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Abstract. Multiple PetaFLOPS class machines will appear during the coming year, and many
multi-PetaFLOPS machines are on the anvil. It will be a substantial challenge to make existing
parallel CSE applications run efficiently on them, and even more challenging to design new
applications that can effectively leverage the large computational power of these machines.
Multicore chips and SMP nodes are becoming popular and pose challenges of their own. Further,
a new set of challenges in productivity arise, especially if we wish to have a broader set of
applications and people to use these machines. I will review a set of techniques that have
proved useful in my work on multiple parallel applications that have scaled to tens of thousands
of processors, on machines like Blue Gene/L, Blue Gene/P, Cray XT3 and XT4. I will identify
new challenges and potential solutions for the performance issues. Issues presented by multicore
chips and SMP nodes will also be addressed. Finally, I will review some new and old ideas for
increasing productivity in parallel programming substantially.

1. Introduction
As I write this paper, the first petascale supercomputer has already been assembled. Many
supercomputers with multiple petaFLOPS peak performance are being developed to be deployed
within the next few years. Which parallel programming techniques are necessary to harness this
unprecedented power for science and engineering applications that could lead to breakthrough
discoveries? In this paper, I will describe my answer to this question, based on my research
group’s experience with developing multiple parallel applications that have scaled to tens of
thousands of processors.

Multiple trends are contributing to the emergence of powerful parallel machines. The first
is the long-standing trend of growth in computer hardware, including processors and memories
getting cheaper. Of course, processors have stopped becoming faster in terms of clock frequency,
but that is after several decades of continuous improvement on that count as well. As a result,
it has been feasible to build very large parallel computers with relatively modest investments.
For example, a company in India was able to build a computer with a peak performance of 170
teraFLOPS [27], reportedly for a cost of about 30 million dollars.

The second dramatic trend is that of an increasing number of cores on each multicore chip.
Clock frequencies cannot be increased any further due to power dissipation concerns. Yet the
feature size keeps decreasing and the number of transistors per chip keeps going up. Hence,
it makes sense to organize all those transistors into multiple processor cores on a chip. Intel’s
eight-core chip is expected to ship later in 2008; further it is expected that the number of cores



per chip will keep doubling every so often (say 18 months) for at least a decade. The ways in
which the mainstream desktop market responds to these chips will have significant consequences
for the high-performance computing community.

The third trend is the development and incorporation of specialized accelerator chips and
accelerator-like features in mainstream chips. Accelerators, by restricting their domain of
application to a few specific patterns of computation, have been able to achieve performance
that is orders of magnitude higher than the general purpose processors. Graphics processors
have an extremely specialized function, of computing pixels, given a set of polygons. Yet, they
were used by enterprising computational scientists for carrying out computations useful for
their applications. But now these accelerators have evolved towards a somewhat more general
architecture, as seen by NVIDIA’s new architecture and the CUDA programming system. IBM’s
Cell Broadband Engine presents an architecture that is more general purpose than GPGPUs,
but still specialized compared with mainstream processors. Each of the eight specialized cores
on the chip must work with only a small scratch-pad memory, with explicit DMA for data
movements between the scratch-pad and main memory.

At the same time, there exist computational modeling problems which can be solved if one
can harness this compute power effectively, which will lead to dramatic benefits for mankind.
There are breakthroughs that are waiting to happen in multiple areas. It can improve our
understanding of nature: biophysical simulations for understanding the molecular machinery of
our bodies, genetic computations to understand evolution, similarities and differences between
individuals, and the relationships between the genotype and phenotype. It can improve our
ability to predict future: including short-term weather and long-term climate predictions and
possibly even global economic predictions. It can lead to better design of engineered artifacts,
such as automobile engines, rockets or buildings.

The new generation of CSE applications do not just exploit the larger compute power by
“increasing resolution everywhere”. Instead, they tend to use techniques such as adaptive
and dynamic mesh refinements, sophisticated algorithms such as Barnes-Hut or Fast Multipole
Method, and are therefore more challenging to parallelize effectively.

