Memory Tagging in Charm++

Filippo Gioachin
Department of Computer Science
University of lllinois at Urbana-Champaign

gioachin@uiuc.edu

ABSTRACT

Many scientific applications are logically decomposed into
modules, each module performing a different type of compu-
tation. These modules are then linked together inside the
same executable. While these modules are logically indepen-
dent, they are not physically independent: a faulty module
can corrupt the state of another one.

By identifying the different modules inside an application,
tagging the memory according to the different modules, and
performing extra runtime checks, we can automatically de-
tect certain type of errors. We implemented our idea inside
the CHARM++ runtime system, where modules can be eas-
ily identified. We illustrate the validity of our approach, and
evaluate its overhead.

Keywords
Debugging, Parallel Debugging, Memory Debugging, Mem-
ory Tagging

1. INTRODUCTION

When an application is decomposed into independent mod-
ules that share the same resources, the possibility of resource
conflicts arise. Memory is a common example of a shared
resource. In a correct decomposition, each module stores
the state necessary to perform its task in memory, and uses
some specific area to exchange information with other mod-
ules. Since the virtual address space is common, all the
modules have access to the entire address space. Therefore,
they can modify the state of other modules. While this can-
not be prevented, it breaks the abstraction that modules are
independent, and makes faulty modules difficult to identify.
The definition of module depends on the programing model
used. It can be chares, as we shall see later for CHARM++
applications, object files, or libraries.

Consider a parallel program for the simulation of galaxy
formation. This program will likely have multiple sepa-

PADTAD - Workshop on Parallel and Distributed Systems: Testing and De-
bugging, July 20-21,2008

Laxmikant V. Kalé
Department of Computer Science
University of lllinois at Urbana-Champaign

kale@cs.uiuc.edu

rate modules to compute the various forces present in the
universe: gravitational, hydrodynamic (SPH), magnetody-
namic, etc. For good performance, these modules may run
“simultaneously”, thus allowing the communication of one
module to be overlapped with useful computation of an-
other module. By simultaneously we mean that any given
processor participates in the computation of all the differ-
ent forces, interleaving their execution over time. All these
modules will need to update the memory storing the final
forces acting on the simulated portion of space. This mem-
ory is therefore used to exchange information. In addition,
each module will also have its private data to be used dur-
ing the computation phase. This private data should be
modified exclusively by the owner module. If, for example,
the gravity module accesses and modifies the data stored for
the SPH computation, we want to notify the user that the
gravity module is misbehaving, and might be faulty.

By creating a tagging system where each allocated memory
block is marked with an identifier of the module that uses
it, it becomes possible to intercept modifications of such
memory by other modules. The user can be notified of these
misuses and can determine if they are valid, such as in the
case of the final forces in the previous example, or if they
are not, and therefore identify the faulty module.

This technique is general for both sequential and parallel
applications that use independent modules to integrate dif-
ferent codes within the same application. In this paper,
we describe an implementation of this technique within the
CHARM++ runtime system. CHARM++ is described in de-
tail in Section 2. In Section 3, we describe the CHARMDE-
BUG debugger, and in Sections 3.2 and 3.3, we show how we
can use this combined infrastructure to detect certain com-
mon problems. Later, in Section 4, we analyze the overhead
we introduced, and in Section 5, we compare our technique
with other works in the field. We conclude with final re-
marks and future work.

2. THE CHARM++ RUNTIME SYSTEM

CHARM++[7] is a popular runtime system for developing
parallel applications. Several applications have been devel-
oped based on the CHARM++ runtime system. Among these
are NAMD(1], a molecular dynamics code and winner of the
Gordon Bell award in 2002, OpenAtom|2] for Car-Parrinello
ab-initio molecular dynamics and ChaNGa[4] for cosmologi-
cal simulations. The combined workload of these application
accounts for more than 15% of the time spent executing jobs

on several NSF funded supercomputers in the United States.

The primary concept of CHARM++ is object virtualization[6].

