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Abstract

This paper describes a new scalable stream mining al-
gorithm called NOISEMINER that analyzes parallel appli-
cation traces to detect computational noise, operating sys-
tem interference, software interference, or other irregulari-
ties in a parallel application’s performance. The algorithm
detects these occurrences of noise during real application
runs, whereas standard techniques for detecting noise use
carefully crafted test programs to detect the problems.

This paper concludes by showing the output of
NOISEMINER for a real-world case in which 6 ms delays,
caused by a bug in an MPI implementation, significantly
limited the performance of a molecular dynamics code on a
new supercomputer.

1. Introduction

Automated analysis techniques are critical when scal-
ing applications to hundreds of thousands of processors. A
single person cannot possibly monitor online data streams
from an application, or even look through trace logs for
all processors in a reasonable amount of time. Therefore
performance analysis techniques are useful when they can
scale to such volumes of data. One technique for scalably
analyzing large volumes of data either online or offline is
stream mining. Stream mining refers to any data mining
algorithm that only makes a single linear pass through its
input data, while maintaining a synopsis of the data. The
synopsis must have bounded memory requirements, and at
any point in the processing of the stream, it can be converted
into a useful report. This paper proposes and provides re-
sults from a novel scalable stream mining algorithm that
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detects computational noise that interferes with the perfor-
mance of parallel applications on large clusters.

2. Motivating Problem

In January 2007, developers discovered that the widely
used molecular dynamics code NAMD[15, 16] performed
poorly on a brand new large supercomputer cluster named
Lonestar at the Texas Advanced Computing Center. After
manual analysis of post-mortem performance trace visual-
izations, they discovered that some events on a specific pro-
cessor would take 6 ms longer than expected. The 6 ms
delays were not limited to a single portion of the computa-
tion, but rather occurred in various parts of the computation.
Eventually these developers determined that the culprit was
a bug in the MPI library whereby some MPI calls would
take around 6 milliseconds. The problem was finally fixed
by a software update to the MPI library.

The histogram in Figure 1 shows the durations of events
from a NAMD run on the new Lonestar cluster, with hun-
dreds of events each taking 6 ms longer than expected. The
left portion of the histogram represents events with expected
durations less than 1 ms. In the middle of the same his-
togram are a a group of events with exceptionally long dura-
tions. This paper describes an automated scalable algorithm
that detects such exceptionally long events. Automatically
detecting such exceptional events can increase the produc-
tivity of application developers while porting applications
to new machines. The method proposed in this paper can
detect multiple types of noise even though this paper just
shows its use in the presence of a single predominant source
as seen in Figure 1.

3. The Problem of Interference

Historically, systems have been plagued with operating
system (OS) daemons or other processes that interrupt par-



Figure 1. A histogram of event durations for a run of NAMD on the new Lonestar cluster while an MPI
bug caused various MPI calls to take about 6 milliseconds longer than expected.

allel applications and cause serious delays[14, 12, 6]. More
recently new problems are being discovered where the time
taken to execute a single portion of an application’s code
has significant variability. These new problems can be
caused by hardware or software. The hardware causes in-
clude dynamic processor speeds, contention for resources,
silent slow fault correction, or the use of a slow path instead
of an optimized fast path. One example of the last type
of hardware interference occurs when subnormal floating-
point values are processed more slowly in modern floating-
point units[2]. Problems in software libraries can also in-
terfere with the parallel application, as happened with the
MPI bug described in Section 2. Many names are used
to describe these hardware or software problems, including
OS Interference, Software Interference, and Computational
Noise. This paper refers to all these problems simply as
Computational Noise.

Computational noise is a serious problem in parallel sys-
tems because a single occurrence of noise may delay all
processors, not just the single processor on which the noise
occurs [18]. It is therefore critical in large-scale parallel ap-
plications to remove or appropriately handle all sources of
computational noise because the effects of noise can con-
strict performance and limit scalability [11]. Solutions such
as coordinated-scheduling of OS interference can mitigate
such problems if used appropriately [14].