To summarize, parallel computers of the petascale era are here and they are likely to have
a rich, complex and possibly heterogeneous structure. High-impact science and engineering
applications that need such power exist or are being developed, but are challenging to parallelize
effectively. The parallel programming challenge before us in the coming era is: how to
productively and efficiently program the multi-petaFLOPS machines? In this paper, I will
outline some of the lessons I have learned in parallelizing several applications to machines with
over 40, 000 processors, that I believe will be useful to address this challenge.

1.1. Application Experience
I will select examples from the experience of my research group1 in parallelizing a few CSE
applications that are used by CSE communities in their regular research: Namd, from our oldest
collaboration, is a program for biomolecular modeling [2]; OpenAtom is a Car-Parinello MD
program used for simulation of electronic structure (in nanomaterials, as well as biophysics) [3];
ChaNGa, an astronomy code [13]; and RocStar, a code for simulating solid-propellant rockets,
such as those in the space shuttle solid rocket booster. Figures 1(a), 1(b) and 1(c) show
performance of these applications on three machines: the Blue Gene/L at IBM (up to 32, 768
processors), the recent Blue Gene/P at ANL, and the Cray XT3/4 at PSC and ORNL.

The success of these applications, which are used routinely by scientists, substantiates and
leads credence to the lessons presented in the rest of the paper. However, I note that the SciDAC
community, and the broader HPC community has a significant experience in developing highly

1 Parallel Programming Lab, UIUC – http://charm.cs.uiuc.edu
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(a) Namd running STMV (1 million atoms)
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(b) OpenAtom running WATER 256 70Ry (256 water
molecules)
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Figure 1. Performance of Namd, OpenAtom and ChaNGa on Cray XT3, XT4 and IBM Blue
Gene/L, Blue Gene/P

scalable experience. So, the “lessons” or dicta presented here should be taken as a subjective
selection based on my experiences and my set of techniques. A union of such lessons and
techniques from multiple HPC researchers will be needed to tackle the challenge of petascale
application development.

2. Guiding Principles
Our computer science research, towards the goals mentioned in the introduction, involves
development of abstractions and techniques that help simplify parallel programming and improve
performance of applications developed. We use the following guiding principles to decide which
abstractions and techniques to explore.

• Don’t rely on magic (at least until you have learned the trick): For example,
compilers that automatically parallelize sequential codes is an attractive research idea, but
one that smacks too much of wishful thinking. Parallelizing compilers have achieved close
to technical perfection, in that they can extract most of the parallelism that can be extracted
from sequential programs, with a huge intellectual effort by the compiler community.
However, they have proved inadequate mostly because sequential programs obscure too
much information. In general, it is better to develop abstractions in a bottom-up manner.
One aims at developing an abstraction that builds on existing technology, and one that can



Figure 2. Application Oriented Parallel Abstractions

be seen to be feasible at the outset, and one that can be shown to be useful (in raising the
level of abstraction) for realistic applications. Of course, such an organic bottom-up growth
of abstractions needs to be controlled with the quest for elegance and simplicity.

• Seek an optimal division of labor between the system and the programmer:
There are tasks that a human programmer can do much better than any automated
system and vice versa. By automating those tasks that humans have most difficulty
with, while avoiding automating tasks which are difficult to automate (such as automatic
parallelization) but are not that difficult for an application programmer, we will get the
most benefit from our research efforts.

• Design abstractions based solidly on use cases: As computer scientists, we tend to
develop abstractions in an almost “platonic” way. Elegance and beauty may influence us
more than relevance to real applications. This tendency may lead to abstractions that one
can write papers about but that are not used by the CSE community, and thus fail to have
an impact on the state of the art. At the other extreme, a computer scientist may help
parallelize an individual application, but then the contributions are not transferable to other
applications. Instead, one should develop abstractions in the context of multiple full-scale
applications. Benchmarks, short algorithms or kernels don’t expose the full complexity of
the parallel programming problem, nor does a single application. If the abstractions that
are triggered from individual applications are used, tested and honed in the context of
multiple applications, they are likely to improve the state-of-art in parallel programming.
Figure 2 illustrates this idea, in the context of my group’s abstractions, and some of the
applications developed with this paradigm. We called this approach “Application-oriented
yet Computer Science centered research” [14].



