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Abstract
A significant fraction of parallel scientific codes are iterative with barriers between itera-

tions or even between phases of the same iteration. The sender of a message is assured that the
receiver is executing exactly the same iteration or phase as it. This opens up the opportunity to
use one-sided communication without synchronization, explicit or implicit, between the sender
and receiver of every message. The synchronization inherent in the application is sufficient to
ensure correctness. We present CkDirect, an interface for such one-sided communication in the
message driven Charm++ runtime system. CkDirect helps avoid unnecessary synchronization
and message copying as well as scheduling overhead in iterative scientific codes. We describe
the interface as well as its implementations on two different interconnects: Infiniband and Blue
Gene/P. We evaluate CkDirect through a micro-benchmark, two simple scientific codes: stencil
computation and matrix multiplication, as well as a full fledged quantum chemistry application
called OpenAtom.

1 Introduction
The message-driven parallel programming model has been found to be suitable for a number of
different application scenarios [15, 16, 7]. In the message-driven model, the runtime system is
responsible for the buffer management necessary for receiving and sending messages. So, the
user code can send a message without the receiver having to explicitly know about the message.
Each message is associated with a handler method and when a message is received on a processor,
the corresponding handler is invoked with the message as an argument. Frequently, a message-
driven model is implemented with a scheduler on each processor maintaining a queue of received
messages. The scheduler selects a message from the queue and invokes its handler. This message-
driven model of parallel programming makes it easy to adaptively overlap computation and com-
munication [5]. Moreover, a message-driven model has benefits for developing parallel modules
and composing them seamlessly into one application [5].



CHARM++ is a runtime system (RTS) that combines a message-driven programming model
with the equally powerful idea of object-based virtualization [7]. With object-based processor
virtualization, users view computation as a collection of interacting objects without regard to the
actual number of physical processors. It is the responsibility of the CHARM++ RTS to map these
objects, referred to as virtual processors (or chares), to physical processors. These chares are
message-driven objects with special methods called entry methods that act as handlers for incom-
ing messages sent by other chares. A chare sends a message to another by remotely invoking an
entry method on the receiving chare with the desired message. The CHARM++ RTS is respon-
sible for locating the receiver chare and transmitting the message to the receiver’s location. The
RTS makes sure that a buffer is allocated on the receiving processor to receive the message. The
CHARM++ RTS then enqueues each received message on a processor in a scheduler queue. The
scheduler selects a message from the queue and invokes the corresponding entry method on the ap-
propriate chare with the message as an argument. CHARM++ has been ported to a large number of
systems; the actual message transmission scheme, therefore, varies according to the interconnect
being used. The CHARM++ RTS has enabled the scaling of applications in very different fields to
large numbers of processors such as NAMD [2] for molecular dynamics, ChaNGa [6] for cosmo-
logical simulations, OPENATOM [3] for Car-Parrinello ab initio molecular dynamics and ParFUM
[9] for finite element methods.

In spite of this considerable success of the message-driven paradigm, we noticed a scope for
improvement that could potentially benefit a number of categories of scientific applications. We
observed that most scientific codes are iterative. A number of such iterative codes exchange the
same amount of data between the same partners in each iteration, e.g. QM/MM, non-adaptive finite
element simulations, etc. Moreover, for many other applications the amount of data communicated
between partners during an iteration changes infrequently and slowly.

Iteration boundaries are implicit (or explicit) synchronization points for this style of commu-
nication. When a sender sends out a message during a particular iteration, it is assured that the
receiver has finished the previous iteration and is performing the same iteration as it. Therefore,
there is no reason to enforce synchronization again during the communication itself, either explic-
itly in user code (matching sends/receives) or within the runtime implementation (rendezvous).
The application’s own synchronization is sufficient to guarantee that the communication occurs
correctly. The sender can safely write data into a receiver’s buffer without fear of overwriting use-
ful data from the previous iteration. In fact, the receiver need not be involved at all except to be
informed when the data has been completely received.

Prior to this effort, the CHARM++ RTS did not provide users with any facility for such one-
sided communication. We present a one-sided persistent communication interface called CkDirect
for the CHARM++ RTS. CkDirect is an extension to the CHARM++ RTS that can be used by iter-
ative applications with stable communication patterns to avoid some of the unnecessary overheads
of the message-driven model.