The original published methods for detecting OS noise

are to run simple special-purpose benchmarks. Such a
benchmark would repeatedly time the duration of a bar-
rier call, performing no other work between barriers. The
durations for each barrier call should be constant if noise
is not present, but the sampled durations will have high
variance if noise is present. Unfortunately such simple
benchmarks do not detect all types of noise that can hurt
a parallel application. The simple benchmark does not use
computational resources that can introduce noise, such as
floating-point logic. Because simple benchmarks do not
capture all types of noise that may affect a real-world ap-
plication, a method such as NOISEMINER is valuable for
detecting noise affecting complicated real-world applica-
tions. The literature contains a further discussion of com-
putational noise[13, 4, 9, 5, 3, 8, 1].

4. NOISEMINER

This section describes the new NOISEMINER data min-
ing algorithm that can detect anomalous patterns indicative
of computational noise. Multiple noise sources, each with
differing durations and periodicities can be detected. The
method is fully automatic, so no input from a user is re-
quired. Notably, the method detects expected event dura-
tions automatically.

NOISEMINER makes a single pass through parallel ap-
plication traces while maintaining a synopsis of each pro-



cessor’s trace. It can then generate from the synopses a list
of noise components that occur across the processors. Each
noise component represents a set of events across one or
more processors with a similar duration of noise. Because
the synopsis has a small bounded memory requirement, any
length parallel trace can be analyzed. If the NOISEMINER
technique is implemented in parallel, the combining of syn-
opses can be implemented as a reduction across the set of
processors. Such a reduction is scalable to large numbers
of processors. Therefore NOISEMINER can analyze arbi-
trarily large trace logs or continuous online data streams for
arbitrarily large numbers of processors.

4.1. Input

The input for NOISEMINER is a trace of the parallel ap-
plication on each processor. The traces could either be pro-
cessed online or offline (post-mortem). Each processor’s
trace contains a list of events {e1, e2, e3, ..., en}. Each event
represents a portion of the computation for the application.
The events could be specified in a number of different ways,
depending on the implementation. For example they could
be compute kernel calls, code regions of the application be-
tween MPI calls, or Charm++ message driven entry meth-
ods. Each event must have an associated start time tstart, an
end time tend, and a type. The durations (tend − tstart) for
events of a single type are expected to be similar if noise is
not present. Any event with significantly different duration
is considered to be affected by noise.

The initial implementation is incorporated into the
Projections tracing and performance visualization
framework. The events in this system all have start times
and durations. In this initial implementation, the events
stored in the window are simply references to the native
trace event objects. In addition to just timestamps and event
types, the native events also contain useful data used to
visualize performance characteristics of the object and its
associated processor. In the Projections framework,
the times for each event are produced by a processor lo-
cal clock, which need not be synchronized across the en-
tire cluster. The tracing framework attempts to correct dis-
crepancies between processor times so that all processor
traces have approximately consistent times. Although the
NOISEMINER technique can be implemented in a parallel
runtime, the initial implementation is incorporated in a post-
mortem analysis tool.

4.2. Generating a Synopsis

A data synopsis is maintained for each processor while
consuming a stream of trace data in a single pass. The data
synopsis for each processor is a set of histograms, one for
each type of occurring event. Each histogram bin corre-
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Figure 2. Histogram Structure

sponds to a range of event durations. As shown in Figure 2,
each histogram bin contains:

• An average duration for all events that have been in-
serted into the bin,

• A count of the number of events that have been inserted
into the bin, and

• A small window of the w most recent events that have
been inserted into the bin.

As each event is processed, it is simply inserted into the
histogram for its type. Specifically, it is inserted into the
histogram bin that matches its duration. To insert an event
into a histogram bin, the average duration is updated, the
count is simply incremented by one, and the event is added
to the head of the window. If the window contains more than
w events, the oldest event from the window is discarded.
By keeping a fixed size window of events, the synopsis will
have a fixed upper memory bound as desired.