Figure 3. The user is only concerned with objects and communication between them. Actual
mapping of objects to processors and underlying messaging is handled by the system.

Figure 4. Virtualization for MPI Threads using Adaptive MPI

3. Lessons Learned
In the following subsections, I will enumerate a few “imperatives” of petascale programming.
Each is based on a technique (or set of techniques) that has been proved useful in highly scalable
CSE applications, and that I consider to be crucial to programming the next generation of
parallel supercomputers.

3.1. Decouple Decomposition from Physical Processors
Dictum 1: Use over-decomposition with migratable objects, and leverage its benefits among
multiple dimensions via an intelligent runtime system.

Processor virtualization based on migratable objects was developed in the early 1990s in my
group’s work on Charm++. The basic idea is simple: let the programmer over-decompose
the computation and data into logical work-units and data-units, and let an intelligent runtime
system (RTS) assign these units to physical processors. Several others have developed similar
ideas since early days of parallel computing [7, 24]. The decomposition done by the programmer
is independent of the number of processors. Yet, the programmer does exercise grain-size control,
ensuring that the overhead is adequately amortized by useful computation in each grain. Since
the overhead is independent of the number of processors, the programmer does not have to
optimize for the particular number of processors available in their allocation, in most cases.

Charm++ and AMPI are two systems that embody this strategy. In Charm++, the data
and the computation is decomposed into multiple indexed collections of data-driven migratable
objects that communicate with each other via asynchronous method invocations, and a few
asynchronous collective calls (Figure 3). AMPI is an implementation of MPI where each MPI
“process” is implemented as a user-level light weight migratable thread (not to be confused



with a POSIX thread, see Figure 4). Over the past decade (and more), we have learned that
this strategy yields a multitude of rich dividends. The first category of benefits is in the area
of better software engineering, whereas the second category consists of benefits arising out
of automated program optimizations via intelligent runtime strategies enabled by migratable
objects. A longer, albeit somewhat dated, exposition of these benefits can be found in [16, 17].
Here, a brief summary is presented.

Separating the decomposition from the number of physical processors immediately frees one
from artificial restrictions like “this program requires a cube of power of two processors”. Only
the logical entities need to have such a restriction, while the program continues to run on any
arbitrary number of processors, with only a small loss of efficiency, if at all. That is, if the
number of objects is not evenly divisible by the number of processors, and all the objects have
an equal grain size.

Software engineering principles of cohesion and coupling are violated in MPI programs, viewed
from a certain perspective: this comes about because of the processor-centric organization of
an MPI program. Consider a program involving two parallel modules, say a “solids” and a
“fluids” module. Typically, in an MPI program, the 17th partition (for example) of the solids
domain and the 17th partition of the fluids domain are glued together on the 17th processor,
simply because their respective partitioners called them “17th”. Geometrically, they may not
be connected and the corresponding computations may not exchange data with each other. In
contrast, with object-based decomposition, one can partition the two domains independently
into M and N pieces respectively, express the computation in terms of the M +N objects, and
allow the RTS to place the objects that communicate with each other together to the extent
possible.

Concurrent composition of parallel modules is well supported by this model: since there
are multiple objects on a processor, this model requires a message-driven scheduler on each
processor. As a result, if two modules are invoked “simultaneously”, idle time in one module
can be automatically overlapped with useful computation from the other module.

The second category of benefits arises from the flexibility afforded by migratable objects,
which can be exploited by an intelligent runtime system. Probably the most obvious of these
is dynamic load balancing and is discussed in the next section. In addition, the RTS can
shrink and expand the sets of processors allocated to a job by migrating objects accordingly.
This can enable more powerful job scheduling where jobs don’t need to languish in the queue
waiting for the right number of processors to become vacant. An introspective RTS can also
observe persistent communication patterns among objects and optimize communication by using
appropriate algorithms, say for the collective operations such as all-to-all.