2 CkDirect
CkDirect extends the CHARM++ RTS by providing a persistent, one-way, one-sided memory to
memory communication interface between two chares. The goals of this extension are to minimize
the overhead involved for a specific class of communication and to exploit RDMA features where



available. Using CkDirect, chares can define channels through which they can send contiguous
blocks of data to remote memory regions without wrapping them in messages. However, the
CkDirect interface constrains the manner in which it can be used in a CHARM++ program. It is not
designed to be general purpose, but instead targets iterative applications with stable communication
patterns.

CkDirect was designed to allow such communication patterns to be implemented with the
minimum possible overhead. On machines capable of RDMA, it lets a sender write directly into
the receiver’s buffer since the receiver is guaranteed to be ready. This lets the receiver get the data
in the location exactly where it is needed, for example a row in the middle of a matrix. In a normal
CHARM++ program, either the receiver would receive the data in a message and copy it into the
desired location (the row in the matrix), or the computation code would have to be changed to
operate on this received message rather than the matrix. CkDirect lets users avoid the performance
and productivity costs of these additional operations. Once the data has been written into the
receiver’s buffer, the receiver is informed through a simple function call back. Thus the receiver
can easily find out when it has received the data without having to pay the scheduling overhead
incurred by a CHARM++ message.

The remote write (put) operation, which is initiated by the sender, was selected because it
closely matches the message driven programming model wherein message senders entirely drive
the flow of control. A chare knows when some local data, resulting from a local computa-
tion, is ready for use by a remote chare. The sender packs the data into a message and sends
it to the receiver, where a message handler gets invoked once the message has been received.
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Figure 1: The different steps in setting
up and using a CkDirect channel.

This message send can be replaced by a put without al-
tering the flow of control on the sender or receiver, as
long as the receiver is informed of the message’s ar-
rival. As discussed earlier, in an iterative code the re-
ceiver is guaranteed to be ready to receive data. On the
other hand, a receiver initiated remote read call (get),
requires that the receiver, through some synchroniza-
tion, gain the knowledge that the source is ready to
send it data. The receiver then initiates the get process
and must be prompted to continue when the get is com-
plete. Thus, using a get operation forces us to deviate
considerably from the message driven model in which
communication is initiated by the sender whenever it is
ready. Therefore, we selected the put operation for the
CkDirect extension to the message driven CHARM++
RTS.

Figure 1 illustrates the different functions that make
up the CkDirect interface and how they are used to es-
tablish a CkDirect channel between two chares and send data along that channel. A CkDirect
channel needs to be set up before it can be used for communication between two chares. The setup
consists of two steps.

In the first step, the receiver calls CkDirect createHandle to create a handle representing the
channel. The arguments to CkDirect createHandle include the address of the receiving buffer, its
size, an out-of-band pattern as well as a function callback and its data to inform the receiver of



the message’s arrival. The out-of-band pattern is an double word pattern that the user is sure will
never appear as received data, for example: NaN in an array of doubles, −1 in an array of positive
integers, etc. As we shall see in Section 2.1, this out-of-band pattern can be used to detect when a
CkDirect message has been received.

The second step during the setup of a CkDirect channel consists of sending the handle created
on the receiver to the sender. On the sender side, the sender calls CkDirect assocLocal to associate
a local sender buffer with this particular handle. This completes the setup of a CkDirect channel.
The same local send buffer can be associated with multiple different handles. This allows the same
data to be sent to different receivers along different CkDirect channels without creating multiple
copies of it.

The sender can send data along a CkDirect channel by simply invoking CkDirect put on the
corresponding handle. Once the RTS on the receiving processor detects that the data on a particular
CkDirect channel has arrived, it invokes the call back function passed to CkDirect createHandle
with the callback data as argument.

When an iteration is over the receiver can signal its readiness to receive data for the next itera-
tion by calling CkDirect ready. It must be noted that this does not perform any synchronization
between the sender and receiver. It is just used to let the RTS know that it should expect new data
on this particular CkDirect channel. The synchronization to make sure that the sender does not
send a second message before the receiver calls CkDirect ready is the user’s responsibility and is
achieved through synchronization in other parts of the application.