In CHARM++, the user divides the computation into small
objects, called chares. These chares are assigned to the avail-
able processors by the runtime system itself, thus allowing
load balancing[14] and other automatic performance opti-
mizations such as communication optimization[8].

These chares communicate with each other via asynchronous
messages. Messages trigger function calls on the destination
chare. These functions are called entry methods. The com-
putation performed by an entry method upon receipt of a
message depends on the information carried by the message
and the internal state of the chare receiving that message.
Chares performing similar operations can be grouped into
collections of chares. These collections are able to be in-
dexed, and are also referred to as chare arrays. While each
chare is an independent entity, all chares in a collection share
the same chare type. All chares are considered independent
modules, regardless of their type. This is so because their
state is independent.

In the scenario of the cosmological simulation described ear-
lier, the program will consist of several different collections of
chares, one for each force computation performed during the
simulation, such as SPH, gravity, etc. Each collection will
consist of many chares, possibly thousands or even millions,
and each chare will perform a specific force computation on
a small portion of the simulation space.

2.1 The Memory Subsystem

In CHARM++, the memory subsystem, i.e the implementa-
tion of the malloc, free and other memory related functions,
is included in a shared library. This allows CHARM++ to
implement multiple versions of the memory library, and en-
ables the user to choose which one to use at link-time (see
Figure 1). The default version, gnu.o in the Figure, does
not have any debugging support and is meant for produc-
tion usage. This version is based on the glibc memory al-
locator. Another memory library, os.o, does not implement
the memory functions, and lets the user link to the default
one provided by the system. All the others are based on
the glibc standard library, as the default implementation,
but they re-implement the memory functions (malloc, free,
realloc, etc.) and use the glibc ones internally.

To allow multiple memory libraries with different capabili-
ties to be based on the same underlying glibc memory alloca-
tor while avoiding the problem of re-implementing the entire
allocator, the glibc routines have been renamed, prepending
them with an “mm_” prefix. Any memory library wrapping
around glibc allocator will define the functions malloc, free,
etc, and internally use the “mm_" versions. For example, the
default malloc simply calls mm_malloc, while another malloc
implementation can decide to allocate extra size for inter-
nal usage of the library itself, or to fill the newly allocated
memory with certain patterns.

Some memory implementations inside CHARM+-+ are named
in Figure 1. Paranoid provides buffer overflow detection by
allocating extra space at both sides of the user allocation and
filling it with a predefined pattern. At deallocation, these

Module 1 Module 2

gravity.o sph.o

qii Aowdy

soliel

Executable

Figure 1: Application linking stage. The applica-
tion modules are linked together with one Charm+-+
memory implementation to produce the executable.

extra spaces are checked for modifications. Moreover, deal-
located regions are also filled to help detect usage of dangling
pointers. Leak allows the user to mark all allocated blocks
as “clean”, and later performs a scan to see if new memory
blocks were allocated. This is useful in iterative programs,
where the total memory over various iterations should not
increase. This assumes that the code does not reallocate
new memory at every iteration. The CHARMDEBUG mem-
ory module is used in conjunction with the CHARMDEBUG
debugger, and is described in more detail in Section 3.1.

3. CHARMDEBUG

CHARMDEBUG/5] is a graphical tool written in Java that
allows the user to remotely debug parallel applications writ-
ten in CHARM++. In a typical scenario, the user will start
CHARMDEBUG on his own workstation. Then, through CHAR-
MDEBUG, the user can select and start an application on a
remote parallel cluster where it has been previously com-
piled. Inside CHARM++ there is a built-in CHARMDEBUG
plugin. The combination of the graphical tool and this plu-
gin allows the user to visualize information pertinent to its
code. Such information includes, but is not limited to, the
messages queued in the system, the chares present on a pro-
cessor, and the state of any chare. Moreover, the user can
set breakpoints at the beginning of entry methods. While
CHARM+++ can be run on top of MPI, tools specific to MPI
applications, such as TotalView[13], will unhelpfully provide
the user with more information regarding the CHARM—++ in-
ternal implementation, than regarding the user’s code.