Automated checkpointing can be supported now with little extra effort by the programmer,
since checkpointing is essentially “migrating” all the objects to the disk. The Charm++ and
AMPI systems provide such automated checkpointing [31] in two separate modes: a traditional
file-system based checkpointing, and a memory or local-disk based checkpointing. Migratable
objects also enable an innovative fault tolerance scheme which (a) sends only the failed processors
back to their checkpoints and (b) parallelizes the recovery by migrating the recovering objects
from the failed processor to multiple other processors [4]. As a result, a job can continue to
make progress even if the mean time between failures is less than the checkpointing period!

Message-driven scheduling leads to automatic adaptive overlap of communication and
computation, as mentioned above. This also makes the programs more tolerant of latencies.
This has been demonstrated somewhat dramatically in our multi-cluster results [20], where
relatively tightly coupled benchmarks with time steps of a few milliseconds were able to tolerate
multiple millisecond latencies between clusters located over a hundred miles apart. In addition,
the fact that the scheduler can peek ahead at the queue can be exploited to prefetch the objects
(and in some extreme cases, such as on IBM cell processors, their code) closer to the processor in



the memory hierarchy, which provides a significant performance boost in today’s architectures.
In spite of this long list of successes, we believe that only the “low hanging fruit” has been

exploited so far from this idea. Much more sophisticated runtime optimization strategies are yet
to be developed. Scheduling challenges, such as those identified in [12] which require making
complex trade-offs between parallelism and available memory along with load balancing, are
examples of problems that will require further research.

3.2. Automate Load Balancing
Dictum 2: Leverage the principle of persistence via measurement-based automatic load
balancing.

For most CSE applications, once a computation is expressed in terms of its “natural” objects,
the computational loads and communication patterns tend to persist over time. We call this the
principle of persistence. Note that this is simply an empirical observation, similar to the principle
of locality. This principle often holds even when the application behavior is dynamic. Often,
either the loads and patterns change slowly over time, or they change abruptly but infrequently.
In either case, the recent past becomes a good predictor of near future, and this can be exploited
by runtime load-balancing strategies that are enabled by migratable objects.

As an aside, it is worth pointing out that this methodology leads to a two-level load-balancing:
application entities (data and computation) are already partitioned into chunks, and the load
balancer only moves the chunks around the processors. As an example, an unstructured-mesh
computation is traditionally re-balanced by calling a graph partitioner (such as parMETIS).
This is typically a time consuming process. In contrast, the migratable objects method retains
the original over-partitioning and only decides to migrate chunks, say because some chunks have
gotten heavier. Since there are thousands of elements in each chunk, this is a much faster process.
Moreover, the runtime strategies become domain independent: they apply to unstructured-mesh
computations or gravity calculations based on the Barnes-Hut algorithm.

Since the runtime system is in charge of mediating communication and scheduling objects, it
can automatically instrument and collect data on how long an object executes and how many
bytes and messages are communicated between each communicating pair of objects. A load-
balancing strategy, selected from a suite of strategies, then uses this database to create a new
mapping of objects to processors, either from scratch or by refining the existing mapping.

Centralized load balancers collect the entire database on one processor and make decisions
using a sequential algorithm. Since there are typically only tens (or hundreds) of objects per
processor, the sequential bottleneck is not as strong a hurdle as one might expect. Indeed,
we have shown that such balancers can be used to several thousand processors effectively.
However, for much larger machines, this bottleneck must be eliminated. Fully distributed
strategies [15, 30, 1], which we experimented with in early days, do not lead to a good quantity
load balance. Instead, hierarchical and hybrid load balancers can combine the benefits of both
kinds of strategies.

In our experience (at least currently), a suite of strategies, rather than a single super-strategy,
is necessary, catering to differing needs of applications and parallel machines. Some strategies
may trade-off communication costs for better load balance, or vice versa; others may minimize
load-balancing time at the cost of quality, which trade-off is desirable for computations where
the load changes rapidly.

Recent supercomputers, including BG/L, BG/P and Cray XT series, employ a three
dimensional torus or grid interconnect, which necessitates another wrinkle for load-balancing
strategies. Overall, such interconnects are beneficial because they can maximize link bandwidths
due to shorter wires. Due to wormhole routing and its variants, the communication latency does
not increase significantly with the number of hops; however the fraction of available bandwidth
consumed by a message is proportional to the number of hops traveled. Thus, for communication



Figure 5. Object-based Parallelization for Molecular Dynamics

intensive applications, a load balancer must keep communicating objects on nearby processors
to the extent possible.