The histograms used in the initial implementation each
have a fixed number of bins, with a single extra bin for
events with durations exceeding the maximum range of the
histogram. No sensitivity analysis has yet been performed
to optimize the choices for number of bins and width of
each bin. So far, using a fixed number of bins in each his-
togram has not caused problems. It is conceivable however
that large input traces could require large amounts of mem-
ory. It is important to note that all of the histogram bins will
be just null pointers, until an actual event matching the bin
duration is encountered. The sparsity of the bins contain-
ing data along with the windowing of events keeps memory
requirements for the histogram low even if the histogram
contains many bins.

This paper assumes that histograms for a processor ex-
hibiting noise will be similar to that of Figure 3. Namely,
there will be a group of events representing the expected
duration without the presence of noise, and there will be
zero or more groups of events that represent occurrences of
noise.The majority of the events will have similar durations,
and hence be used to determine the expected duration. Each
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type histogram with three groups of events.
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group of many events with similar, but abnormally long, du-
rations is an indication of the existence of a potential noise
source. The noise itself must be long enough to differentiate
the noisy events from the non-noisy events in the histogram.
The initial implementation uses bins of duration 10µs, so
any noise affecting the duration of the events by less than
10µs is undetectable. Although such short duration noise
may be undetectable, this type of noise is likely not to cause
serious problems for all but the finest grained parallel appli-
cations. Noise also will not be detected in the cases where
the noise duration is small compared to the variance in the
expected durations. In these cases, the peak that would oth-
erwise have been equated to noise is absorbed into the ex-
pected duration group.

4.3. Generating the Output Report from
the Synopsis

After events for each processor have been inserted into
the synopsis for their respective processors, a report can
be generated from the data in the synopses without re-
examining the original stream of input events.

Noise will interrupt or slow down some events, causing
their durations to be longer than those unaffected by the
noise. NOISEMINER will examine the histograms for all
events across all processors to find occurrences of noise,
clustered into groups of events with similar noise duration.
We define noise duration to be the difference between an
event’s duration when noise occurred and the event’s ex-
pected duration. Noise duration can also be considered to
be the amount of time by which an event was stretched be-

yond its expected duration.
Associated with each processor is a synopsis. Each syn-

opsis contains a set of histograms, one for each type of
event. To generate a report using the synopses from all pro-
cessors, first a series of normalization and clustering oper-
ations are applied independently to each processor’s syn-
opsis, and second the results are merged across processors
to produce a final report. This section describes these two
steps in detail.

For each event type’s histogram on each processor, the
bins of the histogram are clustered into groups of events
where the groups represent events with similar durations.
For example, in Figure 3, three groups of events are shown.
Each group of events contains merged data from a set of ad-
jacent bins within a histogram. One group is generated for
each bin in the histogram with an event count greater than
its two neighboring bins (a local maximum). All other non-
empty bins are merged into the same group as whichever
neighbor has greater count (bins between a local maximum
and local minimum are merged in with the local maximum).
When merging bins into a group, the group’s average dura-
tion is computed by calculating the count-weighted aver-
age of the average duration from each constituent bin. The
group’s count is the sum of the counts from the constituent
bins. The group’s window contains thewmost recent events
found in any of the constituent bin windows.

After the groups of events with similar duration have
been produced from the histograms, the groups of events
contain an average duration and total event count. The
group with largest count for each type of event is selected
to represent the expected duration for its type of event. The
expected duration is used then to compute the noise dura-
tion for each of the other groups by subtracting the expected
duration from the average duration for the group. Each of
the groups with non-zero noise duration represents a noise
component. Even though negative duration noise compo-
nents could be produced by this method, the choice was
made to use the group with largest count as representative
of the expected duration. If the group with shortest duration
is used to represent the expected duration, a few outlying
short duration events could represent a misleading expected
duration. It is difficult to compute a perfect model for ex-
pected duration based just on recorded runtimes influenced
by noise. Even though the group of maximum count is an
approximate model for expected duration, it has so far been
sufficient to provide useful results.

After the per-processor noise components are produced
they are clustered across processors. Any noise components
that are close enough to each other based on a distance func-
tion are merged into a cluster. The distance function de-
pends upon the average noise duration for the noise compo-
nents.