2.1 Implementation on Infiniband
The Infiniband port of CHARM++ is implemented on top of the Reliable Connection protocol of
Infiniband. Hence, the CHARM++ implementation can assume that the Infiniband layer guarantees
message delivery. Moreover, the data within a message arrives in order. So, if the last byte has
been received one can be sure that the rest of the message has also been received. The Reliable
Connection protocol makes the use of RDMA features of Infiniband relatively effortless. Since the
sending and receiving buffers are both known in CkDirect, it is a nice fit for the RDMA capabilities
of Infiniband.

CkDirect is implemented on top of Infiniband through a polling queue, maintained on each
processor. The polling queue is a list containing the handles of all CkDirect messages expected
on that processor. When a CkDirect handle is created with a call to CkDirect createHandle, it is
automatically added to the polling queue. The call to CkDirect createHandle also sets the last 8
bytes of the receiving buffer to the out-of-band value provided by the user. It also registers the
receiving buffer with the Infiniband layer as a memory chunk that might receive a remote write.

Similarly, on the sender side, during the call to CkDirect assocLocal, the local sending buffer
is registered with the Infiniband layer as a memory chunk from which a remote read can be per-
formed.

Once the user calls CkDirect put on the sender, an RDMA instruction is issued to the Infiniband
layer. This RDMA instruction reads the data from the local sending buffer corresponding to the
handle and writes it into the remote receiving buffer.

The RTS on the receiving processor checks periodically scans the polling queue for outstanding
received data. It checks whether CkDirect data has been received by verifying that the last double
word of the receiving buffer is no longer equal to the out-of-band value provided by the user. Upon



detecting the receipt of CkDirect data, the corresponding handle is removed from the polling queue
and its associated callback is invoked.

When the receiver is ready for the next block of data at the same location, it calls CkDi-
rect ready on the corresponding handle. This causes the RTS to again set the last 8 bytes of the
receiving buffer to the out-of-band value provided during handle creation by the user. The RTS
also enqueues the CkDirect handle into the polling queue. It should be noted that during a call to
CkDirect ready, the receiver does not send any message to or participate in any synchronization
with the sender.

For performance reasons, the task of CkDirect ready is actually performed through two sep-
arate operations by the user: 1) Mark the handle as having processed the current iteration and
ready for the next iteration and 2) Start polling the handle for new data. The Infiniband imple-
mentation allows us to split CkDirect ready explicitly into two calls: CkDirect ReadyMark and
CkDirect ReadyPollQ. CkDirect ReadyMark sets the of out-of-band byte pattern so that a put can
be detected. CkDirect ReadyPollQ inserts the CkDirect handle into the polling queue if new data
has not already been received for that handle. The CkDirect ReadyMark call can be used as soon
as the receiver side user code is done with the buffer. The CkDirect ReadyPollQ call is invoked
at a later time when the user code expects that activity will occur on the channel. Using the two
separate calls allows the user code to shorten the time span during which a CkDirect handle needs
to be polled, without missing any message. This is particularly useful if an iteration has multiple
phases. The user can make sure that the RTS polls a CkDirect handle only in the particular phase
in which it is being used. However, if the application does not have such separate phases the user
can always use the single CkDirect ready call.

2.2 Implementation on Blue Gene/P
IBM’s Blue Gene/P (BG/P) machine provides the Deep Computing Messaging Framework [8]
(DCMF) for the implementation of messaging systems such as MPI, CHARM++, ARMCI and
GASnet. DCMF uses active message semantics, wherein the first header packet of a message
designates a handler function for the entire message. The one-sided primitives in DCMF were
in flux at the time of this writing and therefore, based on the advice of DCMF implementers, we
elected to use DMCF’s two-sided interface for the initial implementation. This means that the
current implementation of CkDirect on BG/P is not zero-copy. Nevertheless this does allow the
CHARM++ RTS to avoid copying within its implementation of CkDirect.

The DCMF two-sided primitive, DCMF Send, requires that handler functions be registered for
receipt of short (< 224 B) and normal (≥ 224 B) messages. A normal message receipt handler
must provide: a pointer to a receive buffer large enough to contain the message, a callback function
pointer and data for completion notification, as well as a buffer for storing the message transaction
state in a data structure of type DCMF Request t. The completion callback is invoked after the
message has been delivered into the buffer provided by the handler. The short message handler
is similar to the normal handler but must itself copy the data from the received message into the
destination buffer. This active message approach dovetails nicely with the CkDirect semantic.

