboring partitions.
MSA is an ideal fit for Step 3 for the same reasons as in Step 2.

4.2 Mesh Adaptivity

ParFUM implements two types of mesh adaptivity: incremental and bulk mesh
modification. Both approaches provide low-level primitives for edge bisect, flip,
and edge contract operations. In the incremental case, these are self-contained
parallel primitive operations that leave the mesh in a consistent state, updating
all ghost layers and adjacencies as needed. The faster, lightweight bulk operations
currently under development in ParFUM perform en masse mesh modifications
before updating the ghost layers and adjacencies.

These primitives lock the affected mesh entities so that multiple operations
can simultaneously modify adjacent areas of the mesh, using the ParFUM locking
functionality described earlier. Once the affected region of the mesh is locked,
modification of the mesh can proceed.

An example of the edge bisect primitive is shown in Figure 5.

Fig. 5. Parallel edge bisection

When such an operation takes place across a
partition boundary, as shown by the thicker
line in the figure, the communication is very
localized and specific. In (a), we highlight
an element that we wish to bisect along its
longest edge, which happens to be on the
boundary between partitions A and B. The
first step is to lock the region of the mesh
that will be modified. This is shown in (b)
which highlights the original element, the
neighbor across the edge to be split, and one
adjacent element for each of these (which will
need to have adjacency data updated). Lock-
ing requires the first element to send a mes-
sage to all the affected elements and then
suspend to wait for a response about the suc-
cess or failure of the lock. If locking is suc-

cessful, two new elements and a node will then be added by the operation. The
new node will bisect the longest edge, and the two new elements will be along
the new edge created between the new node and the node n in (b). This new
topology is shown in (c). Because the node is shared, a record must be made



of it on both partitions A and B. The bisect is performed on the first side of
the edge to be bisected, and all information about the new element and node on
that side is then transmitted to the adjacent element on partition B. This side
completes the second half of the operation, updating all relevant adjacency data,
and in return sends information about the new element created back to partition
A where the adjacency of the new element is updated. In (d), the lightly shaded
elements have connectivity and adjacency updates performed on them, while the
darker shaded elements are new elements added to the mesh.

Due to the unpredictable nature of modification messages, it is impossible for
a partition to predict when one of its neighbors will invoke adaptivity functions.
To accomplish this with MPI, we would need a polling loop consisting of a wild
card receive. Once a message is received, its type is checked and it is processed
accordingly. This amounts to a re-implementation of some capabilities of the
Converse scheduler. However, the message-driven paradigm is ideally suited for
this problem. The receiving partition does not need to expect incoming messages
and processes messages as they are received.

Charm++ is excellently suited to adaptivity algorithms, as operations are
confined to regions of the mesh determined by the state of the solution at a par-
ticular point in time. These problems are highly irregular and dynamic, and
as such are also a perfect match for the virtualization capabilities provided
by Charm++. Having multiple partitions per processor makes load balancing
straightforward when refinement over particular partitions increases their load.
Mesh adaptivity is achieved in ParFUM by associating a special type of chare
array, called a bound array, with the AMPI VPs. Thus, each partition has a chare
array element associated with it which performs the message-driven aspects of
mesh adaptivity. The “bound” aspect of these elements means that when migra-
tion takes place, a VP is bound to its associated chare array element such that
they always migrate together.

5 Multi-paradigm applications

ParFUM has been used to develop a number of parallel unstructured mesh
applications [24]. These applications utilize the many features provided by Par-
FUM for faster development and better performance. Since each component of
ParFUM was written using the paradigm or paradigms most suitable for it,
ParFUM applications are examples of multi-paradigm parallel programming.

For example, TentPitcher is a novel algorithm for solving hyperbolic systems
via the Spacetime Discontinuous Galerkin (SDG) method developed at the Cen-
ter for Process Simulation and Design at UIUC [1]. In converting this algorithm
to run in parallel, we made extensive use of the multi-paradigm capabilities of
ParFUM.

This algorithm operates on a triangular mesh. Rather than picking a timestep
interval and advancing each vertex in time by that interval, TentPitcher performs
local solutions by choosing a single vertex at a local time minimum and moving
it as far forward in time as possible based on causality constraints and error



estimates. The result is a highly asynchronous algorithm in which many local
solutions may be computed independently, with no global synchronization.

To efficiently solve problems with sharp features, such as shock propagation,
high degrees of mesh refinement and coarsening are required. However, since this
algorithm has no explicit timestepping, there is no natural opportunity to glob-
ally modify the mesh, as is standard practice in parallel adaptive finite element
codes. In addition, typically only small areas of the mesh require modification
and the vast majority of elements are unaffected, so doing global adaptivity will
hurt performance. Therefore, we must perform all mesh modifications locally.
Adaptivity operations like this are well suited to a Charm++ approach, where
the programmer can send a lock/unlock or adaptivity messages and invoke the
appropriate function on another partition.

This code mingles parallel programming paradigms with ease. MPI calls are
used for bulk communication such as checkpointing and output, while Charm++
is utilized for locking and adaptive operations. Multiple paradigms coexist trans-
parently, even within a single function. This leaves the programmer free to use
whatever paradigm is most suitable at a very fine granularity, rather than choos-
ing which paradigm is suitable at an application level.

6 Conclusions

Developing parallel software involves additional complexity over sequential soft-
ware. The ability to develop modules in the most suitable parallel programming
paradigm and to reuse them in applications that incorporate multiple paradigms
improves programming productivity. The complex, adaptive multi-physics appli-
cations of the future require sophisticated and automated resource management.
A multi-paradigm adaptive run-time system (ARTS) provides such support.

We demonstrated such an ARTS, called Converse, that allows multiple
work units on each processor and interleaves their execution based on avail-
ability of remote data and messages. These abilities are crucial to our goal of
efficiently supporting tightly coupled multi-paradigm interoperability in a paral-
lel programming environment. The utility of this approach was illustrated by 1)
describing multiple paradigms implemented using our ARTS, and 2) showcasing
a parallel unstructured mesh framework and two associated applications that
leverage this multi-paradigm interoperability.

ARTS also have positive implications for new parallel programming paradigms.
In order for new paradigms to come into use, programmers need to 1) hear about
them, 2) learn how to use them, 3) find an implementation of them, and 4) not
sacrifice re-usability of their code should they choose to adopt them. Incorporat-
ing new paradigms directly on the Converse ARTS lowers the barrier to entry
for the adoption of new paradigms by satisfying three of those criteria, providing
the knowledge of and access to new paradigms in a way that will make them
most immediately usable and subsequently re-usable in future codes.

We believe this approach is essential for productive and efficient parallel
programming, particularly for the complex applications and petascale computing



environments of the near future. We have been advancing the ARTS approach
for over a decade, and hope that many new paradigms will be developed with it.
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