
Application-specific Topology-aware Mapping for Three Dimensional Topologies

Abhinav Bhatelé and Laxmikant V. Kalé

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
bhatele2@uiuc.edu, kale@uiuc.edu

Abstract

The fastest supercomputers today such as Blue Gene/L
and XT3 are connected by a 3-dimensional torus/mesh in-
terconnect. Applications running on these machines can
benefit from topology-awareness while mapping tasks to
processors at runtime. By co-locating communicating tasks
on nearby processors, the distance traveled by messages
and hence the communication traffic can be minimized,
thereby reducing communication latency and contention on
the network. This paper describes preliminary work utiliz-
ing this technique and performance improvements resulting
from it in the context of a n-dimensional k-point stencil pro-
gram. It shows that for a fine-grained application with a
high communication to computation ratio, topology-aware
mapping has a significant impact on performance. Auto-
mated topology-aware mapping by the runtime using sim-
ilar ideas can relieve the application writer from this bur-
den and result in better performance. Preliminary work to-
wards achieving this for a molecular dynamics application,
NAMD, is also presented. Results on up to 32,768 proces-
sors of IBM’s Blue Gene/L and 2,048 processors of Cray’s
XT3 support the ideas discussed in the paper.

1 Introduction

Two important aspects of a parallel program are compu-
tation and communication which decide its efficiency and
performance. The computation needs to be divided evenly
among processors to achieve near-optimal load balance.
Communication, on the other hand, needs to be minimized
across processors to ensure minimum overhead. These two
objectives are not independent and have to be performed
in tandem. To minimize communication, communicating
tasks should be placed on the same physical processor. This
is not feasible because many tasks communicate with each
other in general and placing all of them on one processor

inhibits parallelism. For older machines with flat topolo-
gies, such as fat-tree, the only choice was between local and
remote communication. The emergence of large machines
with non-flat topologies brings in issues of latency and con-
tention on the network. In the absence of contention, the
effect of latency in sending messages is insignificant. How-
ever, when contention is present, latency becomes signifi-
cant and increases with the distance travelled by messages.
In such cases, placing communicating tasks on nearby pro-
cessors can lead to performance benefits. This is becoming
an increasing concern for better performance and scaling
and is the topic of our study in this paper.

Some of the fastest and biggest supercomputers to-
day [12, 20] are connected by a three-dimensional torus in-
terconnect. If the topology of a machine is not flat and visi-
ble to the runtime, it is possible to minimize inter-processor
communication and balance it evenly across processors.
The volume of inter-processor communication can be char-
acterized by hop-bytes which can be defined in terms of
hop-count [2]. Hop-count is the number of hops (network
links) through which a message has to pass to reach one
processor from another. Hop-bytes are obtained by multi-
plying the hop-count for a message by its message size. The
sum of hop-bytes for all messages in a program gives us its
total communication volume. Minimizing inter-processor
communication requires two kinds of information during
the actual program run: 1. communication graph of the
parallel entities in a program and, 2. topology information
about the processors being used on the particular machine.

This information is obtained from the CHARM++ run-
time system which is used to implement the topology inter-
face and the parallel applications used in this paper. The
CHARM++ [15, 16] parallel language and runtime system
is based on an object-oriented parallel programming model.
This facilitates mapping at the granularity of virtual ob-
jects instead of processes. A simple application written
in CHARM++ is used to demonstrate the effectiveness of
topology mapping: a n-dimensional k-point stencil. Two

sets of values are used for n and k: a 3-dimensional 7-point
stencil and a 2-dimensional 5-point stencil (referred to as
3D Stencil and 2D Stencil henceforth in this paper). Sten-
cil has regular communication to a fixed number of neigh-
bors and hence benefits from a static mapping of its tasks to
processors. The techniques developed specifically for Sten-
cil can be generalized into an automated topology-aware
mapping framework. This relieves the application writer
of this burden and improves performance. In this context,
some preliminary work on a production code called NAMD
is presented. NAMD [14, 22] is a classical molecular dy-
namics application and benefits greatly from the load bal-
ancing framework in CHARM++. Possible modifications
to the load balancing algorithm to consider topology of the
machine are discussed.

1.1 Previous Work

The task mapping problem is computationally equiva-
lent to the graph embedding problem [8]. A lot of research
was done in this area in the era of connection machines in
the 80s [8, 9, 19, 21]. Most of the work focused on hy-
percubes which were the popular networks then [9, 13, 19].
As messaging latencies decreased with more efficient inter-
connects, topology of the machine became less important.
With the emergence of large machines like Blue Gene/L and
XT3, application writers and system developers have started
studying such issues again [3, 11].

Bhanot et. al [4] use initial heuristic mapping and sim-
ulated annealing to arrive at efficient mappings for Blue
Gene/L. Yu [25] and Smith [23] discuss embedding tech-
niques for graphs onto the 3D torus of Blue Gene/L which
can be used by the MPI Topology functions. Application
writers have also shown improvement by utilizing topology
awareness in their codes [7, 2, 11, 18]. Our work is however
one of the first for Cray XT3. Weisser at al. [12] discuss the
effect of topology on job placement but we do not know of
any published work which discusses topology-aware task-
mapping on XT3. However, the developers of OpenMPI
on Red Storm and Cray XT3 saw considerable promise in
utilizing such information on these machines which was a
motivation for our work. What differentiates our work from
previous machine-specific research is that we have devel-
oped a single API which hides the machine level details
from the application writer. It can be used on different
machines with non-flat topologies (like Blue Gene/L, XT3,
XT4 and Blue Gene/P).