After the previous steps have been performed, a set of



cross-processor noise components has been produced. The
noise components contain a window of w recent events that
exhibited the impact of a similar duration disturbance, along
with their average duration tnoise, number of occurrences
o, and a list of processors on which the noise component
was found. Because many parallel programs have variance
in the durations of their events, it is necessary to filter and
sort the resulting clusters by their relative importances. The
importance is based on the potential impact on a parallel
run caused by the noise. The worst-case impact depends
upon the frequency at which the noisy events occur, and the
duration of the noise at each occurrence.

To determine the impact of the noisy events, first a fre-
quency or periodicity p is calculated for each cluster of
noise components. The periodicity is difficult to compute in
the general case because only a small window of events is
available, and the events may not occur uniformly through-
out the temporal region covered by the window. The peri-
odicity over the set of windowed events could be computed
using an FFT or other spectral methods if the events are
distributed uniformly, but in some applications the events
are distributed non-uniformly, as shown in Figure 4. The
method chosen to compute the periodicities in the first im-
plementation of NOISEMINER is to simply divide the range
of the tstart times for events in the window, by the number
of events in the window.

The noise components are filtered based on the potential
worst-case impact the component could make to a tightly
synchronized parallel program. Specifically, the noise com-
ponents are ignored if tnoise

p < c for some cutoff value
c. The value tnoise

p is simply an approximation of the por-
tion of the runtime spent handling the noise events assum-
ing they do not overlap across processors. Finally the noise
components are sorted by their tnoise values.

On standard contemporary linux installations, the
OS timeslice quanta defaults to 100ms. The quanta
can be determined by calling the POSIX function
sched rr get interval(). If an application is sched-
uled at the same time as another process, the two processes
will likely be scheduled for alternating timeslices. If the
application executes continuously for at least the duration
of its timeslice, then the other process will cause interfer-
ence after every 100ms executed by the application. If a
noise source is inside the program, it could occur many
times within a single timeslice. Because these two differ-
ent types of noise can occur, it may be useful to distinguish
automatically between noise generated inside an application
and noise caused by external processes. A simple criteria is
applied to label each noise component with a hint as to its
root cause:

1. Internal Noise Components are events with periodic-
ity significantly shorter than the OS timeslice quanta.
Specifically p ≤ 80ms.

2. External Noise Components are events with period-
icity similar to or longer than the OS timeslice quanta.
Specifically p > 80ms.

The choice of 80ms as the cutoff as opposed to some
other value close to 100ms is somewhat arbitrary, but the
label determined by this simple criterion is not crucial to
the final analysis. The label may help guide a user of the
tool to noise components of interest, but it is not meant to
be a strict classifier.

The initial implementation of NOISEMINER uses some
arbitrary values for the various tunable parameters included
above. It uses 5000 bins in each histogram, with 10µs
widths for each bin. Thus the dynamic range for the
bins is up to 50ms. Charm++ applications are normally
fine grained, but in systems or applications with very long
events, the histograms might need to be structured differ-
ently. Each event window holds up to 50 events.

4.4. Output

The output from NOISEMINER is a list of detected noise
components. This section describes the initial implementa-
tion’s GUI output of this noise component list. The initial
implementation of NOISEMINER is included in the Projec-
tions performance visualization tool[6, 7]. An inquisitive
reader of this paper could readily download the source code
for further examination. The implementation is written in
Java, using Generics for the data structures used in the code,
along with Java’s sort function. The code is written in about
1000 documented source code lines for the algorithm, ig-
noring the graphical display code.

Figure 5 shows a table view of a list of output noise
components. The columns in the table display the tnoise,
p, o, the label predicting the root cause, a list of proces-
sors on which the noise was detected, and a way to drill-
down to a noise component view as shown in Figure 6. The
noise component view displays many small timelines, each
one for a different event found in the noise component’s
window. Each timeline in this view supports mouse-over
tooltips for its events providing even more specific infor-
mation. Because the view contains many timelines for a
noise component, a user can quickly view them at once,
quickly determining which events in the application exhibit
the noise. The user can then form educated hypotheses
about potential causes of noise.