Automatic load-balancing faces many new challenges with the new generation of machines and
applications. In addition to the load, memory footprint variation may have to be considered;
heterogeneous processors including accelerators complicate the scenario further. However, it
seems clear that for such large machines, an automated system (in the RTS) can do a better job
than most humans can productively do.

3.3. Analyze Scalability of the Algorithm
Dictum 3: Use asymptotic analysis and particularly isoefficiency analysis, to choose parallel
algorithms that will continue to scale to newer generations of machines.

When one uses a larger machine, one often wants to solve a larger problem. This early insight
led to the notion of scaled speedups [9]. Isoefficiency analysis gives a precise definition of when
an algorithm can be said to be scalable, and provides a quantification of scalability [8]. Consider
an algorithm that is running on P processors with parallel efficiency η. If we increase the number
of processors, can we also increase the problem size so that we can regain the same efficiency η?
If so, the algorithm is said to be scalable. The rate at which the problem size (as measured by
the total amount of computation, for example) must increase to maintain the same efficiency,
as a function of the number of processors, quantifies the scalability.

Our early experience in designing the program Namd illustrates this point. In the mid-1990s,
when Namd was designed, many other biomolecular simulation programs used either static
atom decomposition or force decomposition methods. The former was a natural consequence
of parallelizing an existing sequential code. Our isoefficiency analysis [18] of both methods
showed that the communication to computation ratio will keep on increasing with increasing
number of processors, independent of the number of atoms being simulated, thus rendering
them non-scalable. This gave a solid basis for our decision to use spatial decomposition (which
was also used by a few others, such as [25]). To generate additional parallelism in a flexible
manner we hybridized this with force decomposition: a separate migratable object was created
for calculating forces between atoms in each neighboring pair of cubes, and it could be placed
by the load balancer on a third processor where neither of the interacting cubes are resident
(see Figure 5). For the machines and molecular system sizes being considered at that time,
the non-isoefficient methods were adequate; yet our design based in part on the isoefficiency
analysis, has survived the test of time for over a dozen years.



(a) Time Profile View (b) Outliers View

Figure 6. Scalable Performance Visualization Tools

Figure 7. Timeline view of a Namd run illustrating performance issues

3.4. Analyze Performance with Sophisticated Tools
Dictum 4: Use scalable performance analysis tools.

Performance of a parallel application on large modern supercomputers is a function of
a large number of interacting factors. With sophisticated multi-module applications, deep
communication stacks with adaptive and variable behaviors, and other complexities of a
parallel architecture, it is not surprising that even the most well-designed applications require
performance debugging (a.k.a. performance tuning). When one is dealing with, say, hundred
thousand processors, running a fine-grained application that synchronizes every few milliseconds,
even low-probability imbalances or bottlenecks will occur on some processor. Even on a thousand
processors it is possible to view and analyze full traces, albeit barely so. But on larger machines,
it becomes well-nigh impossible. A more automated solution is necessary.

There are two separate limits being breached. One is the perceptual limit of how much
visualized data can a human brain comprehend; the second is the limit on the volume of
trace data that needs to be stored on the file system, and the time needed to store and
analyze it. For the former, a well engineered system that can process, sort and summarize
the relevant performance data in perceptually comprehensible chunks is necessary. For the
latter, an automated analysis, carried out in parallel, possibly at the end of the program run
while the trace data is still in individual processor memories, will be necessary.

