
Towards Scalable Performance Analysis and Visualization through Data
Reduction

Chee Wai Lee, Celso Mendes and Laxmikant V. Kalé
Department of Computer Science

University of Illinois at Urbana-Champaign
cheelee@uiuc.edu, cmendes@uiuc.edu, kale@cs.uiuc.edu

Abstract

Performance analysis tools based on event tracing are
important for understanding the complex computational ac-
tivities and communication patterns in high performance
applications. The purpose of these tools is to help applica-
tions scale well to large numbers of processors. However,
the tools themselves have to be scalable. As application
problem sizes grow larger to exploit larger machines, the
volume of performance trace data generated becomes un-
managable especially as we scale to tens of thousands of
processors. Simultaneously, at analysis time, the amount of
information that has to be presented to a human analyst can
also become overwhelming.

This paper investigates the effectiveness of employing
heuristics and clustering techniques in a scalability frame-
work to determine a subset of processors whose detailed
event traces should be retained. It is a form of compres-
sion where we retain information from processors with high
signal content.

We quantify the reduction in the volume of performance
trace data generated by NAMD, a molecular dynamics
simulation application implemented using CHARM++. We
show that, for the known performance problem of poor ap-
plication grainsize, the quality of the trace data preserved
by this approach is sufficient to highlight the problem.

1 Introduction

The next few years will see the availability of several
very large machines with many thousands of processors.
With these resources available, application developers are
likely to have two desires. The first is the desire to take
advantage of the larger total available memory and compu-
tational power to solve larger problems. The second is the
desire to attempt to solve the same problems faster, by run-
ning them on more processors.

In both cases, it is important that parallel performance
tools be available to study the application’s performance as
it is scaled to larger numbers of processors. Unfortunately,
as we will show, the already large volume of performance
data also grows with scaling, particularly for weak-scaling
where larger problems are being solved. As a result, it
is important that the parallel performance tools themselves
become scalable in the face of increased volume of traced
data.

In this paper, we focus our investigation on the approach
of reducing the volume of event-based performance data re-
tained for post-mortem analysis. While aggregated or sam-
pled profile data can be useful, the use of detailed event
traces from instrumented parallel applications has been doc-
umented to be a valuable source of information for studying
their performance [11, 25, 16]. Our approach takes advan-
tage of the fact that performance data are recorded in per-
processor buffers in memory. We propose the retention of,
by writing out to disk, only a subset of these per-processor
buffers through a careful selection criterion applied online,
making use of the parallel machine after the application has
completed.

This selection criterion is centered on the use of heuris-
tics for the identification of the representative and outliers
within equivalence classes of processors discovered through
clustering algorithms. We will show in this paper that an
online application of the approach after an application’s ex-
ecution can generate much less data and yet capture its core
performance characteristics in high detail.

We have implemented our approach to enhance the scal-
ability of Projections, a performance tracing, visualization
and analysis tool used for analyzing the performance of
CHARM++ and ADAPTIVE MPI applications. Our exper-
iments examine the approach’s impact on performance logs
generated for the popular molecular dynamics application
NAMD which is written in CHARM++. Projections in-
strumentation is automatic by default, tracking task exe-
cution and communication events in the CHARM++ run-
time. Event traces are generated and visualized/analyzed



post-mortem through a visualization component. The ex-
periments were conducted on the Cray XT3 supercomputer
installed at Pittsburgh Supercomputing Center using three
NAMD simulation benchmarks instrumented for over 200
simulation timesteps.

The organization of the rest of this paper is as follows.
Section 2 provides a software context to the implementation
of our approach and quantifies the volume of performance
data generated. Section 3 describes the details of our ap-
proach to performance data reduction. Section 4 discusses
our experimental methodology and studies results to inves-
tigate the degree of effectiveness our preliminary heuristics
enjoy. We then discuss related work in scalable perfor-
mance analysis in section 5 and finally draw conclusions
on our contributions in this paper and discuss the rich area
of future work that should be pursued in section 6.