CHARMDEBUG and the CHARMDEBUG plugin communicate
through a high-level client-server protocol, called Converse
Client-Server (CCS). CCS is a standard for CHARM++ and
is built into all CHARM-++ applications. CCS is a stateless
connection where a client can send requests to the running
application, and the application will receive the request as
a message to a pre-specified entry method. The application

can perform any action as a consequence of such a message,
and finally return an answer to the client if it so chooses. The
CHARMDEBUG plugin is responsible for managing the incom-
ing requests from CHARMDEBUG, and replying to them with
the appropriate information.

Since the communication between the debugger and the ap-
plication under examination happens through a single high-
level connection, no connection is necessary to each individ-
ual process of the parallel application. This allows CHAR-
MDEBUG to scale to as large a configuration as CHARM++
does. Even if a direct connection is not established to each
processor, the user can request the debugger to open a GDB
session for a particular processor. This lets the user descend
to a lower level and perform operations that are currently
not directly supported by CHARMDEBUG, such as stepping
through the source code and inspecting values at points in-
side an entry method.

3.1 The CharmDebug Memory Library

Among the memory libraries described in Section 2.1, we
mentioned one built specifically for use with CHARMDEBUG.
This library, for every memory block requested by the user,
allocates some additional space for internal usage. The de-
tails of the extra space allocated are shown in Figure 2, and
are described throughout this section. The layout refers to
64-bit machines. The library returns to the user a pointer
to the white region marked user data in the Figure.

lo 3|4 7|8 112 15]
Slot * next Slot * prev
int usersize | int magic int charelD | int stacklen

void ** stack SlotStack * extrastack

uint slotCRC | uint userCRC

user data

void * stack1 void * stack2

void * stack(n-1) void * stack(n)

Figure 2: Layout of the extra space allocated by the
CharmDebug memory library on 64 bit machines.
The memory allocated for CharmDebug purposes is
shown in shaded color, the memory for the user is
shown in white.

We built upon the CHARMDEBUG existing framework to pro-
vide support for debugging memory-related problems. The
CHARMDEBUG memory library extends the existing CCS re-
quests that the CHARMDEBUG plugin can serve by provid-
ing extra information regarding the memory status. A sim-
ple operation that CHARMDEBUG can request is to view the
memory of any given processor. Figure 3 shows how CHAR-
MDEBUG visualizes the information received from the appli-
cation through CCS. The application in the Figure performs

a simple Jacobi computation on a two-dimensional matrix.
Each allocation is colored in one of four different colors, ac-
cording to its usage:

e memory that is occupied by a specific chare (in yellow);
e a message sent from one chare to another (in pink);

e memory allocated on the heap by the user code (in
blue);

e memory allocated for the use of the CHARM++ run-
time system (in red).

Moreover, the CHARMDEBUG memory library automatically
collects stack trace information at every point where the user
requested memory allocation. This information is stored
at the end of the user buffer, as shown in Figure 2. The
user can see this information at the bottom of the memory
allocation view (Figure 3) by moving the mouse pointer over
the allocated blocks.

Stack traces can also be combined by CHARMDEBUG into
allocation trees. An allocation tree is a tree rooted at the
routine starting the program, typically main or a loader li-
brary routine. The children of a node are the functions that
were called by the function represented by that node. The
leaves are functions which called the malloc routine. This
tree can become a forest if not all stack traces start from the
same routine. This can happen, for example, in the presence
of user-level threads with independent stacks. CHARMDE-
BUG can construct an allocation tree for a single processor
or for a subset of them. Allocation trees can be used for
statistical analysis to provide insight of memory problems.

One of the operations that the CHARMDEBUG memory li-
brary can perform is memory leak detection. Each proces-
sor parses stack and global variable locations for pointers
to heap data. The heap memory blocks reachable by those
pointers are further parsed for more pointers. This contin-
ues until all reachable locations are detected. Blocks not
reachable are declared leaks. The result is reported in the
same memory view described earlier (not shown here).