A relatively simple example illustrates this point. While debugging the performance of
Namd on 8, 192 processors, which was below expectations, we examined the time-profile view



(Figure 6(a)), which shows the average processor utilization for a sequence of time intervals. The
waxing and waning of utilization with each time step seemed like the signature of load imbalance;
yet the dynamic load balancer was reporting that it had managed to bring the load imbalance
within a few percent. An outlier analysis was performed to show the 20 most different processors
(Figure 6(b)). This showed that the overloaded processors had a particular activity on them.
This particular activity, an intermediate node of the tree-based multicast over a small set of
processors, was assumed to be cheap. A more detailed time-line view of the most overloaded
processors, and their communicating processors, showed the problem clearly (Figure 7). Not only
were the intermediate modes of the spanning tree taking over 100 µs, which was much longer
than expected, but multiple such intermediate nodes were being assigned to the overloaded
processors. This went unnoticed by the load balancer because the spanning trees are formed,
out of necessity, after the load-balancing phase, with respect to the new placement of objects.
How this chicken-and-egg problem was solved is not pertinent here. The scalable outlier analysis
presented a manageable picture to the programmer, which was instrumental in identifying this
problem. Our current work [22], as well as that of a few other groups [23, 6, 26], is aimed at
carrying out such analysis automatically at runtime, and storing only relevant summaries and
a few representative detailed logs.

3.5. Model and Predict Performance Via Simulation
Dictum 5: use an emulation-based program development and performance modeling system to
prepare your application for a future parallel machine.

The NSF funded Blue Waters system will be available for general use in Illinois in the middle
of 2011. Although many details are still not public, it will have at least 200, 000 processor cores,
and will have multiple petaFLOPS peak performance. An application developer who starts
tuning (or worse, developing) an application for this machine at that time will have a difficult
time getting effective production runs during the first year. Simply doing paper and pencil
modeling, or scaling it to the other parallel machines available to the NSF community may not
be adequate. A similar challenge arises any time a new machine with substantially larger size,
or substantially different architecture, than the prevailing machines is to be deployed. Further,
even when a large machine is deployed, time available on the full machine for performance tuning
may be limited and intermittent.

An approach towards a solution is provided by the BigSim project at Illinois. The idea
leverages processor virtualization based on migratable objects mentioned earlier. One first runs
the full-fledged application on a (relatively) smaller parallel machine in emulation mode. For
example, a target application with a million objects (or AMPI threads) meant for a target
machine of 100, 000 processors can be run on a 10, 000 processor machine, with the runtime
system providing data structures that make it pretend to be the full size machine. During the
emulation mode run, trace data is collected that records information about sequential execution
blocks (SEBs), messages, and dependencies between them. This trace data is then fed to a
parallel discrete event simulator along with architectural parameters of the target machine. The
simulator run produces performance traces as if the program has been run on the target machine,
which can then be analyzed using scalable performance analysis tools.

This basic outline shows the promise of the approach, but hides many technical challenges.
Somewhat surprisingly, there exists a significant class of applications where such a 10-to-1
multiplexing of target processors to emulating processors does not cause a memory footprint
problem. For other applications, an out-of-core execution scheme that leverages the peek-ahead
capability of message-driven execution is necessary. Predicting execution time for SEBs on the
target processors is another challenge. One can use a multi-resolution approach here, but at the
highest resolution one may need to plug in (and/or interpolate) numbers from cycle-accurate
simulators. Similarly, a multiple-resolution approach can be used for modeling communication



performance. Significant research is underway towards these objectives and an initial system is
in place for application developers.

The technical details of solutions to these challenges are out of scope of this paper [32, 29].
However, it is important to understand what the utility of BigSim for petascale application
development is: (1) the emulation is useful to test the basic scalability authentication data
structures. (2) Even when the performance prediction is approximate, the performance traces
obtained by the simulation are useful for identifying potential performance bottlenecks. (3)
Application sensitivity to machine parameters (which may not be completely known yet) can
be studied by running the simulation with varying machine parameters. For example, one can
study how latency tolerant the application is. (4) runtime strategies such as load balancers
can be tuned in an off-line mode by processing the trace data via the simulator. (5) off-line
performance tuning using smaller version of the target machine becomes feasible.

4. Challenge of the Multicore Chip
Multicore chips are now the norm, and the number of cores per chip is expected to grow
exponentially for next several years. Multiple such chips are present in individual nodes. Power
considerations will keep clock frequencies low, possibly below 4 GHz. How should a petascale
application developer adapt to these circumstances?