2 Software Infrastructure

CHARM++ [10] is a portable C++ based parallel pro-
gramming language based on the migratable object pro-
gramming model and resultant virtualization of processors.
In this approach [9], a programmer decomposes a prob-
lem into N migratable objects (MO) that will execute on
P processors, where ideally N>>P . The application pro-
grammer’s view of the program is of MOs and their inter-
actions; the underlying runtime system keeps track of the
mapping of MOs to processors and performs any remapping
that might be necessary at run-time. In CHARM++, MOs
are known as chares. Chares are C++ objects with special
entry methods that are invoked asynchronously from other
chares through messages. CHARM++ uses message-driven
execution to determine which chare gets control of a proces-
sor. An advantage of this approach is that no chare can hold
a processor idle while it is waiting for a message. Since
N>>P , there may be other chares on the same processor
that can overlap their computation with the communicating
chare. CHARM++ is actively used in a number of major
real-world scientific applications [18, 22, 7] that demand
high scalability for some of the phenomenon the scientific
community wishes to study.

The Projections Analysis Framework [11] consists of
an instrumentation component and a visualization/analysis
tool. It’s features have been used extensively to tune many
CHARM++ applications in order to enhance their scalabil-
ity and performance, especially NAMD [19, 11, 15]. Pro-
jections instrumentation is fully automated by default since
CHARM++ is a message driven system. Specifically, the
runtime system (RTS) knows when it is about to schedule
the execution of a particular method of a particular object
(in response to a message being picked up from the sched-
uler’s queue), and when an object sends a message to an-
other object.

In most MPI-based tools when a processor waits at a re-
ceive call, the time spent is considered a part of the com-
munication overhead associated with the actual call. How-
ever, this often includes idle time, which can be cleanly
separated from communication overhead by the CHARM++
RTS. Similar useful information may be recorded by the
proposed PERUSE [12] interface for MPI which provides
access to performance data associated with the underlying
MPI library implementation.

The log data (see section 2.1) is typically written out at
the end of the run. If it exhausts all the memory space allo-
cated to it, or if the user desires (e.g. at known global syn-
chronization points), the data can be flushed to disk. How-
ever, in our experience, asynchronous flushing of log data
causes such severe perturbation of application performance
that the performance information after the first instance of
such a flush becomes effectively useless.

2.1 Event Log Format and Data Volume

Our event logs are written in a text format with one event
per line. Some events contain more details than others.
For example, we record events like the start and end of
each CHARM++ entry method, every time a message was
sent and each time the runtime scheduler goes idle or re-
turns from being idle. For each event, different types of
attributes may be recorded. This includes the timestamp,
size of a message, the CHARM++ object id, and any perfor-
mance counter information (e.g. PAPI [1]) associated with
the event. Recording performance counter information is
optional and the default instrumentation policy has small
overhead, involving a low-cost timestamp request and ac-
cessing the in-memory instrumentation log buffers.

It is clear that instrumenting an application for the entire
run duration is unscalable and counter-productive. Projec-
tions has an interface for turning instrumentation on and off,
allowing iterative applications like NAMD to instrument,
for example, a sample of 200 simulation steps to capture
performance data that represent a meaningful subset of the
entire execution.

nCPUs apoa1 f1atpase stmv
512 827 MB 1,800 MB 2,800 MB
1024 938 MB 2,200 MB 3,900 MB
2048 1,200 MB 2,800 MB 4,800 MB
4096 5,700 MB

Table 1. Total volume of trace data summed
across all files. apoa1 is a NAMD simula-
tion with 92k atoms, f1atpase simulates 327k
atoms while stmv simulates 1M atoms.