5. Case Study: NAMD on Lonestar

The original motivation for creating a tool such as
NOISEMINER was a NAMD run that contained anomalous
stretched events. The application performance was poor,
but it took a human to locate and to identify the stretched
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Figure 4. 500 consecutive occurrences of noisy events from the NAMD run on Lonestar described in
Section 2. Each tick mark represents an event with noise duration 5.7 ms. The noise occurrences are
clearly non-uniform, as there are regions dense with marks, along with regions with no tick marks

events which caused the bad performance. An automated
solution was desired to make the performance analysis more
effective. This section shows the resulting NOISEMINER
automated solution in use on the same problem. The origi-
nal trace logs, at first analyzed by hand, are analyzed with
the initial implementation of NOISEMINER. The traces
were produced by NAMD on the Lonestar cluster at TACC
shortly after the machine was built.

The screenshot in Figure 5 shows the main result win-
dow, which contains a prominent noise component with
tnoise = 5.70 ms. This noise component occurs 1425 times
once every 21.34 ms on processor 0. Clicking on the “view”
button for this noise component produces a visualization for
the corresponding noise component view shown in Figure 6.

Each of the 36 timelines shows an event that is about
5.7 ms longer than expected. The affected events are not
just of a single type, which means that a specific portion
of the application is probably not the cause. However, a
trend is quickly seen across all of the timelines in the view,
namely, MPI Send is called (represented by the thin blue
bar across tops of the stretched timeline events in the center
of each timeline). A knowledgeable NAMD developer and
Projections user would also know that the timelines with no
displayed events in the middle correspond to times where
the Charm++ runtime system could perform activities such
as performing MPI calls. Thus in this one view the user
could conclude that a likely cause of the 5.7 ms delays in
the parallel program is a problem with the underlying MPI
library. After a software update, the 5.7 ms delays in the
original faulty MPI library were eliminated, and NAMD
performance improved to the expected speed.

The NOISEMINER tool allows application developers
more easily to detect and to quantify problems such as the
one described above because they can automatically find
suspect events on which to focus their investigations. In the
future more tools such as NOISEMINER will be critical in
analyzing performance anomalies because people will not
have sufficient time to search for problems within trace logs
from hundreds of thousands of processors manually.

6. Related Work

The NOISEMINER algorithm is a useful tool for mining
large parallel application performance traces to detect peri-
odic anomalous patterns indicative of Computational Noise.
The tool uses stream mining techniques for classification
and clustering to detect abnormal events and cluster them
across processors. NOISEMINER and the Sequitur based
method of Tabatabaee and Hollingsworth are the first at-
tempts to automatically detect interference in real applica-
tions. NOISEMINER uses stream mining techniques to de-
tect parallel performance problems, while Tabatabaee and
Hollingsworth uses sequence mining techniques to detect
problems indicitive of anomalies relevant to security and
system administration[17].

Anomaly detection for administrating grid environments
is a related field, where tools attempt to detect network
resource contention and intrusion detection. These tech-
niques, however operate on a much larger granularity and
attempt to ignore the expected periodic anomalies [10].

7. Future Work

The initial implementation is only applicable for appli-
cations that can be visualized in Projections. This includes
Charm++, and MPI applications run with the Adaptive MPI
implementation. Future implementations of the generic
NOISEMINER method should be implemented within other
performance analysis tools or languages. The decomposi-
tion of an MPI program into events may not be as simple
as it was for the Charm++ case where each entry method is
an event. Finally, although the method is described in this
paper, it remains future work to implement online versions
of NOISEMINER by integrating the method with existing
parallel runtime systems.



Figure 5. Main display of NoiseMiner results. Three noise components are displayed, with the 5.70
ms source of noise occurring in 1425 events on processor 0. Clicking the “view” button for the 5.70
ms line will open the window shown in Figure 6.

Figure 6. A resulting visualization of one noise component. 36 small timelines are displayed in one
screen, below an explantory text that will help new users decipher the results. The middle third of
each timeline is the event affected by the noise or interference. In the cases where the middle third
is a rectangle(in our case a Charm++ entry method), a blue bar appears above the event signifying
an MPI Send occurs for the duration of the bar. In the cases where a rectangle is conspicuously
missing, the runtime system is performing some action, including a possible MPI Send.
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