
Dynamic High-Level Scripting in Parallel Applications

Filippo Gioachin, Laxmikant V. Kalé
Department of Computer Science

University of Illinois at Urbana-Champaign
gioachin@uiuc.edu, kale@cs.uiuc.edu

Abstract

Parallel applications typically run in batch mode, some-
times after long waits in a scheduler queue. In some situ-
ations, it would be desirable to interactively add new func-
tionality to the running application, without having to re-
compile and rerun it. For example, a debugger could up-
load code to perform consistency checks, or a data analyst
could upload code to perform new statistical tests.

This paper presents a scalable technique to dynamically
insert code into running parallel applications. We describe
and evaluate an implementation of this idea that allows a
user to upload Python code into running parallel applica-
tions. This uploaded code will run in concert with the main
code. We prove the effectiveness of this technique in two
case studies: parallel debugging to support introspection
and data analysis of large cosmological datasets.

1 Introduction

When some functionality is missing in an application,
and the need for it is realized only while the application
is running, the typical solution is to stop the application,
modify the source code, recompile, and rerun it. The re-
compilation process can take a significant amount of time,
especially for large applications. This reiterated overhead
can significantly reduce user productivity. In the case of
parallel applications, there is additional overhead in the re-
submission of the modified program to the scheduler queue,
where it might stay for a long time before being scheduled
again for execution. Moreover, sometimes the source code
might not be available, making it impossible to add the de-
sired functionality.

While debugging an application, the user might want to
perform some extra checks to ensure the correctness of the
data inside the application. This might be required only
once, or periodically. While analyzing scientific data, in-
termediate results can steer the user towards new and unex-
pected hypotheses. Unforeseen procedures might be needed

to prove or disprove these hypotheses. During a long-
running simulation, the user might want to steer the simula-
tion by modifying some parameter or internal data structure.
For example, she might want to inject new molecules while
studying the behavior of an enzyme. In all these situations,
it would be convenient to simply write the function needed,
upload it to the running application, and use it immediately.

In this paper, we present a semi-automatic solution de-
veloped inside the CHARM++ parallel runtime system.
First, the programmer incorporates some basic functionality
into the application to access and manipulate its data struc-
tures. Later, when the application is running on the paral-
lel machine, the user can upload snippets of Python code.
This Python code can use the basic functionality present in
the application to check or modify its state. Since Python
is a high-level scripting language, it can contain control
flow statements, allowing great expressiveness. Moreover,
Python code is typically more compact than C or Java code,
and it is well established that programs written in script-
ing languages are easier to write than programs written in
declarative languages[17, 18]. In the case of a closed-source
application, if it is compiled with support for our interface,
users can still add new functionality on demand, even if they
have no access to the original source code.

This paper proceeds by presenting the different ways in
which the CHARM++ application and an inserted Python
script can interact. This will be aided by explanatory exam-
ples. Following this, two case studies using this interface
are described in Section 3 and Section 4. Performance of
our implementation is analyzed in Section 5. We compare
our approach to other works in the field in Section 6. Final
remarks and future work are in the last section.

2 The CHARM++/Python Interface

We integrated the CHARM++ runtime system with the
Python interpreter. Since CHARM++ is internally written in
C++, we utilized the Python/C API[20] to make the two
languages interact and exchange data. As we shall see,
this allows the user to write Python code which will be up-



loaded to a running CHARM++ parallel application. Here,
the Python code will be executed and it will be able to in-
teract with the main CHARM++ code.

2.1 Background

CHARM++[15] is a popular runtime system for devel-
oping parallel applications. Several applications have been
developed based on the CHARM++ runtime system. Among
these are NAMD[1], a molecular dynamics code and winner
of the Gordon Bell award in 2002, OpenAtom[2] for Car-
Parrinello ab-initio molecular dynamics, and ChaNGa[12]
for cosmological simulations. The combined workload of
these applications accounts for more than 15% of the time
spent executing jobs on several NSF funded supercomputers
in the United States, thus proving its significant presence.

The primary concept in CHARM++ is object
virtualization[14]. In CHARM++, the user divides the
computation into small objects, called chares. These
chares are assigned to the available processors by the
runtime system itself, thus allowing load balancing[26]
and other automatic performance optimizations, such as
communication optimization[16].

These chares communicate with each other via asyn-
chronous messages. Messages trigger function calls on the
destination chare. These functions are called entry meth-
ods. The computation performed by an entry method upon
receipt of a message depends on the information carried by
the message and the internal state of the chare receiving the
message. Chares performing the same operation are typi-
cally grouped into indexable collections of chares for con-
venience. The most frequently used collection type is an
array of chares, or simply array, where each element of
the collection is indexable with an index of up to six dimen-
sions. Another common type of collection is a group, where
exactly one element of the collection is present on each pro-
cessor. The declarations of the chare collections and their
entry methods are contained in a charm interface file, or
simply ci file. Figure 1 shows an example of a ci file.

module MyCharmModule {
array [1D] MyArray {

entry MyArray();
entry void MyMethod();
entry void MyMethod2(int);
}

}

Figure 1. Example of a charm interface (ci)
file. Definition of a chare array type MyArray
of dimension one, with its constructor and
methods.