This mechanism for controlling the volume of perfor-



mance data generally helps to contain the total data volume
to the order of O(E + P ×C) where E is the total number
of computational events generated by an application given
a fixed input, P is the number of processors on which the
application is executed and C is the overhead due to addi-
tional communication events on each processor as a result
of scaling. We quantify the volume of trace data generated
for three different NAMD simulations in table 1. The ta-
ble shows how data volume tends to grow for strong scaling
as well as for weak scaling. It is worthwhile to note that
the overhead factor C is dependent on E, making the prob-
lem of large trace data volume worse when we try to scale
applications for larger problem sizes.

There are plans, in the coming years, to make simula-
tions in the order of 100 million atoms on machines with
at least a hundred thousand processors. These plans drive
the urgency of research in scalable performance analysis ap-
proaches to deal with the expected increase in performance
data volume.

3 Approach to Performance Data Reduction

Our approach to helping performance tools scale with
the larger volume of generated event-based performance
data is to simply trim the total volume of data fed post-
mortem to these tools by only retaining performance data
pertaining to a subset of processors on which the applica-
tion is executed.

The adoption of this approach is based on two obser-
vations. The first is that in almost all implementations of
event-based performance tracing, log buffers document the
behavior and are stored in the memory of each processor.
The second is that processors often exhibit performance be-
havior that is similar to a set of other processors, forming
equivalence classes. These observations highlight the pos-
sibility that the online selection of performance data from
an appropriate subset of outlier processors may be suffi-
cient for the capture of details of a significant number of
important bottlenecks and performance problems. Coupled
with the selection of a subset of processors whose behavior
are representitive of other processors in their equivalence
class, this could then allow a reasonable reconstruction of
the application’s behavior for that run, but with significant
reduction in data volume. This approach can take advan-
tage of the parallel machine available to the application. It
allows the analysis algorithms to be performed in parallel
on the full traces held on each processor’s process space
within the original parallel application. We note, however,
that this also requires the factoring of the additional analysis
overhead into the time requested for the job.

The first step to this process is to discover the equiva-
lence classes of processor behavior. Once a suitable parti-
tion of processor sets have been found, we employ heuris-

tics to identify processors whose behavior are representative
of its associated equivalence class, as well as a number of
processors whose behavior exhibit extremal behavior with
respect to its associated equivalence class. The following is
a summary of the factors that affect the dataset. These are
discussed in more detail in the subsequent subsections.

1. The performance attributes (e.g. execution time of
CHARM++ entry methods) selected as the basis for
equivalence class discovery.

2. The quality of equivalence classes formed.

3. The quality of the heuristic used to select representa-
tives of an equivalent class.

4. The number of representatives selected from an equiv-
alent class.

5. The quality of the heuristic used to select extremal pro-
cessors from an equivalent class.

6. The number of extremal processors selected from an
equivalent class.

3.1 k-Means Clustering for Equivalence
Class Discovery

We make use of the k-Means clustering [8] algorithm to
discover equivalence classes of processors and from these
classes, select representative processors.

We choose to apply k-Means clustering over E dimen-
sions, where E is the number of instrumented CHARM++
entry methods. Currently, we take the total execution time
of an entry method as the primary attribute for the algo-
rithm. We define a processor’s sample-point to be a vec-
tor of E dimensions, where the coordinate along each di-
mension is given by the total execution time spent by each
CHARM++ entry method on that processor. The distance
metric between any two processors is then computed as an
unweighted Euclidean distance given the two processors’
sample-point vectors. The initial k cluster starting points
for the algorithm are placed by uniformly spreading them
across the E-dimensional bounding-box. The bounding-
box is formed by the minimum and maximum values of
each of the E entry method execution times over all P sam-
ple points where P is the number of processors. Figure 1
graphically shows an example of the final result from the
hypothetical application of k-Means clustering with 3 clus-
ters (equivalence classes), over 2 dimensions (labelled entry
methodX and entry method Y ) with some arbitrary number
of processor sample-points.