SMP nodes have been used for many years by the HPC community. However they are
commonly used by setting up a separate MPI process for each processor. Hybrid models,
typically using OpenMP within a node and MPI across, have been sporadically used but have
not caught on. Experience suggests that a straightforward coding using OpenMP or pthreads
within a node leads to worse performance than simply using MPI on each processor. False
sharing, cost of locks, sloppy use of common locks for multiple unrelated critical sections, are
some of the reasons for this. With significant effort, they can be overcome but typically only to
equal the MPI performance.

Yet, there are benefits of using shared memory within a node that cannot be ignored, at least
for some applications. In gravity calculations, a processor may request a set of particles from
a remote processor. Since it may encounter a need for the same particles again during its tree
walk, a processor level software cache is maintained. Using shared memory, one can maintain a
node-level cache and reduce network traffic considerably, by avoiding duplicate requests.

We believe that a programming model that does not have the performance pitfalls of OpenMP
or Pthreads is needed for exploiting shared memory within a node. Charm++, and MSA built
on top of Charm++, have some of the features needed in such a model, but clearly further
research is needed. For example, Charm++ objects can only access their own memory, in
addition to node-level read-only data. With this pattern, and a careful memory allocation
strategy, false sharing can be eliminated completely in user programs, nor are any locks needed
in the user program. Of course, the RTS itself must reorganize its own data structures to limit
or eliminate false sharing and reduce the penalty of locks and fences. However, once the RTS
has been tuned, all the applications benefit uniformly. Similar benefits can accrue to users
of frameworks such as Trilinos [10], which can also insulate the users from dealing with SMP
performance issues.

Charm++ has included an SMP version for many years. However, it was typically not used
by application users because of its performance. When we started examining the issue, we found
that for messages up to several kilobytes in length, even messaging within the node was slower
than using the network to send the message (see the top two curves in Figure 8)! The benchmark
used to generate the data in Figure 8 has each processor core sending and receiving 12 messages
in each iteration. With a series of optimizations in the RTS, which are instructive in themselves
and will be described elsewhere, the performance was improved dramatically, even for short
messages (the bottom curve in Figure 8 shows the performance after recent optimizations). For



Figure 8. Performance of k-neighbor(multiple pingpong) iteration time

large messages, of course, the SMP mode performs better due to its avoidance of an extra copy.
Note that in Charm++, the ownership of a message sent to a remote object is transferred to
it and therefore no copy at the runtime level is needed.

In addition to this, the RTS needs to incorporate new versions of load-balancing strategies,
communication optimization strategies, and libraries that are “SMP aware” to derive full
advantage of SMP nodes. Communicating objects should be preferably placed on the same node
if they cannot be placed on the same processor, spanning trees for multicast groups need to be
optimized, load balancers need to take multicast targets into account (especially for multicast
over a set of objects whose number is significantly smaller than the total number of processors
is, which is common in applications such as molecular dynamics) so as to prefer placing them
on the same node. Many such strategies are currently being developed in our research, and in
frameworks developed by other researchers.

5. Further Improvements in Productivity: New paradigms and Interoperability
The task of programming petascale machines for complex multi-module, multi-physics
applications that use sophisticated algorithms and dynamic adaptation remains challenging,
and can benefit from new programming models. Although systems such as Charm++ automate
some aspects (e.g. load balancing) they do not raise the level of abstraction, especially for
applications that don’t need these features. How should we go about exploring and utilizing
new programming models?

Since this is an open area of research, there are many opinions about it. However two meta-
points seem evident: interoperability and need for exploration. The latter point simply means
that we should not standardize “too soon”, allowing many different approaches to be explored.
The need for interoperability arises in part from the same desire. If we facilitate interoperation
of multiple modules written in different parallel programming paradigms, it becomes possible
to integrate one module based on a radical paradigm into an application consisting of many
traditional-paradigm modules. This allows new paradigms to establish a “beachhead” within
the HPC landscape. But the long-term reasons for supporting interoperability are deeper: it
seems conceivable, or possibly even inevitable, that different paradigms would be suitable for
coding different types of algorithms. A system that supports interoperability will therefore
enhance productivity by allowing a suitable paradigm for each module.