Converse Client-Server (CCS)[6] is a communication

protocol to allow parallel applications to receive requests
from remote clients. This protocol is built into CHARM++
and can be used by any CHARM++ application. It fol-
lows the CHARM++ semantics: whenever a request arrives
through CCS, a message is generated inside the application,
and computation is triggered by the delivery of this mes-
sage. As such, CCS requests are serviced asynchronously
with respect to the rest of the application. If an application
desires to use the CCS protocol, it has to associate one or
more signature strings to entry methods. This is performed
through a function call into the CCS framework. Moreover,
at startup (whether it is through batch scheduling or interac-
tive shell), a flag must be passed to the application. This will
request that the runtime system opens a socket to listen for
incoming connections. The connection parameters are then
printed to the standard output. Subsequently, remote clients
can send requests to the parallel application using this in-
formation. A signature string present in the request will be
matched to identify which entry methods should be invoked
on the application. The application can perform any kind
of operation as a consequence of such a request. Finally, a
reply can be returned to the client via the CCS protocol.

2.2 The Interface

We used the CCS protocol as the basic communication
mechanism between remote clients and the parallel appli-
cation, also referred to as server. Upon CCS, we imple-
mented our interface to facilitate the programmer’s task to
augment the parallel application to interact with uploaded
Python code, and to create clients capable of generating
Python requests.

A typical control flow for inserting a Python code is il-
lustrated in Figure 2. At the beginning of the execution,
as with any other application using the CCS protocol, the
server registers a string identifying Python requests (step 1
in the Figure). Subsequently, a remote client can send an
Execute request containing Python code. The server will, at
this point, encapsulate the code into a message and sched-
ule it together with the other messages present in the sys-
tem. Upon delivery of the message, the server will create
a new Python interpreter using the Python/C API, initialize
it with some basic information, and execute the user code
inside this interpreter (step 2). An ID representing the inter-
preter will be sent back to the client for later usage (step 3).
The client can then probe the server with Print request to
see if the code running on the server printed anything (step
4 and 5), possibly multiple times. Depending on the client
setup, the server can finally be queried for completion of
the uploaded code with a Finished request (step 6 and 7).
In the default configuration, the server destroys the Python
interpreter at the end of the Python code. This destruction
can be overridden by the client, as we shall see. Notice,



Figure 2. Execution flow of a Python code in-
sertion.

the application does not need to be stopped, and can con-
tinue with normal execution. The request is delivered to the
application as a message, and is scheduled as any other mes-
sage present in the application. Therefore, insertion points
are between message deliveries. In some scenario, the user
might also want to submit more than one request simultane-
ously.

Each of the three CCS messages—Execute, Print,
Finished—is encapsulated by a C++ and Java object. Client
programs written in these two languages can use the pro-
vided classes to communicate with the parallel application.
These classes contain a series of flags that the user can set to
modify the behavior of the server. For example, a Request
can return an ID for the interpreter as soon as it is created,
or wait on the server until the entire Python code has run
and return a reply only at that point. In this second case,
an Execute request also provides the functionality of a Fin-
ished request. The client can be implemented in multiple
ways. It can maintain a CCS connection for each Python
request and use them to retrieve the prints from different re-
quests concurrently, or maintain a single CCS connection to
the server, and periodically probe for prints from the various
active Python requests.

As described, the server returns an ID for the interpreter
used to serve a particular Execute request. This ID can be
used by the client in multiple ways. First, it is needed to re-
trieve the finish status, or any print generated by the Python
code. Second, interpreters can be set to be persistent. In
this case, the parallel application will not discard the in-
terpreter at the end of the execution of the Python code.

The client can then use this ID to issue a new Execute re-
quest on the existing interpreter. In this way, the server will
internally maintain the environment set by a previous re-
quest, and build upon it. This can be used to upload Python
routines and modules, and subsequent requests can contain
code using these modules. As we will see in the results, the
reuse of an interpreter also has performance benefits.

In the context of CHARM++, all computation is per-
formed inside entry methods, and within the scope of the
chare to whom the message was delivered. Dynamically up-
loaded Python code is not an exception. When the code is
uploaded and executed, it runs inside the scope of a chare,
determined during step 1 of Figure 2. Notice that during
registration either a single chare or a collections of chares
can be registered; in the latter case, the same script runs
independently in each chare of the collection. In the fol-
lowing section, we will describe three ways in which the
Python script can interact with the CHARM++ application:
(1) low-level, to allow the Python script to perform simple
queries on the hosting chare; (2) high-level, to allow the
Python script to perform more complicated parallel opera-
tions on the entire application; and (3) iterative, to apply a
Python method to a set of objects provided by the hosting
chare.

module MyPython {
array [1D] [python] MyArray {

entry MyArray();
}

}

Figure 3. Definition of a chare array using the
Python interface.