Each DCMF Send invocation also includes a local send completion callback, and an Info
header of up to 7 quad words (a quad word is 16 B) which accompanies the message payload.
DCMF Send, like the receipt handlers, must also provide a message transaction state buffer.

CkDirect createHandle allocates a message transaction state buffer for the receive side and



stores it along with information about the registered user buffer in the CkDirect handle returned
to the user. Similarly, the sender side message transaction state buffer is allocated in CkDi-
rect assocLocal and stored in its copy of the CkDirect handle. Since a CkDirect channel can have
at most one message in flight, these state buffers can be reused during subsequent CkDirect puts.

The meta information capacity of the Info header and the receive side completion callback
greatly simplify the implementation of CkDirect on BG/P. At each CkDirect put, the sender “re-
minds” the receiver of the necessary DCMF context by sending the user application’s receive buffer
pointer, put callback, callback data, and the message transaction state buffer pointer, in the Info
packet. This removes the need for any lookup tables to fill in the DCMF context based on the
CkDirect handle. Sending all the DCMF context in the Info header does increase its size to two
quad words. However, even if we had used look up tables to store the DCMF context for CkDi-
rect handles and sent just the CkDirect handle in the Info, we would still have ended up with a
Info of 1 quad word. Our implementation trades off the increased Info header size for a simpler
implementation that delivers better performance.

The receiver side completion callback required by DCMF is set to the CkDirect user appli-
cation’s callback, further simplifying our implementation. This eliminates the need for polling
receive buffers for completion as found in the Infiniband implementation. The CkDirect Ready
calls have no effect in the current Blue Gene/P implementation.

2.3 Related Work
MPI Put provides a one-sided communication primitive similar to CkDirect. However, the re-
ceiver detects completion of a message very differently for MPI Put. MPI Put requires the use
of one of three synchronization schemes (fence, post-start-complete-wait or lock-unlock) to signal
the completion of operations at the receiver. The fence mechanism is a collective operation on
all processors associated with an MPI Win. If all we need is to detect completion on the receiver,
this scheme is overkill since it forces the sender as well as other processors to synchronize need-
lessly. While the post-start-complete-wait scheme allows the definition of groups within which
synchronization must take place, it is not free of overhead. The sender and receiver are forced to
synchronize so that the receiver can detect the completion of all outstanding one-sided operations.
Finally, the lock-unlock mechanism involves synchronization between the two parties in the form
of lock acquisition and release.

CkDirect, in contrast, informs the receiver of received data through a simple callback function
registered at setup time. The RTS on the receiving processor detects when a message has been
completely received. The sender is not involved in any way and does not have to participate in
any extra synchronization This reduces overhead in the large class of iterative codes in which the
received data is assuredly not overwritten before it has been processed by the receiver in the current
iteration. The flexibility and abstraction provided by the MPI one-sided interface comes at the cost
of increased complexity and additional overhead. Indeed, as reported in [13], these overheads
mean that even optimized implementations suffer longer latencies than point-to-point messages.
As we shall see in Section 3, this is not the case with CkDirect.

ARMCI [11] is another messaging library that provides a variety of RMA operations. Unlike
CkDirect, ARMCI puts support strided and I/O vector-specified data layouts. ARMCI also speci-
fies the ARMCI Fence and related operations to signal the global completion of outstanding puts.
CkDirect avoids the overhead of such calls by relying on synchronization at the application level.



Message Size(103 B) 0.1 1.0 5.0 10.0 20.0 30.0 40.0 70.0 100.0 500.0

Default CHARM++ 22.924 25.110 47.340 66.176 96.215 160.470 191.343 271.803 353.305 1399.145
CkDirect CHARM++ 12.383 16.108 29.330 43.136 68.927 93.422 120.954 195.248 275.322 1294.358
MPICH-VMI 12.367 19.669 37.318 60.892 102.684 127.591 201.148 322.687 332.690 1396.942
MVAPICH 12.302 19.436 37.311 56.249 88.659 119.452 144.973 236.545 315.692 1386.051
MVAPICH-Put 16.801 22.821 51.750 64.202 94.250 120.218 146.028 232.021 308.942 1369.516

Table 1: Round trip time (µs) for the pingpong micro benchmark on CHARM++ without and with
CkDirect as well as for two different MPI versions on Infiniband.