In the CHARM++ environment, the user code always runs
in the context of some chare. These chares, as we have seen
in Section 2, are independent of each other, and should not
interact except through messages. Therefore, another tag is
automatically associated to each memory block, to identify
which chare allocated it. This tag is shown in Figure 2
as charelD. Figure 4 shows the same Jacobi program with
the highlighting of the memory associated with a particular
chare. We will see in the following subsections how this
tagging can be used to identify certain type of bugs.

3.2 Detecting cross-object memory modifica-

tions
In a program like Jacobi, suppose chare A allocates a mem-
ory block for its local matrix, and then passes a pointer to
the last row to chare B, instead of a newly allocated message
with a copy of the last row inside. Chare B can access and
modify the matrix of chare A during its computation. Nev-
ertheless, Chare B is not supposed to modify chare A’s state.

Memory Processor 0
Adtion Info

50

Number of lines
12
Line size

1400]
Horizontal pixels

L\
L

_ |
[ST

Bytes per pixel: 71

Information
Memory type: chare object
Slot at position 0xB70118 of size 144 bytes Belonging to chare 13. Backirace
function CkArray:insertElement(CkMessage™ (0x4b0b3de) at ckarray. C:639
function CikArray:insertinitial(ClkArravindex const@, void®, int) (Ox4b0ecle) at ckarray.C:694
function CkArrayMap - populatelnitialint, CkArrayindextaxs, void®, CikArrhgr) (0x4a2637) at cklocation €204
function CkLocMgr:: populatelnitial(CkArrayindexhax&, void*, ClkArrMgr) (Ox4b3a6c) at cklocation.h:52 1

function Ckindex_CkArray::_call_CkArray_marshall L(void”, CkArray") (0x4b1b7e) at CkArray.def.h:178

function CkArray CkArTavCikArrayOptionsg, CkMarshalledMessages, _ckGroupiD) (0x4b1867) at ckarray.C:530

J

Figure 3: Memory view of the allocated memory for a simple hello world program. The color correspondence

is: yellow-chare, pink-message, blue-user, red-system.

More generally, different chares are not supposed to modify
each other’s memory. Based on this concept, we define each
memory allocated by a chare to belong to that chare, and
only that chare will be allowed to modify its content. The
only exception is messages whose ownership will be passed
from the creator to the chare that the message is delivered
to.

We use a cyclic redundancy check (CRC-32-IEEE) to de-
tect when memory was modified by a chare different from
its owner. Let us consider the example above. Suppose we
compute the CRC for all allocated memory blocks and store
them before we deliver to chare B the message containing
the pointer passed by A. Subsequently, we deliver the mes-
sage to B and let it perform its computation. Let us assume
B immediately uses the pointer to modify the matrix of A
(if B uses the pointer in another entry method later, the
same discussion applies for that entry method). After the
entry method of B terminates, we recompute all CRCs. The
CRC for the block containing A’s matrix will not match as
B modified it. Since the block belonged to A and not B, we
raise an exception and notify the user. The CRC of some
blocks belonging to B might also not match, but we ignore
these as B was allowed to modify that memory. Currently,
we simply notify the user of the memory violation and con-
tinue running the program. For the future, we envision an
interface where the user can inspect the program when a vi-
olation occurs, and then decide if it is safe to ignore it. All
the CRCs are stored as part of the extra space allocated by
the CHARMDEBUG memory library, as depicted in Figure 2

by the field userCRC.

More generally, by computing all the CRCs before the user
entry methods are called, and rechecking them after the
user entry methods return, we can restrict the portion of
code that is faulty to a specific entry method. The user
is then provided with useful information about the error:
which chare and which entry method are responsible for the
modification, which memory block has been modified, and
to whom that memory block belongs.

In situations where the user suspects certain chares or entry
methods to be the cause of the fault, only those can be
instrumented to perform this check, thereby reducing the
overhead. On the other hand, if all the entry methods are to
be checked, by combining the check after a message delivery
with the recomputation before the next message is delivered,
the overhead can also be reduced.