2.3 Cross communication

Figure 3 shows the ci file for the server definition of a
CHARM++ array that can receive Python requests. As can
be seen by comparing it with Figure 1, the only addition
to a normal definition of a CHARM++ array is the keyword
“[python]” in the definition of the chare array MyArray. The
other necessary change to the user code is the registration of
a string for CCS requests to be identified as Python requests
for the chare array MyArray. The registration is a simple
function call, made by processor zero, into a registration
routine with the string as parameter. These two simple mod-
ifications are sufficient to have Python code execute inside
interpreters bound to the chare array MyArray. Naturally,
if the Python script could not interact with the chare object
itself, it would not be very useful. There are three interfaces
to allow interaction between the code running in the Python
interpreter and the chare object linked to it.



The simplest way for the Python script to interact with
the parallel application is through the ck module. This
Python module is imported into the interpreter before
the user script is allowed to run (by executing a default
code), and allows Python to query some properties of the
CHARM++ environment. These are defined by the system,
and include some standard properties, like the processor and
the node it is running on, and some specific data about the
chare running the interpreter, like the index of the chare in-
side the collection. In addition, there are two other meth-
ods, namely read and write, through which the Python script
can read and write variables with the same access privileges
as the containing chare has. The user-defined C++ class
(MyArray) inherits these virtual methods from a system-
defined C++ class. MyArray can redefine them overriding
the default empty behavior.

The read method accepts as input parameter a single ob-
ject, representing where the data should be read from. This
object can be a tuple or a list, thus allowing multiple values
to be passed in. An example of usage is illustrated in Fig-
ure 4 (which will later be described in more detail). Here,
we pass a tuple of two values, a string and an integer, as
input parameter, and return a single integer as output. To
handle input and output from/to Python, the programmer
can use the standard Python/C API as well as an extra API
provided by our interface (not described here). The write
method accepts two parameters, one representing where the
data should be written to, the other what data to write. It
is up to the programmer to define the read and write meth-
ods to correctly interpret the parameters passed as input. A
mismatch between definition and usage of these methods
generates an exception. If these methods do not give access
to some portion of the data, the Python code will not have
access to it. This allows some control on what Python can
access. Similarly, some data can be made read-only by hav-
ing it accessible through the read methods but not the write
method.

size = ck.read((”numparticles”, 0))
for i in range(0, size):

vel = ck.read((”velocity”, i))
mass = ck.read((”mass”, i))
mass = mass ∗ 2
if (vel > 1): ck.write((”mass”, i), mass)

Figure 4. Python code using only the low-
level interface, without the iterate mode.

Nevertheless, the information gathered through the ck
module is limited to the scope of the processor and the chare
that executes the script. If the script requires information
generated from a combined operation on all the chares in
a collection, say the maximum value of a variable, then an-

other Python module called charm can be used. This Python
module is constructed to contain all the methods in the ci
file declared as python. The example in Figure 5 shows the
method run declared as such.

module MyPython {
array [1D] [python] MyArray {

entry MyArray();
entry [python] void run();

}
}

Figure 5. Definition of a chare array using the
high-level Python interface.

There are two differences between the methods of the ck
module and those of the charm module. The first is that
the “python” keyword can be used in conjunction with as
many entry methods as needed, thus augmenting at will the
set of functions available through the charm module. Each
of these functions can accept any number of input param-
eters (the input parameters of the Python calls are always
passed by the Python/C API into the C function as a single
tuple object), and provide different functionality. The sec-
ond is that methods of the charm module are run inside a
user-level thread. This allows the method to issue parallel
operations and suspend ifself while waiting for the results.
On the other hand, creating a user-level thread has a small
but not insignificant cost[27], making the high-level inter-
face slightly more expensive. Notice that parallel operations
are initiated by the C++ functions defined in the user class
(MyArray), and not by the Python script itself, which can
always communicate only with its enclosing chare.

Finally, while the above modules allow the Python script
to access the underlying chare and parallel application,
there are situations when this is not the best approach.
Sometimes a small operation needs to be applied to large
sets of homogeneous structures in the parallel application.
An example is shown in Figure 4. Here, we want to dou-
ble the mass of all particles with high velocity, but the user
may want to apply many different operations to such parti-
cles. One way to solve this problem is by utilizing the pre-
viously described interface. The user can write a loop over
the desired particles, and by using the low-level or high-
level routines, access all the needed information. Each call
to ck.read and ck.write in the script invokes the read
and write methods, respectively, of the user-defined class
MyPython. These methods will retrieve/store the informa-
tion from/to the appropriate locations. Most likely, these lo-
cations will be some variable declared inside the MyPython
class itself. The other way would be to have the CHARM++
application iterate over the available particles, and call a
simple update method with each particle as input. This is



the third method of interaction between the Python script
and the CHARM++ application. The user defines two func-
tions in the chare to provide a begin and next iterator over
the particles. CHARM++ uses these two functions to iterate
over all the particles, and the user-provided Python method
will be applied to each particle. The Python code for this
iterative mode is shown in Figure 6. This approach can sig-
nificantly reduce the complexity of the code that the user
has to write (in our example from six lines of code to two),
and therefore reduce the probability of making a mistake.

def increase(p):
if (p.velocity > 1): p.mass = p.mass ∗ 2

Figure 6. Python code when using iterate
mode.

2.4 Error Handling

There are two possible situations in which an error is
raised while running an uploaded fragment of code: (1) the
uploaded code has an error, (2) the interface code written
inside the parallel application is buggy.