Several factors affect the accuracy and quality of k-
Means clustering. One is the choice of k which tells the
algorithm to locate k clusters in the sample-space, which



Figure 1. An example of clustering of proces-
sor sample points over 2 entry methods X
and Y .

may not correspond to a more natural number of equiva-
lence classes. Most tools making use of k-Means clustering
either make use of domain knowledge or trial and error for
the choice of k. Another factor is the initial seeding of the k
starting points in the sample-space which affect which sam-
ple points eventually get placed in a cluster. Finally, the
chosen set of performance attributes determines the useful-
ness of the partitioning.

The value of k is in fact the number of initial seeds used
in the clustering algorithm. Depending on seeding pol-
icy, they may or may not ultimately represent non-empty
clusters. We made some trial and error experiments with
NAMD, varying the number of processors and k, summa-
rized in table 2. The results for k = 15, we felt, appeared
more or less consistent with the number of processor-
classes we have observed in the past while studying the per-
formance of NAMD. The observed classes include proces-
sor 0 which has to perform special tasks, as well as certain
processors in NAMD which, when assigned certain work
objects are not allowed to be assigned certain other types of
objects. As a result, we chose to set k to 15 for the identifi-
cation of clusters in our subsequent experiments. The initial
seeding of the k starting points are, for now, uniformly dis-
tributed in the E dimensional space.

3.2 Choosing Representative Processors

Our selection of processor representatives given a set
of equivalence classes is extremely simple. For each non-
empty equivalence class C, we select exactly one represen-
tative RC closest to the mean point according to the Eu-
clidean distance measure described in section 3.1. Note that
the mean point of a cluster need not necessarily represent a
real sample point.

nCPUs Number of non-empty clusters found with
5 seeds 10 15 20 25

512 1 4* 4* 6* 6*
1024 2 4 6* 6* 7*
2048 2 4* 5* 6* 7*
4096 3 6* 7* 9* 10*

Table 2. Number of non-empty clusters found
by clustering algorithm by varying the num-
ber of initial seeds uniformly distributed in
the sample space The * indicates that proces-
sor 0 was alone in its own cluster.

The quality of this selection scheme depends on the qual-
ity of the discovered clusters. For instance, in a simple
dataset with 2 dimensions, this scheme functions poorly in
the case of a cluster whose members’ data points form part
of a perfect circle around the cluster’s mean point.

3.3 Choosing Extremal/Outlier Proces-
sors

The goal at this stage is to pick out processors whose be-
havior is most different from the norm within a given clus-
ter. To select O outlier or extremal processors given the
equivalence classes, where O is some number smaller than
the number of processors P , we need to apply a selection
heuristic as follows.

If cluster C has one or fewer sample points, then nothing
needs to be done, as the representative selection scheme has
already picked out that processor in section 3.2.

Every other clusters’ member data point will have had
their Euclidean distance from the cluster mean points com-
puted as part of the clustering algorithm. We can now make
use of these computed values. For each cluster C, we sort
the member processors by distance computed. Let Sc be
the number of processor sample-points in each cluster C.
We now select approximately O×Sc

P processors from each
cluster that are furthest from their cluster mean points.

Once again, this heuristic is dependent on the quality
of the equivalence classes generated by the clustering al-
gorithm in 3.1. More importantly though, the heuristic is
very simple and currently does not take into account biases
in cluster distributions. For instance, if one cluster is partic-
ularly tight relative to others, then perhaps the heuristic can
be made to realize that this cluster is best captured by just
the representatives selected in section 3.2.



4 Experimental Methodology

The goal of our experiments is to investigate the effec-
tiveness of our processor selection heuristics. We determine
effectiveness to comprise of two components. The first is a
quantitative measure of how much data was reduced. The
second is an evaluation of the quality of the reduced dataset
with respect to performance problem discovery which, in
our case, is performed using Projections.

Our experiments are based on the 1 million atom NAMD
simulation of the complete satellite tobacco mosaic virus
(stmv in table 1). We made the runs from 512 to 4096 pro-
cessors on the Cray XT3 installed at Pittsburgh Supercom-
puting Center through Teragrid [3] resources.