Message Size(103 B) 0.1 1.0 5.0 10.0 20.0 30.0 40.0 70.0 100.0 500.0

Default CHARM++ 14.467 20.822 44.822 72.976 128.166 186.771 240.306 400.226 560.634 2693.601
CkDirect CHARM++ 5.133 11.379 33.112 60.675 115.103 169.552 223.599 383.732 543.491 2677.072
MPI 7.606 13.936 39.903 66.661 120.548 173.041 226.739 386.712 546.740 2680.459
MPI-Put 14.049 17.836 39.963 67.972 122.693 178.571 232.629 392.388 552.708 2685.972

Table 2: Round trip time (µs) for the pingpong micro benchmark on CHARM++ without and with
CkDirect as well as MPI on Blue Gene/P.

LAPI [12] provides an asynchronous infrastructure for the development of parallel applications.
It is based on an active-message framework. Whereas CkDirect handles are bound to callback
functions on the receiver during a registration process, a LAPI message includes the address of
a user-specified function to be invoked at the receiver on message delivery. The two are similar
in that they both expect the user to manage buffer space for arriving data. However, CkDirect
is a higher level interface that, as we shall see, can be implemented on very different kinds of
interconnects.

3 Microbenchmark
We used a simple pingpong microbenchmark to evaluate the effectiveness of our implementation
of CkDirect. The benchmark measures the round trip time for various sizes of messages. For each
message size, the reported time is averaged over a thousand iterations.

Table 3 shows pingpong times on Infiniband. This experiment was run on the Abe cluster at
NCSA (Dual-socket quad-core 2.33 GHz Intel 64 Clovertown nodes connected by Infiniband.) We
show the round trip time for the default implementation of CHARM++, CHARM++ using CkDirect
as well as MPICH-VMI (2.2.0) and MVAPICH2 (0.9.8). For MVAPICH2, we show two times:
one using two-sided communication and the other using one-sided communication (MPI Put.)
Message size was varied from 100 to 500,000 bytes. The message size in this case refers to the
amount of user data being sent. The default version of CHARM++ sends an additional CHARM++
message header.

The round trip time for CHARM++ using CkDirect is lower than that of the default version of
CHARM++ for all user message sizes. The performance gains for smaller user messages (≤ 1
KB) are accounted for by two observations: 1) data sent using CkDirect put do not need the
transmission of the CHARM++ header (≈ 80 bytes long) and 2) CkDirect data does not incur
the CHARM++ scheduling overhead.

For messages sized between 1 KB and 20 KB, the default version uses a packet-based two-
sided communication protocol whereas CkDirect uses just a RDMA put. Since the default version
of CHARM++, unlike CkDirect, requires additional synchronization to use RDMA, it is cheaper



for it to use the packet based protocol in this range of message sizes. However, the per-byte
transmission cost for a RDMA put is lower than that for a packet based version. This explains the
growing difference in performance between the CkDirect and default versions in this range.

Between 20 KB and 30 KB, the default CHARM++ version switches to a RDMA-based proto-
col. So, the only differences between the two versions are the initial rendezvous necessary for the
RDMA-based default version and the fact that the CkDirect message avoids the CHARM++ sched-
uler. The scheduler cost is constant, particularly for a pingpong benchmark. The rendezvous has
a constant cost synchronization component as well as a memory component whose cost increases
slowly with message size. This is why the difference between the default and CkDirect versions
grows slowly for messages bigger than 30 KB.

The CkDirect version of CHARM++ also performs better than both versions of MPI available
on the machine. This might be because of the much simpler semantics of CkDirect compared to
MPI. The simpler semantics of CkDirect means that, unlike MPI, there is very little subsidiary
processing, such as tag matching, done by the RTS. MPI one-sided communication performed bet-
ter than MPI two-sided for message sizes larger than 70 KB. However, it was still significantly
slower than CHARM++ with CkDirect. This difference can be attributed to the extra synchroniza-
tion (post-start-complete-wait) required while using MPI Put to detect when a message has been
successfully received. The lack of synchronization, explicit or implicit, in CkDirect affords it an
advantage even over one-sided MPI communication primitives. Thus, CkDirect derives its benefit
not just from one-sided communication but also its lack of synchronization.
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Figure 2: Improvement in average iteration time for CkDirect over CHARM++ messages.