In the second case, there is not much that can be done to
prevent the application from terminating. While it is possi-
ble to capture most signals and errors, the application will
likely be in an inconsistent state. If this happens, the appli-
cation should be corrected.

The case where the uploaded script is erroneous should
be tolerated to the extent possible. In our implementation,
if the Python code raises an error, this error will be cap-
tured and reported to the client as a regular printed string.
The user will be able to see the problem, and possibly cor-
rect the script and upload a new request with a corrected
code. In the implementation presented in this paper, if the
erroneous script modified the state of the application before
raising the exception, these changes could not be undone
automatically. Therefore, it is up to the user to consider
what has executed, and take appropriate actions.

We are looking to integrate a live checkpoint-restart
scheme, which is currently under development, to expand
the coverage of automatically recoverable errors. With this
improvement, the state of the application will be saved be-
fore executing the Python script, and restored upon failure
of the script. Even with the current limitation, we believe
that our technique is still valuable. Moreover, an appropri-
ate definition of the atomicity of operations that modify the
application (e.g low-level vs. high-level) can help the final
user to better recover from mistakes.

3 Case Study: Parallel Debugging

As the first example of a use of our interface, we
present CHARMDEBUG[13], a debugger for parallel appli-
cations written in CHARM++. While CHARM++ can be
run on top of MPI, tools specific to MPI applications, such
as TotalView[24], will provide the user with more infor-
mation regarding the CHARM++ internal implementation,
than the user’s code. CHARMDEBUG, instead, targets the
CHARM++ level. It provides information pertinent to the
user, such as the messages queued in the system, the state
of a chare, and allows the user to set breakpoints at the be-
ginning of entry methods.

CHARMDEBUG is composed of two modules. The first
of these is a graphical tool written in Java. This module can
launch parallel CHARM++ applications on remote systems
and monitor them. The second module is a plugin inside
CHARM++ itself. This module interacts with the parallel
application providing the information described above, as
well as many other features not described here, to the first
module. They communicate over the network, through the
CCS protocol.

We built upon the existing CHARMDEBUG system. We
used our interface to provide an introspection platform to
the user. The user can upload Python code to run only once,
after every message processed by the program, or selec-
tively only after a subset of messages. This code can per-
form checks on the status of the system and identify prob-
lems at an early stage. The script is bound to a chare col-
lection selected by the user, and has access to any variable
accessible to that chare.

Figure 7 shows a screenshot taken from CHARMDEBUG.
On the right side the user can select the entry methods after
which the introspection code should be run, or if None is
selected, the code will run only once. On the left side, the
user can choose the instantiated chare collection that will be
hosting the script (at the top), and enter the actual Python
code below. Once the code is sent, the CHARMDEBUG plu-
gin inside the parallel application will receive the code, and
either execute it immediately and only once, or install it for
repeated use. If installed, the code will then automatically
be triggered when the specified entry methods are called. If
the Python script returns any value other than “None”, the
parallel application will be suspended, and the user will be
notified. He can then use the other views of CHARMDEBUG
to inspect the application state in more detail.

As we have seen in Section 2.2, to have a Python script
delivered to a particular chare collection, the ci file requires
that collection be defined as “python”. Nevertheless, we did
not want to require the programmer to declare every chare
collection as “python”.

To solve these problems, we used a chare group as tar-
get for the Python script. This chare group is part of the



Figure 7. Screenshot of CHARMDEBUG.

CHARMDEBUG plugin module and is called CpdPython-
Group. CpdPythonGroup uses the iterative method, as de-
scribed in Section 2.2, to iterate over all the chares in the
chare collection selected by the user from the dialog box in
Figure 7. For each chare in the collection, the user-specified
Python code is executed in conjunction with that chare. This
Python code can access a variable inside that chare by us-
ing three helper functions. These functions are exported
by CpdPythonGroup through the high-level interface into
the charm module. They are: getArrayElement, to browse
through arrays, getValue, to return a specific field of a data
structure, and getCast, to perform dynamic casts between
objects. All three functions return either opaque objects or
simple type objects, such as int or float. Opaque objects can
represent any complex data structure in the application, sim-
ilar to a void pointer in C++. Simple type objects represent
primitive data types in C++. To start browsing, the Python
code receives an opaque object representing the chare on
which it is running as input.

Another major challenge was the fact that while we
wanted to have full introspection capability, where the user
would be able to read and modify all variables, C++ does
not support reflection. This means that at runtime, the ap-
plication alone cannot identify its data layout. Therefore,
the opaque object alone is not enough for the helper func-
tions to provide the desired functionality. Our solution was
to require the user to specify the type of every object when
calling any of the helper functions. The CHARMDEBUG
graphical tool modifies every call to the helper functions,
and adds the additional information needed at runtime to
browse through the data structures. For example, in a call

to getValue, CHARMDEBUG adds to the parameters (1) the
type of the resulting value and (2) the offset of the requested
field from the beginning of the requested class type. This in-
formation is available to CHARMDEBUG since it internally
constructs a representation of the class hierarchy of the run-
ning application. This representation is needed by CHAR-
MDEBUG for other purposes, therefore its creation is not an
overhead.

def check(self):
length = charm.getValue(self, MyArray, len)
arr = charm.getValue(self, MyArray, data)
for i in range(0, length):

value = charm.getArray(arr, double, i)
if (value > 10 or value < -10):

print ”Error: value ”, i, ” = ”, value
return i

Figure 8. Introspection code to check range
of an array.