To enable an assessment of our technique, we injected a
known poor-grainsize performance problem as described in
our case study paper [11] into the simulation. This would
manifest itself as a bimodal “camel hump” in a histogram
plot that would not show up otherwise when the same plot
was made of performance data from a run without the prob-
lem injection.

Figure 2. Histogram plot of stmv in Projec-
tions. The vertical bars show the number of
occurrences of CHARM++ entry methods, dis-
tinguished by their colors, that took a cer-
tain amount of time to execute. The first bar
shows the number of entry methods that ex-
ecuted for 0.1 ms to 0.2 ms, the second for
0.2 ms to 0.3 ms, etc

In our histogram plot, we display a stacked graph of
occurrence counts of each instrumented CHARM++ entry
method against the time it took. The histogram covers
the occurrence of entry methods that range from 0.1 ms
to 10.0 ms over 100 bins. The occurrence count data is
summed across all processors over the 200 NAMD itera-
tions. Figure 2 shows what the histogram looks like without
the injected performance problem and the corresponding bi-
modal histogram in figure 3.

Figure 3. Histogram plot of stmv with poor-
grainsize in Projections. Note the shift of
the number of CHARM++ entry method occur-
rences rightward where the bins represent
longer execution times.

Projections currently does not apply any proportional
modifications to performance information of the processor
representatives in order to extrapolate their contribution. As
a result, we determine the quality of the reduced data set by
two criteria. LetHi

r be the total occurrence counts for the i-
th histogram bar in the reduced data set. Let Hi

o be the total
occurrence count for the i-th histogram bar in the original
full data set. Let Pr be the number of processors in the re-
duced data set and let Po be the number of processors in the
original full data set. Our first criterion states that for each
i, Hi

r

Hi
o

should be close to Pr

Po
where Hi

o 6= 0. Our second

criterion states that across all i where Hi
o 6= 0, Hi

r

Hi
o

should
not vary by too much. We will refer to these two criteria as
the proportionality criteria.

4.1 Results

We first show the reduction in data volume in table 3,
through the selection of subsets of processors that number
approximately 10% of the original dataset. As we can see,
the reductions come as no surprise, although it is important
to note that the number of traced events can vary signifi-
cantly between processors. One cannot trivially expect to
see a perfectly linear reduction in data volume.

For the quality measure, we applied the proportional-
ity criteria to the reduced trace data generated from full
datasets ranging from 512 to 4096 processors and with pro-
cessor reduction ranging from approximately 5% to approx-
imately 20% of the original number of processor logs. This

is summarized in table 4. In this table, H =

∑n

i=0

Hi
r

Hi
o

m
where Hi

o 6= 0. For our experiments, n = 100 and
m = n − k where k is the number of instances where



nCPUs original size reduced data
512 2,800 MB 275 MB
1024 3,900 MB 402 MB
2048 4,800 MB 551 MB
4096 5,700 MB 667 MB

Table 3. Reduction in total volume of trace
data for stmv. The number of processors se-
lected in the subsets are 51, 102, 204 and 409
for 512, 1024, 2048 and 4096 original proces-
sors respectively.

Hi
o = 0 (In other words, we ignore histogram bars where

proportionality has no meaning). We use H’s closeness to
Pr

Po
as the measure to satisfy the first criterion of the propor-

tionality criteria. Likewise, the standard deviation σ over
Hi

r

Hi
o

for all i where Hi
o 6= 0 is used as the measure to satisfy

the second criterion for reduced data set quality. From the
table, we see that with the exception of the data from 512
processors, the proportionality of the histogram bars gen-
erated from reduced data sets matches very well with what
is expected of the data. In addition, the standard deviation
values appear to be good. We believe the 512 processor
data sets involve entry methods of larger grain size, mak-
ing them more sensitive to variation across processors. In
any event, the values are not terribly off-the-mark although
improvements may be possible.