One limitation is if the faulty entry method internally spans
a large amount of code. In this situation the portion of code
that has to be inspected for faults is still large. By allowing
the user to request extra checks to be performed even in the
middle of an entry method, the user can split the faulty code
into subregions, and be notified about the region causing the
exception.

3.3 Detecting buffer overflow
Another common problem in applications is the corruption
of adjacent blocks of memory due to overrun or underrun of

Memory Processor 0

Action Info

[sdf _ Lao0][
Number of lines Horizontal pixels

 u Update
I: o sos
Line size

Bytes per pixel: 71

Information

Mermory type: user

Slot at position 0x9665 18 of size 1616 bytes.Belonging to chare 15. Backtrace
function 77 (0x2aaaab308dd3) at 7.0
function Jacobizbegin_iteration) (0x473abl) at jacobi2d.C:154
function Ckindex_Jacobi _call_begin_iteration_void(void®, Jacobi®) (0x470d17) at jacohi2d. def h 453
function CkDeliverMessageReadonly (Ox454e50) at ck.C.414
function CkLocRec_lacal:invokeEmry(CkMigratable”, void™, int, bool) (Ox4a7128) at cklocation.C:1025
function CkMigratable:: ckinvokeEntry(int, void®, bool) (0x4b4iSe) at cklocation.h:206

|

Figure 4: Dimmed memory view. In brighter colors are shown the regions of memory allocated by a specific

chare, in darker colors all the others.

array accesses. A typical debugging technique is to allocate
extra memory at the two ends of the user buffer, fill (or
paint) it with a predefined pattern, and check if this has been
overwritten by the program. One problem with this method
is the granularity with which to perform the checks on the
painted areas. Checking only when a block is deallocated
is not enough, as it may never be deallocated or, even if
deallocated, the region of code containing the error cannot
be exactly pinpointed. Additional periodic checks on all the
memory blocks may reveal the problem at an earlier stage,
but it would still not identify exactly which lines of code
were responsible for the corruption.

As in the case for cross-object modifications, we can use
the entry method boundaries to perform the buffer overflow
checks. Since CHARMDEBUG already allocates extra space
on both sides of the user allocated data, we utilize this same
portion of memory to check for buffer overflow corruptions.
One necessary change in the detection scheme is that we
now cannot paint that memory with a predefined pattern,
since it contains valid information. The second CRC field in
Figure 2, slotCRC, operates on the extra memory allocated
by CHARMDEBUG. As before, we compute all CRC on the
extra memory before the user entry methods are called, and
recheck them after the user entry methods return. If a mis-
match is found during the recheck, the fault is attributed to
the entry last entry method that executed.

Again, the user may specify a coarser granularity of checks,
in which case there will be a set of messages that could

have caused the problem, or a finer granularity by adding
extra checks inside his code. This method can fail if the
modification is such that the CRC is still correct after the
modification. The probability of this happening is very low.

4. PERFORMANCE

We analyzed the overhead imposed by our implementation.
The test application was a parallel program implementing
a two-dimensional Jacobi computation. The total matrix
was divided among chares organized in a two-dimensional
chare array, where each chare was assigned a square portion
of the matrix. To update the matrix for the next iteration
of the algorithm, each chare exchanged the borders of its
portion of the matrix with its four adjacent neighbors. We
performed our benchmark on a dual-socket Intel Xeon 1.86
GHz quad-core workstation.

We timed the execution of the routine performing the CRC
computations and checks. We repeated this test by varying
the problem size, and therefore the total amount of total
memory allocated per processor. Figure 5 plots the results.
We can see that the time linearly increases with the amount
of memory allocated. This is to be expected as the check
has to perform a computation proportional to the amount
of memory allocated. By extracting the slope of the curve,
we obtain that each check accounts for an overhead of 4.3
milliseconds per megabyte of memory allocated.