Similar results were found on Argonne National lab’s Blue Gene/P (Surveyor) as shown in
Table 3. The one-way latency time for the DCMF message layer on BG/P is reported at 1.9µs [8].
Therefore, CkDirect is running quite close to the best performance available. We compared the
vendor (IBM) MPI and CHARM++ with and without CkDirect. The CkDirect version is faster
than the default message-based one for all message sizes tested, initially by ≈ 9µs. This differ-
ence grows with message size to ≈ 16µs. There is no cut-over point where RDMA is used on
BG/P, because the supporting rendezvous protocol was not installed on Surveyor at the time of this
writing. The scheduler cost remains constant and the copying cost for the default message based
ping pong increases very slowly in proportion to message size.

The performance difference between CkDirect and MPI starts at ≈ 2.5µs, jumps to ≈ 6µs at
5 KB and drops down to ≈ 3µs at 30 KB and greater. We surmise that there may be some kind



of buffering threshold which results in a slightly different behavior within MPI. We assume that
various MPI semantics account for the ≈ 3µs difference found at all message sizes, because no
underlying one-sided semantics are being used in this BG/P implementation of CkDirect.

4 Simple applications
Experiments were performed to assess the effectiveness of the CkDirect interface for simple ap-
plications whose communication patterns are typical of many scientific codes. We present results
from a stencil computation that avoids redundant copies and a matrix multiplication algorithm that
optimizes communication volume.

4.1 Stencil Computation
By performing halo-exchanges interspersed with chunks of computation, stencil computation pro-
grams closely mimic the communication pattern of many real-world applications. This explains
their significance as benchmarking tools. In our implementation, a three-dimensional domain is
partitioned into cuboids, with one such cuboid assigned to each chare. We use the Jacobi method
to converge to a solution. The two versions of the code we compare here are based on CHARM++
messages (MSG) and the CkDirect API (CKD) respectively.

Considerable effort was invested in ensuring a fair comparison between the two versions. In
particular, we avoid copying overhead at the receiving side in both versions. Therefore, gains in
performance are harder to come by and are solely the result of bypassing the CHARM++ scheduler
in the one-sided communication version. As we shall show in the following subsections, this does
lead to considerable performance advantages; however it also entails a significant increase in the
application codebase which is both tedious to write and hard to debug.

The semantics of the stencil computation closely match the intended use of the CkDirect in-
terface. Once a chare has set up CkDirect channels with each of its six communication neighbors,
the computation proceeds in an iterative manner. Each chare sends its boundary (ghost) faces to
the corresponding neighbors. A chare commences computation when it has all the ghost faces it
needs. We ensure that there is only one CkDirect transaction in flight by having a global barrier
after all chares have called CkDirect ready.

We performed strong scaling tests on the ANL Blue Gene/P and NCSA’s T3 (dual-socket, dual-
core Intel64 Woodcrest nodes connected with Infiniband.) We observed that the program benefited
greatly from processor virtualization. However, with an increase in the number of chares, the
number of messages increases, with each message shrinking in size. This translates into greater
scheduling overheads because of increased queue occupancy. In such a scenario, CkDirect helps
improve performance by avoiding message creation as well as scheduling overheads.

We present results for a domain with 1024 × 1024 × 512 elements. Figure 2(a) shows the
improvement in performance gained by using CkDirect instead of CHARM++ messages on Infini-
band. Best execution times were observed for a virtualization ratio of 8. As expected, we see
greater percentage gains at finer granularities on higher numbers of processors. Note in particular
the ≈ 12% savings in execution time over the message-based version on 256 processors.

We performed similar tests on the ANL BG/P. Figure 2(b) shows improvements over the
message-based version from 64 through 4,096 processors. As with the T3, we placed 8 chares
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Figure 3: Execution time for Matrix Multiplication on Blue Gene/P and NCSA’s Abe

per processor. As before, the percentage gains become more significant on more processors. There
is, however, a sharp dip in improvement on the 2,048 processor configuration, something we noted
over repeated runs on that processor count. We are still investigating this effect.

We see higher gains on Infiniband, since that implementation of CkDirect uses true one-sided
synchronization free communication, unlike BG/P. Thus, in halo-exchange applications both im-
plementations of CkDirect improve performance, particularly on large numbers of processors.