We have also visually confirmed the quality of the data
using Projections on the partial processor logs generated by
our approach.

Po
Pr

Po
H

Standard
deviation σ

512
0.0488 0.0641 0.00732
0.0996 0.1180 0.00768
0.1992 0.2237 0.00732

1024
0.0498 0.0511 0.00168
0.0996 0.1008 0.00157
0.1992 0.1921 0.00264

2048
0.0498 0.0487 0.00122
0.0996 0.0977 0.00216
0.1992 0.1883 0.00575

4096
0.0498 0.0501 0.00170
0.0998 0.0981 0.00203
0.1997 0.1975 0.00163

Table 4. Reduced dataset quality by propor-
tionality based on total height of histogram
bars.

5 Related Work

A large body of recent work tackles the scalability of
performance analysis tools. Wolf et. al. surveyed [24] the
issues, challenges and approaches to this problem in detail.
The Scalasca project [6, 5] makes use of the parallel ma-
chine generating traces to also perform automated perfor-
mance analysis of the trace data.

The use of clustering algorithms for performance bot-
tleneck detection, visualized using scatterplots, have been
explored in TAU [21]. They do not make use of cluster-
ing for data reduction but have highlighted the importance
of dimensionality reduction and the removal of correlated
performance metrics. Pablo [17, 20] demonstrated an old
prototype similar to our approach for spatial data reduction.
It retains trace data segments for processor representatives
of clusters it discovers, reclustering as needed as perfor-
mance data changes over time. Our approach currently ig-
nores changes over time while focusing on processors’ per-
formance behavior across the entire duration of the traces
recorded. At the same time, we are uncertain about the
overheads that are involved in the constant testing of clus-
ter quality and potential need to recompute clusters in their
scheme. The main difference between our approaches is
that we seek out outlier/extrema processors from clusters
as our focus while still preserving the general performance
profile with representatives. This difference is due to our
belief that in performance analysis, the unusual should be
sought out in addition to what is usual.

Performance data may also be reduced in the temporal
dimension. Chung et. al. [4] sought repeated communica-
tion patterns in MPI codes as a source for compression, aug-
menting the visualization tool to re-generate the full details
when needed. Knupfer and Nagel [14] shows great poten-
tial for temporal data reduction through the construction and
subsequent compression of Complete Call Graphs. They
further introduce a distributed architecture for performance
analysis [13] that further enhances scalability by allowing
parallel analysis. Knupfer’s approach offers the potential
to co-exist well with our approach, reducing data both spa-
tially and in time while at the same time allowing for the
possibility of parallel analysis of trace data on the same ma-
chine the application was executed. Casas et. al. [2] mean-
while applies signal processing techniques like non-linear
filtering and spectral analysis directly on event traces in or-
der to identify similar regions along the time dimension and
achieve data reduction by removing multiple instances. Vet-
ter and Reed [23] studies the reduction of performance data
by removing uninteresting performance metrics through the
technique of dynamic statistical projection pursuit.



6 Conclusion and Future Work

We have presented a way for reducing the volume of
event trace data by retaining a subset of processor logs
through the identification of representatives and extrema
members after partitioning through k-means clustering. We
have demonstrated the potential of this approach by quan-
tifying the reduction in data volume as well as the quality
of the retained data, for the specific performance problem
of poor application grainsize, for a 1 million atom NAMD
simulation from 512 to 4096 processors. We showed that
the use of processor equivalence classes is important for the
retention appropriate processors so that the grainsize profile
of the performance data is not badly affected.

Unfortunately, we have not measured the time taken to
apply the algorithms used in our approach. In the interest
of time, most of our results were generated using an equiv-
alent sequential code post-mortem rather than attempting to
submit jobs for many experimental parameters that requires
the entire machine at PSC. The k-means algorithm has been
observed to converge quickly and the sequential code took
less than 30 seconds to compute the results for 4096 pro-
cessor logs on a workstation. We do not foresee the parallel
version taking any longer.