Given the amount of work performed on average inside entry
methods, the overhead can be computed analytically. As-

1200

1000 +

800 -

600 -

Overhead (ms)

400 r

200 -

0 50 100 150 200 250 300
Memory Usage (MB)

Figure 5: Overhead to compute the CRC for all the
memory, at different problem sizes.

suming we perform the check for every entry method, if ¢ is
the entry method’s average time in milliseconds, and M is
the amount of memory allocated in megabytes, the execu-
tion time of the program with CRC checks is 1+ % times
the time of the unchecked program. For example, with 50
MB of allocated memory, and an average entry method’s ex-
ecution time of 5 ms, the CRC checked execution time is 43
times the original one. This overhead is acceptable, but it
quickly becomes too high for finer granularity applications.
We are studying other techniques, such as leveraging the vir-
tual memory paging system and its protection mechanisms,
to allow us to reduce it.

In a parallel scenario, since CHARM~++ is a distributed sys-
tem, the memory in each processor is independent from that
of other processors. Therefore, the overhead each processor
incurs depends only on its allocated memory and the average
computation time of the entry methods it executes. Overall,
the total overhead in the parallel execution is the maximum
overhead across all processors. To prove this, we ran sev-
eral experiments on the same Jacobi application from one
processor to eight processors. The results, not shown here,
matched our expectation.

S. RELATED WORK

There are various tools that help debugging shared accesses
to a variable in a multithreaded environment. Intel Thread
Checker[3] is one such tool. It can detect both read and
write unsynchronized accesses to shared variables. It uses
dynamic instrumentation to inspect each memory access
performed by each thread, and returns statistics on threads
using the same locations. Given that it needs to intercept
and perform extra operations at every memory access, it
significantly slows down the execution of the program. An
improvement on this tool has been proposed[10] by filtering
most memory accesses that are not likely to produce data
races, and check only those not filtered out.

Another tool is RecPlay[9] which combines record-replay
and on-the-fly data race detection to efficiently inspect con-
current programs implemented using POSIX synchroniza-
tion operations, and detect data races. The algorithm re-

quires the program to be run several times to obtain all the
information to identify both the racing data and the rac-
ing instructions. Even though the code is executed multiple
times, since most of the time the program runs without slow-
down, the total overhead is reduced. This algorithm has the
disadvantage that it can only detect the first race condition,
and loses effectiveness if the user decides that he does not
want to, or cannot, remove the data race.

All these tools are for shared memory accesses. In the
scenario described in this paper, where there is one single
thread of execution, and the program is decomposable into
independent modules, such tools would not be useful. Other
tools for sequential programs, such as Valgrind[11], are ca-
pable of detecting buffer overflow and other memory-related
problems. These tools typically incur an acceptable over-
head. Again, for the scenario described here, these tools
provide little support to the user.

TotalView[12] is another powerful debugging tool capable of
inspecting and analyzing the memory allocated by an ap-
plication, and it supports parallel distributed systems such
as MPI. TotalView allows the user to collect memory views
and save them for future reference. These saved views can
be compared against each other or against the status of the
live application. By saving and comparing memory states,
the user can simulate our comparison tool. Nevertheless,
it is not possible to automate the collection of states and
their comparison, forcing the user to undertake a tedious
process of stepping through the code. In situations where
the error appears only after a significant amount of time,
this approach becomes impractical. TotalView, by saving
the complete memory state, can provide a more detailed
difference report than our tool based on CRC codes. Nev-
ertheless, saving the state requires high memory usage and
disk bandwidth, slowing down the process.

6. SUMMARY AND FUTURE WORK

In this paper we presented a technique based on memory
tagging to help detect memory problems in applications that
use a module-oriented programming model. We applied this
technique to applications written in CHARM++ and showed
how this technique can be used to detect two types of mem-
ory problems: (1) when a module (chares in CHARM++)
modifies memory belonging to other modules, and (2) when
a buffer overflow occurs.