Figure 8 shows an example of code that can be issued
through CHARMDEBUG to perform introspection checks on
the running application. Here, we perform a simple check
on an array of doubles, to check if their values are between
some bounds. Initially, we load the size of the array into the
integer value “length” and the opaque value representing
the C++ array “data” into the value “arr”. Then we loop
through all the values in the array, retrieve the ith element,
and check if it is within range. If not, we return a value to
stop the parallel application.



charm.loadSimulation(’bhmerger2.3.00006’)
charm.createGroup AttributeRange(’blackholes’, ’All’, ’formationtime’, -1e38, -1.0e-38)
print charm.getNumParticles(’blackholes’, ’star’)

Figure 9. Example of script uploaded into Salsa. Load a simulation, and print the number of black
holes in it (known to have a negative formation time)

4 Case Study: Cosmological Data Analysis

Salsa[21] is another example of an application using
the Python/CHARM++ interface. Salsa is part of a larger
project called NChilada devoted to the simulation and anal-
ysis of cosmological systems. Salsa performs the analysis
part. During a typical analysis of a cosmological system,
the analyst will use a parallel machine to load the data. He
will then proceed iteratively: after having obtained some in-
termediate results from the analysis, he will decide the next
step in the analysis process depending on these intermedi-
ate results. In this situation, the flexibility of the system to
allow the greatest possible variety of operations is essential
for an effective analysis.

A certain number of commonly used operations to ana-
lyze a cosmological dataset have been identified. Salsa ex-
ports these operations to Python scripts through the high-
level interface. Some of these operations include the defi-
nition of subsets of particles in the system (grouping), and
the definition of new attributes associated with each parti-
cle. Moreover, it is possible to iterate over the user created
particle groups and apply a user-defined function on both
pre-existing attributes and newly created ones.

To be completed, these operations require the collabora-
tion of the entire application. Since they are defined through
the high-level interface, they can request the parallel opera-
tion and suspend the Python script until the operation com-
pletes. When the operation is completed, the execution of
the Python script can be resumed. The Python script can
contain multiple instructions containing parallel operations,
each operation will be executed sequentially by the parallel
system.

For the sake of better coordination, and imposing a to-
tal ordering on the operations requested through the Python
script, the Python code runs inside a single interpreter at-
tached to a single chare, and not inside a collection. This
chare issues the parallel requests and gathers the results.
Figure 9 shows an example of a Python script uploaded into
Salsa.

The fact that only some pre-determined operations are
available to the analyst can be seen as a limitation to the ca-
pabilities of the application. Nevertheless, the normal user
of Salsa is not a computer scientist and may not be too fa-
miliar with parallel programming. Therefore, giving access
to low-level details of Salsa, which would be possible using
other tools, could have a negative impact on the usability.

The ease of use of scripting language over declarative lan-
guages argued in other papers, is of especial importance in
this case. It is one of the reasons why we chose Python over
other languages. Another reason was the familiarity of the
initial users of Salsa with Python.

5 Performance

The time the user has to wait between sending the code
and receiving a response is important for the success of an
interactive system. Response time is a known problem in
existing tools. The benchmarks show that the time is very
short (milliseconds). While evaluating the performance of
our implementation, we focused on the overhead we incur.
We did not consider the time spent to satisfy the user request
(e.g the time spent in the loop to check the array correctness
in Figure 8), since this can take as much as needed, and is
not part of our interface. We also did not consider memory
overhead.

We created two benchmarks with the same behavior as
the two case studies described1. We ran our benchmarks on
the NCSA Linux Cluster Abe, which consists of dual socket
quad core Intel 64 2.33 GHz nodes interconnected with In-
finiband OFED 1.2, through the batch scheduling queue.
We used the net-linux ibverbs build of CHARM++ v6.0.1
(publicly available), compiled with gcc 3.4.6 and optimiza-
tion -O3. The Python interpreter available was v2.5.2. We
used the default CHARM++ timers which, for this platform,
is gettimeofday.

The first benchmark creates a single chare where the
Python requests are processed. The Python code contains
a call to a high-level function. This C++ function broad-
casts to all processors, which perform a certain amount of
computation in parallel. The computation is defined by a
simple loop with timer. At the end, a return value is re-
duced from all processors, and returned to the Python client,
which prints it. The amount of computation performed by
each processor in parallel is specified as an input parameter.
We measured the time on the client, from when the Exe-
cute request is sent, until the ID of the interpreter used is
returned back to the client. We made the Execute request
wait for the completion of the Python code on the server.
The total request time thus consists of (1) round-trip time
of the message between the client and the server (within

1The benchmarks are available as part of the CHARM++ distribution
under the directory tests/charm++/python



Execution time in ms
#procs 1 2 4 8 16 32 64 128

no reuse 41 69 222 474 503 1904 2905 1844
with reuse 0.7 0.8 0.9 0.9 1.3 1.2 1.9 1.9

Table 1. Client request processing time results in milliseconds with varying number of processors.
The Python script runs inside an interpreter connected to a chare group.