Future work will focus on studying the quality of the ap-
proach with respect to other performance problems, other
applications, other programming paradigms like MPI and
even higher levels of processor scaling, up to tens of thou-
sands of processors. This includes studying the use of other
performance metrics like communication characteristics to
be used as attributes for our approach. It is also unclear
if this approach can be applied ubiquitously to all classes
of performance problems and bottlenecks. If not, a tech-
nique for reasonbly combining multiple heuristics that each
choose a different subset of processor trace data suitable
to different classes of problems is needed. In particular,
we hope to more clearly demonstrate the utility of select-
ing outlier/extremal processors from clusters. We see them
as being capable of locating “rogue” processors, for ex-
ample processors that experience very long computational
stretches in some entry methods. These processors would
still be members of the same clusters but we expect the
computational spikes to cause them to veer off the cluster
centroid more than other typical processor members. On
the other hand, we also want to be able to identify possible
classes of performance problems that cannot be effectively
retained through data reduction by this approach. Problems
that involve communicating critical paths come into mind
as they would require the heuristic to have to pick the exact
processors involved in the critical path. Finally, this ap-
proach is not intended to be standalone, we intend to study
the quality of this approach when used in conjunction with
temporal data reduction techniques possibly developed by

others.

7 Acknowledgments

This research was supported in part by the National Sci-
ence Foundation through TeraGrid resources (Grant Num-
ber: MCA93S028) provided by Pittsburgh Supercomputing
Center and by the National Institute of Health (NIH PHS
5 P41 RR05969-04). TeraGrid systems are hosted by Indi-
ana University, LONI, NCAR, NCSA, NICS, ORNL, PSC,
Purdue University, SDSC, TACC and UC/ANL.

References

[1] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A
Portable Programming Interface for Performance Evaluation
on Modern Processors. Int. J. High Perform. Comput. Appl.,
14(3):189–204, 2000.

[2] M. Casas, R. M. Badia, and J. Labarta. Automatic Structure
Extraction from MPI Application Tracefiles. Lecture Notes
in Computer Science, 4641:3–12, August 2007.

[3] C. Catlett and et. al. TeraGrid: Analysis of Organization,
System Architecture, and Middleware Enabling New Types
of Applications. In L. Grandinetti, editor, HPC and Grids in
Action, Amsterdam, 2007. IOS Press.

[4] I.-H. Chung, R. E. Walkup, H.-F. Wen, and H. Yu. MPI
tools and performance studies—MPI performance analysis
tools on Blue Gene/L. In SC ’06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 123, New
York, NY, USA, 2006. ACM Press.

[5] M. Geimer, F. Wolf, A. Knupfer, B. Mohr, and B. J. N.
Wylie. A Parallel Trace-Data Interface for Scalable Perfor-
mance Analysis. In Proceedings of the Workshop on State-
of-the-art in Scientific and Parallel Computing (PARA),
Minisymposium Tools for Parallel Performance Analysis,
Umea, Sweden, June 2006.

[6] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr. Scalable
Parallel Trace-Based Performance Analysis. In Proceedings
of the 13th European Parallel Virtual Machine and Message
Passing Interface Conference, Bonn, Germany, September
2006. Springer LNCS.

[7] F. Gioachin, A. Sharma, S. Chakravorty, C. Mendes, L. V.
Kale, and T. R. Quinn. Scalable cosmology simulations on
parallel machines. In VECPAR 2006, LNCS 4395, pp. 476-
489, 2007.

[8] A. K. Jain and R. C. Dubes. Algorithms for clustering data.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[9] L. V. Kalé. Performance and productivity in parallel pro-
gramming via processor virtualization. In Proc. of the First
Intl. Workshop on Productivity and Performance in High-
End Computing (at HPCA 10), Madrid, Spain, February
2004.