4.2 Matrix Multiplication
We implemented a parallel matrix multiplication algorithm that uses a 3D decomposition for 2D
matrices [1]. Our implementation divides the input matrices A and B among a 3D array of chares.
Before each chare can do its local computation, A should be replicated along the Z dimension of
the array (chosen arbitrarily) and B along the X dimension. For this, every chare sends its portion
of A and B to other chares which share its Z and X coordinate respectively. Once the computation
is done, C needs to be distributed among the chares and hence every chare communicates with
others having the same Y coordinate.

When CHARM++ messages are used for communication, the data needs to be copied into the
correct locations in the local copy of A and B. Using CkDirect helps avoid this copying by directly
placing the data in the appropriate locations. It also helps avoid the scheduling overhead of multiple
incoming messages on each chare.

We present results for input matrices sized 2048× 2048 on the Blue Gene/P and NCSA’s Abe
cluster. Figure 3 shows the performance of the implementations using messages and CkDirect re-
spectively on the two machines. CkDirect outperforms the message-based implementation on both
machines with the absolute difference in iteration times increasing with higher numbers of proces-
sors. The CkDirect version scales much better than the default version. This happens because in
this application the number of messages per processor increases as the cube root of the number
of processors. So on large numbers of processors, the lower overheads of CkDirect pay off even
more. On 4K processors of BG/P, the performance improvement is close to 40%. Thus, CkDi-
rect can help applications with similar communication characteristics scale to a higher number of
processors.



5 OPENATOM

OPENATOM is a highly scalable implementation of the Car-Parrinello method [4] written in
CHARM++ using the PINY physics engine. Applications of this type perform molecular dynamics
simulations by modeling the electronic structure explicitly (often called ab initio), with sufficient
accuracy to model chemical bond formation and destruction. OPENATOM (the production name
for the LeanCP code) is used in a variety of computational chemistry and material science con-
texts [17, 10]. It has previously been tuned on the Blue Gene/L [3], scaling efficiently to the entire
40,960 processor Blue Gene/L installation at T. J. Watson. As described elsewhere [3], the com-
putation is implemented in a series of overlapping phases with various data dependencies. For the
purpose of this paper only the PairCalculator phases used in orthonormalization will be discussed
in detail. The underlying physics and mathematics for OPENATOM can be found in [14].

5.1 PairCalculator
Electronic states are typically represented as a 3D collection of complex double precision floating
point values. These are naturally decomposed into states, and further decomposed into planes
and held by the GS(s, p), a two-dimensional chare-array. For the purpose of orthonormalization,
a pair of states is multiplied together to form an overlap matrix which is then used to maintain the
orthogonality constraint. Previous optimizations for this process have implemented the “block-
pairs” algorithm wherein the blocks of two states meet at a third object, the PairCalculator (PC).
This object can be decomposed along states, and also along points of the plane, thereby maximizing
parallelism while balancing various communication and multicast tradeoffs [3].

It is the communication of these points from each GS(s, p) to PC(s, s′, p, p′), which most
easily lends itself to further optimization via CkDirect. This communication is repeated each
iteration and the number of points is fixed. Further, data dependencies ensure that the sender and
receiver are always on the same iteration . All the constraints of CkDirect as described in Section
2, are met.

The default implementation for this communication from GS to PC copies the points into a
message and sends them to the PC, which copies the points into a contiguous data buffer and
increments a counter. When all the states computed in a PC have arrived, it multiplies the data
using DGEMM. Efficient execution by DGEMM requires that the data in the three matrix operands
(C = A×B) be held in contiguous buffers. Orthonormalization updates the state data to maintain
orthogonality and this updated data is returned to the GS chares for use in the remainder of the
iteration.

Using CkDirect, the points in GS and their destination in PC are registered as the sender and
receiver buffers. The receiver side also registers a CkDirect callback which counts the number
of states that have sent their points to the PC. When the data from all needed states has arrived,
the callback enqueues a CHARM++ entry method to perform the multiplication. The callback
itself is a simple C function call, not a CHARM++ entry method. Therefore, the scheme allows
accumulation of all the data to occur without incurring entry method scheduling overhead on the
receiver side. After the multiply is complete, the CkDirect Ready function is called to prepare for
the next iteration. The OPENATOM version that uses CkDirect is the same for both Blue Gene/P
and Infiniband.