Execution time in ms
#calls 0 1 2 4 8 16 32 64 128 1000

time 0.141 0.156 0.175 0.187 0.225 0.307 0.460 0.766 1.480 10.181

Table 2. Time to execute the script with varying number of calls to the high-level interface.

the same cluster); (2) creation of a user-level thread inside
CHARM++; (3) creation of a new Python interpreter by the
server (optional); and (4) execution of the Python script it-
self. For each execution, we sent 30 requests to the same
server.

Figure 10. Client request processing time re-
sults in milliseconds with varying amount
of computation (different color) and number
of processors (X axis). The Python script
runs inside an interpreter connected to a sin-
gle chare. Dotted lines have a new inter-
preter created every request; solid lines have
the same interpreter reused over multiple re-
quests.

The results are shown in Figure 10 with varying num-
ber of processors and amount of computation performed by
each processor. Dotted lines represent each request allocat-
ing a new Python interpreter on the server, while solid lines
represent the same interpreter reused. The difference be-
tween corresponding lines show that the creation of a new
Python interpreter (point 3) takes between forty to fifty mil-
liseconds. This number is independent of the number of
processors as expected, since the interpreter is created only

on processor zero by a single chare. From the solid lines,
by subtracting the amount of computation performed by the
Python script which is known, we obtain the overhead of
creating a new Python interpreter and a user-level thread.
This is in the range of one to two milliseconds.

In the second benchmark, we used the CpdPythonGroup
group, and sent a Python request to it. This request did not
perform any work. Again we ran this test with varying num-
ber of processors, both creating new Python interpreters ev-
ery request, and reusing the old one. Table 1 shows the
results. As in the previous test, by reusing the same Python
interpreter, we suffer only a few milliseconds of overhead.
On the other hand, the overhead of creating new Python in-
terpreters at every request grows to about two seconds for
more than 32 processors. We do not understand this behav-
ior completely, and we are still investigating it.

In all situations, having the client reuse the same Python
interpreter for multiple requests reduces the overhead of the
interface to below two milliseconds. This overhead can be
tolerated both in a scenario of a user interactively writing
code to upload, and in the scenario of a batch process up-
loading requests. Moreover, the performance results show
that our implementation scales well up to at least 128 pro-
cessors. This proves that our technique of uploading a high-
level scripting language such as Python into a running par-
allel application is not only desirable, but also practicable.

Furthermore, we analyzed in greater detail the time spent
to execute the Python script. We first tested the time taken to
make a call from Python to CHARM++. We used the second
benchmark, and increased the amount of work performed
by the Python script by adding calls to the charm.getValue
method. We ran the benchmark on a single processor to
avoid pollution from the parallel environment. We collected
and averaged ten requests, excluding the first one. Since the
Python script runs on each processor independently from
the others, the results reflect on the multiprocessor case as
well. Table 2 shows the time taken to execute the script with
varying number of calls to the high-level interface. By lin-
early interpolating the results, we can see that one function
call accounts for about 10µs. This value is independent of



Execution time in ms
#elements 1 4 16 25 100 400 2500 10000

total 10.04 39.95 160.5 248.3 1017 4010 25158 100926
per element 10.04 9.99 10.03 9.93 10.20 10.03 10.06 10.09

Table 3. Time to execute the script with varying number of elements over which to iterate.

Execution time in ms
size 8000 1000

#chares 64 256 1024 4096 25600 100 400 10000
original 186 156 163 315 1144 9.8 67 297

with Python 188 155 159 312 1151 9.9 64 289

Table 4. Execution time of a 5-point 2D Jacobi application on a matrix with dimension sizeXsize de-
composed into #chares chares on 32 processors.

our implementation and depends on the Python/C library.
Secondly, we tested the overhead of the iterative inter-

face to apply the same Python operation to multiple input
elements (see Figure 6). We again used the second bench-
mark. Table 3 shows the results with varying number of
elements over which iterating. It can be seen that the time
scales linearly with the number of elements, therefore the
overhead of repeatedly calling Python for each element is
virtually zero.

Finally, we experimented with a real application to see
the impact of repeatedly running Python scripts to check
for application bugs. We used a 5-point 2D Jacobi applica-
tion. Through CHARMDEBUG, we installed a lightweight
version of the code in Figure 8 stripped of the time consum-
ing loop (since we are interested in the overhead only). This
checking code ran after every message exchanged by the ap-
plication (roughly four times the number of chares). We ran
this on a 4-node Linux cluster, each node composed of dual
socket quad core Intel Xeon 2.0 GHz, against the “original”
program (which does not even contain the [python] key-
word). Table 4 shows the performance results with varying
amount of computation, determined by the matrix size, and
granularity, determined by the number of chares. The over-
head to link the Python interface and run the checking code
is negligible in all scenarios, even in the extreme ones with
thousands of chares.