[10] L. V. Kale and S. Krishnan. Charm++: Parallel Program-
ming with Message-Driven Objects. In G. V. Wilson and
P. Lu, editors, Parallel Programming using C++, pages
175–213. MIT Press, 1996.



[11] L. V. Kale, G. Zheng, C. W. Lee, and S. Kumar. Scaling ap-
plications to massively parallel machines using projections
performance analysis tool. In Future Generation Computer
Systems Special Issue on: Large-Scale System Performance
Modeling and Analysis, volume 22, pages 347–358, Febru-
ary 2006.

[12] R. Keller, G. Bosilca, G. Fagg, M. Resch, and J. J. Dongarra.
Implementation and Usage of the PERUSE-Interface in
Open MPI. Lecture Notes in Computer Science, 4192:347–
355, September 2006.

[13] A. Knupfer, H. Brunst, and W. E. Nagel. High performance
event trace visualization. Parallel, Distributed and Network-
Based Processing, 2005. PDP 2005. 13th Euromicro Con-
ference on, pages 258–263, 2005.

[14] A. Knupfer and W. E. Nagel. Construction and compres-
sion of complete call graphs for post-mortem program trace
analysis. icpp, 00:165–172, 2005.

[15] S. Kumar, C. Huang, G. Almasi, and L. V. Kalé. Achieving
strong scaling with NAMD on Blue Gene/L. In Proceedings
of IEEE International Parallel and Distributed Processing
Symposium 2006, April 2006.

[16] S. Moore, F. Wolf, J. Dongarra, S. Shende, A. Malony, and
B. Mohr. A Scalable Approach to MPI Application Perfor-
mance Analysis. LNCS, 3666:309–316, 2005.

[17] O. Y. Nickolayev, P. C. Roth, and D. A. Reed. Real-time
statistical clustering for event trace reduction. The Inter-
national Journal of Supercomputer Applications and High
Performance Computing, 11(2):144–159, Summer 1997.

[18] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhor-
shid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schul-
ten. Scalable molecular dynamics with NAMD. Journal of
Computational Chemistry, 26(16):1781–1802, 2005.

[19] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé. NAMD:
Biomolecular simulation on thousands of processors. In
Proceedings of the 2002 ACM/IEEE conference on Super-
computing, pages 1–18, Baltimore, MD, September 2002.

[20] D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields,
B. W. Schwartz, and L. F. Tavera. Scalable Performance
Analysis: The Pablo Performance Analysis Environment.
In Proc. Scalable Parallel Libraries Conf., pages 104–113.
IEEE Computer Society, 1993.

[21] S. Shende and A. D. Malony. The TAU Parallel Performance
System. International Journal of High Performance Com-
puting Applications, 20(2):287–331, Summer 2006.

[22] R. V. Vadali, Y. Shi, S. Kumar, L. V. Kale, M. E. Tucker-
man, and G. J. Martyna. Scalable fine-grained paralleliza-
tion of plane-wave-based ab initio molecular dynamics for
large supercomputers. Journal of Comptational Chemistry,
25(16):2006–2022, Oct. 2004.

[23] J. Vetter and D. Reed. Managing performance analysis with
dynamic statistical projection pursuit. sc, 00:44, 1999.

[24] F. Wolf, F. Freitag, B. Mohr, S. Moore, and B. Wylie. Large
Event Traces in Parallel Performance Analysis. In Pro-
ceedings of the 8th Workshop Ṕarallel Systems and Algo-
rithms(́PASA), Lecture Notes in Informatics, Gesellschaft fr
Informatik, Frankfurt/Main, Germany, March 2006.

[25] F. Wolf and B. Mohr. EARL - A Programmable and Exten-
sible Toolkit for Analyzing Event Traces of Message Pass-
ing Programs. In HPCN Europe ’99: Proceedings of the

7th International Conference on High-Performance Com-
puting and Networking, pages 503–512, London, UK, 1999.
Springer-Verlag.