5.2 OPENATOM Performance with CkDirect
Although OPENATOM’s use of the CkDirect API is architecture independent, the underlying im-
plementation of polling for detection does impact an optimal vs non-optimal use of CkDirect. Our
initial implementation experienced worse performance when using CkDirect than normal messag-
ing. To see why, we first must consider that OPENATOM’s coarsest decomposition requires 4 ×
nstates×nplanes CkDirect channels. In the benchmark, which has 1024 states, this requires thou-
sands of CkDirect channels, a number which increases further each time the PairCalculator com-
putation is further decomposed, as is done at higher processor counts. This typically requires tens
or hundreds of channels per processor, with commensurate overhead to poll each channel. Each
PairCalculator spends most of the time step ready for input, which can inflict the polling overhead
on many unrelated phases. The simplest solution for this problem is to use CkDirect ReadyMark
when the data is ready and CkDirect ReadyPollQ at the end of the phase prior to the PairCalculator.
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Figure 4: OPENATOM performance
for CkDirect and CHARM++ mes-
sages on Abe.

With this optimization in place we obtained performance
results for the 256 water molecule benchmark with a 70 Ry-
dberg cutoff on Abe. Figures 4(a) and 4(b) indicate that
the performance improvement on the NCSA Abe cluster is
around 4%. Figures 4(a) and 4(b) indicate that the perfor-
mance improvement on the NCSA Abe cluster is around
4%. To highlight the phases optimized using CkDirect,
we also ran a version of the benchmark which disables all
phases except for the PairCalculator phases, while retain-
ing all PairCalculator-related communication. These tim-
ing results are differentiated by “PC” in Figure 4. The
PairCalculator-only version results shows an even greater
difference across architectures reaching as high as 14% on
Abe. Although CkDirect performs better at all points, strong
scaling efficiency for OPENATOM drops off earlier on Abe,
particularly when running on many cores per node, due to
limited bandwidth and computational noise (further discus-
sion of these issues is outside the scope of this paper), so we
truncated this graph at 256 processors and used 2 cores per
node to simplify analysis and highlight network effects.

Figures 5(a) and 5(b) present performance results for the
same Rydberg cutoff on Blue Gene/P. The CkDirect version
is slightly faster for all processor counts. The application it-
self is already highly tuned to maximize overlap of compu-
tation with communication and to exploit available latency.
This initial Blue Gene/P implementation of CkDirect is ef-
fectively only removing the already low CHARM++ over-
heads. Although the PairCalculator phases dominate perfor-
mance for this large benchmark, computation and commu-
nication are well overlapped in OPENATOM which provides
enough latency tolerance that the reduction in communica-
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Figure 5: OPENATOM performance for CkDirect and CHARM++ messages on BGP.

tion overhead from CkDirect in one phase does not translate into the same gains for the whole time
step. The net effect of the latency and communication overhead reduction is an improvement in
PairCalculator-only runs that is similarly slight except for the 4096 run, where communication is
more critical and the resulting benefits are more substantial.

We anticipate further improvements in OPENATOM’s performance when the CkDirect opti-
mization is integrated into other phases of the computation. The greater benefit on Infiniband is
largely due to the benefits of RDMA and, to a lesser extent, from increased latency sensitivity in
the application, which is due to the pairing of Abe’s faster processors with a higher latency inter-
connect than found in Blue Gene/P. The general trend for all the benchmarks run is for the amount
of benefit to increase with processor count, so we predict that this technique will prove highly
beneficial in codes like OPENATOM on large scale machines, provided two conditions are met: (a)
efficient one-sided primitives are used in the implementation of CkDirect and (b) the architecture
has a higher communication to computation ratio than is achieved by 8-way multicore clusters with
a single Infiniband connection per node.

6 Conclusion
We have described a new one-sided communication interface, CkDirect, which relies on pre-
existing synchronization in applications. Though it places constraints on the conditions under
which it can be used, we illustrated its benefits in several use cases common to science codes.
We demonstrated considerable performance gains over CHARM++ messages and MPI put in mi-
crobenchmarks, simple applications and a production science code. These benefits were demon-
strated on both the x86 64 Infiniband and Blue Gene/P architectures.

Although CkDirect provides several performance benefits, it is a simplistic and low-level in-
terface for memory to memory one-way operations. As such, it is more labor-intensive to use
and debug than standard Charm++ messaging techniques. We are considering several extensions
to simplify its use, including support for multicasts, reductions, strided communication patterns
and the eventual inclusion of CkDirect into an automatic learning framework which will create
persistent channels where appropriate.
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