Interoperability doesn’t just mean the ability to call one module from another module written
in a different paradigm. It means the ability to concurrently compose multiple patterns and
modules. As explained in Section 3.1, this may require an approach based on over-decomposition



Figure 9. A complete programming solution with multiple interoperable paradigms.

and message driven execution.
A somewhat radical idea for raising the level of abstraction is to simplify parallel programming

by giving up completeness! One can design a language/paradigm that is simple to use and
debug applications with, yet cannot be used for expressing all parallel algorithms. As long
as it is useful for expressing a significant subset of parallel programming patterns, it can be
used to improve programmer productivity when combined with interoperability. Multiple such
paradigms, interoperating with lower-level but complete paradigms such as MPI or Charm++,
form a complete parallel programming solution (see Figure 9).

In our own work, we have developed two such paradigms. Both are deterministic in the sense
that they do not permit expression of programs with race conditions. Multiphase shared arrays
(MSA) [5] is a paradigm in which migratable threads can access user-partitioned global data
arrays; the restriction is that each array must be accessed only in one of a few access modes,
including read-only, exclusive-write, and accumulate. The access modes of an array may change
across phases indicated by array-specific synchronization points. Charisma [11] is a language
that supports static data flow communication only. The program consists of migratable objects
(as in Charm++) that communicate with each other in predetermined patterns. These patterns
are expressed in a script like notation, while the sequential code is expressed separately.

It seems clear that support for a global address space is a popular abstraction, though it
need not be as general as cache-coherent shared memory. Co-array Fortran (CAF), UPC, and
GA (Global Arrays) are examples of such paradigms. GA, for example, has been used in
several widely used applications, such as NWChem [19]. It is necessary to find a method for
supporting these (and related) abstractions with true (concurrently composible) interoperability,
migratability and adaptive runtime systems, without losing the ability to leverage hardware
support for one-sided (get/put) operations.

An answer along other dimension to the question of raising the level of abstraction is
provided by domain-specific frameworks. An unstructured mesh framework, such as Sierra [28]
or ParFUM [21], encapsulates commonly needed functionality within that domain into a reusable
library, and provides an abstraction that simplifies expression of program modules within such
domains. Since many CSE applications are covered by a relatively small number of data
structures — unstructured meshes, structured meshes, adaptively refined structured meshes,



particles partitioned into uniform bricks/cubes or into hierarchical structures such as oct-trees —
frameworks aimed at each of these can enhance productivity. Again, since the entire application
may consist of multiple modules only some of which can use such a framework, it is necessary
that such frameworks play well in an interoperable framework.

6. Conclusion
I have presented a viewpoint about what techniques are needed for programming upcoming
parallel machines with performance of multiple PetaFLOPS. Admittedly, it is somewhat
subjective and maybe even a parochial viewpoint, in that it is based on my research group’s
experience with parallel applications and presents a research agenda that overlaps significantly
with my own.

Five techniques were identified and presented in the form of dictums: migratable-objects-
based virtualization, load balancing based on principle of persistence, iso-efficiency analysis for
scalability, scalable performance visualization/analysis, and emulation-based early application
development. The paper then discussed challenges presented by multicore chips, and some
approaches for overcoming them. Finally, it discussed methods for raising the level of abstraction
in petascale programming, via multi-paradigm programming supported by an interoperable RTS
that supports concurrent composition, via a collection of specialized, incomplete yet simple
parallel programming paradigms, and via domain specific frameworks.

We are poised at a cusp in the history of computational science and engineering. The raw
power of upcoming supercomputers is huge; the parallel programming challenge of exploiting
this power is enormous; yet, if this challenge can be overcome, the societal benefits arising
from science and engineering breakthroughs are even larger. A concerted effort by the HPC
community in the next few years will make a difference.
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[15] L. V. Kalé, Milind Bhandarkar, and Robert Brunner. Load balancing in parallel molecular dynamics. In

Fifth International Symposium on Solving Irregularly Structured Problems in Parallel, volume 1457 of
Lecture Notes in Computer Science, pages 251–261, 1998.
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