6 Related work

Other tools performing dynamic insertion of code into
a running application include DynInst[3]. While an appli-
cation is running, they allow an external program, called
mutator, to attach to the running application, and modify its
code image. After the image has been modified, the appli-
cation will continue running the new code. This approach
allows great flexibility in how the code is modified. Never-
theless, DynInst is not meant to be used directly by the user
to write the new code, but through other tools that will sim-

plify the modification process, which is otherwise tedious
and potentially error prone. More recently, Dyner[25] has
provided a TCL interface to the DynInst library to allow
any modification to the user code in a simpler way. While
this approach allows any modification at the source level, it
does not provide the right level of abstraction for some kind
of applications, like data analysis. Our aim is to allow the
user to easily write a snippet of code to perform the desired
operation while the application is running, and having it run
immediately. In our approach the application developer re-
tains the faculty to provide operations at the desired level
of abstraction, and deny others that should not be used di-
rectly. This is an advantage for closed-source codes, where
the user otherwise has to step down to the assembly level.

Other tools[7, 10] are used to patch non-stop applications
to update them from one version to the following. These
programs, like DynInst, provide low-level patching mech-
anisms, which again are not suitable for some kind of ap-
plications. Moreover, the patching mechanism is only for
expert programmers, as the uploaded code is supposed to
have passed all correctness tests.

GDB[8] provides the capability to inspect variables
when the program is suspended at a breakpoint, as well as
suspend execution when a condition is satisfied. A break-
point in GDB can be set at any instruction line in the source
code. While this is a powerful tool for debugging, if the
condition is complicated, this approach might not be prac-
tical. For parallel distributed applications written in MPI,
TotalView[24] can provide similar functionality. Again, if
the checking code to run is complicated, writing it correctly
might be challenging. It is agreed that scripting languages
such as Python, Lua or Ruby are easier to use than program-
ming languages like C/C++ or Fortran. In our approach, we
focused on the usage of scripting languages to simplify the
on-the-fly writing of checking code.

On the topic of introspection within application written
in C++, many tools have been built[4, 5, 9, 22, 23]. The
main scope of these works is to provide the program itself



access to its data types. In our approach, we used the infor-
mation already collected by CHARMDEBUG to provide this
capability. Nevertheless, these other approaches are also
viable implementations, and might be considered in future
work.

Tools like VASE[11] allow the user to interactively visu-
alize the progress of an application and steer it when neces-
sary. In VASE, all the code that the application can use has
to be written and compiled in the application. The steering
mechanism will allow the selection of which code to exe-
cute. Instead, we wanted to let the user write new code even
when then application is already running.

7 Conclusion and Future Work

In this paper, we presented an interface to support dy-
namic insertion of a high-level scripting language inside
a running parallel application. We described its imple-
mentation in the context of the Python language and the
CHARM++ parallel runtime system. We showed how this
interface has been successfully used by two applications to
provide the user flexibility to run arbitrary Python code in
two very different contexts: parallel debugging, where ac-
cess to low-level information is essential, and data analy-
sis, where high-level parallel procedures are needed. Many
other classes of application can benefit from our technique,
in particular those involving computational steering. For
these, a user can probe periodically the application, and
steer it with ad-hoc Python scripts when needed. We have
also shown that the performance overhead to upload and run
Python code inside a parallel application is very small and
negligible in a context of interactive usage.

This same approach can be applied to other program-
ming paradigms to provide flexibility at runtime. One such
paradigm is MPI, very commonly used in parallel comput-
ing. In this environment, there are two possible implemen-
tations. At the user level, the user can probe for incoming
requests, and use a Python library derived from the one de-
scribed in this paper to execute Python scripts on demand.
At the MPI library level, the MPI runtime system itself can
receive incoming requests and process them inside Python
interpreters, similarly to how CHARM++ behaves. In this
latter case, a request could be executed anytime the appli-
cation calls a function in the MPI library, or specifically
when the application triggers Python request handling, say
by calling a function like MPI Python.

A natural future direction to extend this interface in the
context of CHARM++ is to integrate other scripting lan-
guages, so that the user can choose which one to use. In
this direction, another project not involving the authors of
this paper is integrating Lua into the CHARM++ runtime
system[19].

Within the context of Python, a direction to explore is

the use of a preprocessor or static analyzer to provide de-
fault read/write methods. This will facilitate the developer’s
task to create possibly complex methods. For finer access
control, the user could annotate the source code to specify
which fields should be accessible, and with what privileges.
The default identifier used in Python to identify the vari-
ables could be a simple string with the name of the variable
to access. A more ambitious extension could use an instru-
mentation tool, like DynInst, to dynamically modify the in-
terface an application exports to Python. This will allow the
developer to add functionality unforeseen at compile time,
while maintaining a simple interface for final users. This
freedom entails an even greater risk to corrupt the appli-
cation, thus requiring a careful design against programmer
mistakes.

Acknowledgements: This work have been made pos-
sible in part by grants NSF OCI-0725070, NASA
NNX08AD19G, and NSF ITR-0205611. We would like to
thank TeraGrid for the compute time granted through allo-
cation TG-ASC050039N. The authors are grateful to Prof.
Tom Quinn (Univ. of Washington), who is a collaborator
with them on the cosmology application.