The current overhead that our implementation suffers is too
high for most real situations. We are studying refinements
to our scheme to improve the performance and significantly
reduce the constant overhead time we described in the per-
formance section. In particular, we are looking at two tech-
niques. One technique is to duplicate regions of memory
instead of creating a signature for them with CRC. This
moves the overhead from the time dimension to the space
dimension. The other technique is to use the virtual mem-
ory paging system and its protection mechanisms. In this
second case, we would also be able to identify the faulty
instruction precisely.

In our current scheme, we detect only active modifications
of data. If the data overwritten is identical to the one pre-
viously present, we are not able to detect it. Moreover, read

accesses are never detected. While read accesses might be
allowed in a larger number of cases due to possible processor-
level optimizations, it would be useful to be able to detect
them. By combining the virtual memory paging system and
its protection mechanisms, we believe we can achieve this
goal.

7. ACKNOWLEDGEMENTS

We would like to thank Dr. Sayantan Chakravorty for his
precious comments while preparing this paper, and David
Kunzman for his help with graphics. This work was sup-

ported in part by grants NSF 0720827 and NSF ITR-0205611.

8. REFERENCES

[1] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips,

G. Zheng, and L. V. Kale. Overcoming Scaling
Challenges in Biomolecular Simulations across
Multiple Platforms. In Proceedings of IEEE
International Parallel and Distributed Processing
Symposium 2008, 2008.

[2] E. Bohm, G. J. Martyna, A. Bhatele, S. Kumar, L. V.
Kale, J. A. Gunnels, and M. E. Tuckerman. Fine
Grained Parallelization of the Car-Parrinello ab initio
MD Method on Blue Gene/L. IBM Journal of
Research and Development: Applications of Massively
Parallel Systems, 52(1/2):159-174, 2008.

[3] Intel Corporation. Intel Thread Checker.
http://www.intel.com.

[4] P. Jetley, F. Gioachin, C. Mendes, L. V. Kale, and
T. R. Quinn. Massively Parallel Cosmological
Simulations with ChaNGa. In Proceedings of IEEE
International Parallel and Distributed Processing
Symposium 2008, 2008.

[5] R. Jyothi, O. S. Lawlor, and L. V. Kale. Debugging
support for Charm++. In PADTAD Workshop for
IPDPS 2004, page 294. IEEE Press, 2004.

[6] L. V. Kalé. Performance and productivity in parallel
programming via processor virtualization. In Proc. of
the First Intl. Workshop on Productivity and
Performance in High-End Computing (at HPCA 10),
Madrid, Spain, February 2004.

[7] L. V. Kale and S. Krishnan. Charm++: Parallel
Programming with Message-Driven Objects. In G. V.
Wilson and P. Lu, editors, Parallel Programming using
C++, pages 175-213. MIT Press, 1996.

[8] S. Kumar. Optimizing Communication for Massively
Parallel Processing. PhD thesis, University of Illinois
at Urbana-Champaign, May 2005.

[9] M. Ronsse and K. D. Bosschere. Non-intrusive
on-the-fly data race detection using execution replay.
In Automated and Algorithmic Debugging, 2000.

[10] P. Sack, B. E. Bliss, Z. Ma, P. Petersen, and
J. Torrellas. Accurate and efficient filtering for the
intel thread checker race detector. In ASID ’06:
Proceedings of the 1st workshop on Architectural and
system support for improving software dependability,
pages 34-41, New York, NY, USA, 2006. ACM.

[11] J. Seward and N. Nethercote. Using valgrind to detect
undefined value errors with bit-precision. In ATEC
’05: Proceedings of the annual conference on USENIX
Annual Technical Conference, pages 2—2, Berkeley,
CA, USA, 2005. USENIX Association.

[12] T. Technologies. Debugging Memory Problems Using
TotalView Debugger. http://www.totalviewtech.com.

[13] T. Technologies. Total View® debugger.
http://www.totalviewtech.com/TotalView.

[14] G. Zheng. Achieving High Performance on Extremely
Large Parallel Machines: Performance Prediction and
Load Balancing. PhD thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign,
2005.