References

[1] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, and
L. V. Kale. Overcoming Scaling Challenges in Biomolecu-
lar Simulations across Multiple Platforms. In Proceedings
of IEEE International Parallel and Distributed Processing
Symposium 2008, 2008.

[2] E. Bohm, G. J. Martyna, A. Bhatele, S. Kumar, L. V. Kale,
J. A. Gunnels, and M. E. Tuckerman. Fine Grained Paral-
lelization of the Car-Parrinello ab initio MD Method on Blue
Gene/L. IBM Journal of Research and Development: Ap-
plications of Massively Parallel Systems, 52(1/2):159–174,
2008.

[3] B. Buck and J. K. Hollingsworth. An API for runtime code
patching. The International Journal of High Performance
Computing Applications, 14(4):317–329, Winter 2000.

[4] S. Chiba and T. Masuda. Designing an extensible distributed
language with a meta-level architecture. Lecture Notes in
Computer Science, 707:482–??, 1993.

[5] T.-R. Chuang, Y. S. Kuo, and C.-M. Wang. Non-intrusive
object introspection in C++. Software– Practice and Expe-
rience, 32(2):191–207, 2002.

[6] Department of Computer Science,University of Illinois at
Urbana-Champaign, Urbana, IL. The CONVERSE program-
ming language manual, 2006.

[7] P. Falcarin and G. Alonso. Software architecture evolution
through dynamic aop. In AOP , European Workshop on
Software Architecture (EWSA 2004, pages 57–73. Springer-
Verlag, 2004.

[8] Free Software Foundation. GDB: The GNU Project Debug-
ger. http://www.gnu.org/software/gdb/.



[9] J. Hamilton, R. Klarer, M. Mendell, and B. Thomson. Using
SOM with C++. C++ report, August 1995.

[10] M. Hicks and S. Nettles. Dynamic software updating. ACM
Trans. Program. Lang. Syst., 27(6):1049–1096, 2005.

[11] D. Jablonowski, J. Bruner, B. Bliss, and R. Haber. Vase:
The visualization and application steering environment. Su-
percomputing ’93. Proceedings, pages 560–569, 15-19 Nov.
1993.

[12] P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and T. R.
Quinn. Massively Parallel Cosmological Simulations with
ChaNGa. In Proceedings of IEEE International Parallel and
Distributed Processing Symposium 2008, 2008.

[13] R. Jyothi. Debugging support for charm++. Master’s thesis,
University of Illinois at Urbana-Champaign, 2003.

[14] L. V. Kalé. Performance and productivity in parallel pro-
gramming via processor virtualization. In Proc. of the First
Intl. Workshop on Productivity and Performance in High-
End Computing (at HPCA 10), Madrid, Spain, February
2004.

[15] L. V. Kale and S. Krishnan. Charm++: Parallel Program-
ming with Message-Driven Objects. In G. V. Wilson and
P. Lu, editors, Parallel Programming using C++, pages
175–213. MIT Press, 1996.

[16] S. Kumar. Optimizing Communication for Massively Paral-
lel Processing. PhD thesis, University of Illinois at Urbana-
Champaign, May 2005.

[17] O. Nierstrasz, R. Bergel, M. Denker, S. Ducasse, M. Glli,
and R. Wuyts. On the revival of dynamic languages. In
Proceedings of Software Composition 2005. LNCS, pages 1–
13, 2005.

[18] J. K. Ousterhout. Scripting: Higher level programming for
the 21st century. IEEE Computer, 31:23–30, 1998.

[19] T. Ponte and N. Rodriguez. LuaCharm: Implementing
Chares in a High-Level Scripting Language. Presentation
at 6th Annual Workshop on Charm++ and its Applications
(http://charm.cs.uiuc.edu/workshops/charmWorkshop2008/),
May 2008.

[20] Python Software Foundation. Python/C API Reference
Manual, 2008. http://docs.python.org/api/api.html.

[21] T. Quinn, L. Kale, F. Gioachin, O. Lawlor, G. Lufkin, and
G. Stinson. Salsa: a parallel, interactive, particle-based anal-
ysis tool. Poster at Supercomputing 2004.

[22] H. Singh. Introspective c++. Master’s thesis, Computer Sci-
ence Department, Virginia Polytechnic Institute and State
University, 2004.

[23] K. Stephens. Xvf: C++ introspection by extensible visita-
tion. SIGPLAN Not., 38(8):55–59, 2003.

[24] TotalView Technologies. TotalView R© debugger.
http://www.totalviewtech.com/TotalView.

[25] C. Williams and J. Hollingsworth. Interactive binary instru-
mentation. IEE Seminar Digests, 2004(915):25–28, 2004.

[26] G. Zheng. Achieving High Performance on Extremely Large
Parallel Machines: Performance Prediction and Load Bal-
ancing. PhD thesis, Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign, 2005.

[27] G. Zheng, O. S. Lawlor, and L. V. Kalé. Multiple flows
of control in migratable parallel programs. In 2006 In-
ternational Conference on Parallel Processing Workshops
(ICPPW’06), pages 435–444, Columbus, Ohio, August
2006. IEEE Computer Society.