2 CHARM++ and Stencil

We use the CHARM++ RTS to facilitate topology-aware
mapping on a variety of machines. CHARM++ [15] is an
object-oriented parallel programming framework based on

the idea of virtualization. Virtualization refers to the idea
of dividing the problem into virtual processors (VPs) which
are mapped to physical processors (PEs) by an intelligent
runtime system. The number of VPs is typically much
larger than the number of PEs (making the degree of vir-
tualization greater than one).

Tasks or VPs in a parallel application are called “chares”
in the context of CHARM++. A Chare is the basic unit of
computation. It can be created on any processor and ac-
cessed remotely (through entry methods). A Chare Array
is an indexed collection of chares. Each element of a chare
array is called an array element. The CHARM++ RTS does
a default mapping of chares to processors. It also provides
the user with the flexibility to decide his own mapping for
the chares.

2.1 Topology Interface in CHARM++

Information about the topology of the machine is needed
to map objects or VPs to processors (such as the dimen-
sions of the 3D mesh/torus). On Blue Gene/L (BG/L), this
information is available in a data structure called “BGLPer-
sonality” and can be accessed using some system calls. Ob-
taining topology information is not straightforward on Cray
XT3. There are no system calls which can provide informa-
tion about the dimensions of the partition which has been
allocated during a run. This information can be derived in
several steps. Every node on the XT3 has a unique node ID.
A static routing table is available on the machine which has
the physical coordinates and neighbors for every node. The
CHARM++ RTS reads this file during program start-up. To
get the physical coordinates corresponding to a processor
rank, the RTS obtains the node ID for the rank through a
system call and then gets the coordinates from the routing
table. Once it has the coordinates for all processors in an
allocation, it can calculate the dimensions of the torus. In-
formation about the topology is available to the application
through an API [5] in CHARM++. We use this Topology
API for running on BG/L and XT3.

2.2 3D and 2D Stencil

Having described the implementation framework, it is
time to describe the first application which has been used
in this paper to demonstrate the benefits of topology-
aware mapping. 3D Stencil is an implementation of a 3-
dimensional 7-point stencil. It has a three dimensional ar-
ray of doubles. In every iteration, each element of the array
updates itself by computing the average of its six neighbors
(two in each dimension) and itself. A 3D chare array is cre-
ated to parallelize the computation using CHARM++. Each
element of this chare array is responsible for the computa-
tion of some contiguous elements (a 3D sub-partition) of the

Figure 1. Topology-aware mapping of 3D Stencil’s data array onto the 3D processor grid. Different
colors (shades) signify which chares get mapped to which processors

data array (Figure 1). These chares communicate with their
neighbors to exchange the updated data on the boundaries.

2D Stencil is an implementation of a 2-dimensional 5-
point stencil. It is similar to 3D Stencil except that it has
two dimensions. In this case, a 2D chare array is used for the
computation. Communication is simpler than in 3D Stencil
since every element needs data from four neighbors. This
example was chosen to prove that even though the prob-
lem’s dimensionality does not match the dimensionality of
the machine, it can still benefit from topology mapping.

3 Mapping 3D and 2D Stencil

The technique of topology-aware mapping is discussed
in this section which is the central theme of this paper. We
shall understand the process of making mapping decisions
and then devise a method to analyze the benefit of map-
ping. To analyze the advantages of topology-aware map-
ping, it will be compared to random and simple round-robin
schemes where equal number of objects are mapped to each
processor. These schemes do not have explicit information
about the topology of the machine.

The communication properties of Stencil must be clearly
understood to map the chare arrays topologically. 3D Sten-
cil has a fairly simple communication pattern. Each chare
object talks to its six neighbors (two in each dimension) to
exchange the boundary elements. If these six neighbors can
be placed on the same or one of the six neighboring pro-
cessors, the distance traveled by each message can be min-
imized. The most simple scheme is to place the individual
chares on the processors in a round-robin fashion. How-
ever, since consecutive ranks get mapped to nearby physi-
cal processors, this scheme is not completely oblivious of
the topology of the machine. Hence for a fair comparison

chares should be mapped randomly on to different proces-
sors (still keeping the load evenly balanced).

In the two schemes discussed above, no preference is
given to local over remote communication. Since, in gen-
eral there are multiple chares per processor, communicating
chares can be placed on the same processor as much as pos-
sible. The idea is to divide the 3D chare array into equal-
sized boxes and then map those to corresponding processors
on the 3D torus. If the dimensions of the chare array are not
exactly divisible by torus dimensions, then some processors
get an extra row of elements compared to others. An effort
is still made to minimize load imbalance. Again as in the
case of individual chares, these boxes can be mapped in a
random or round-robin fashion.

In a topology-aware placement of chares, our intention is
to favor local communication and minimize remote commu-
nication. So, the chare array is first divided into equal-sized
boxes as discussed above and then boxes which commu-
nicate are mapped onto nearby physical processors on the
torus. Starting from one end of the chare array, the parti-
tioned boxes are placed on each processor considering the
topology of the machine (Figure 1). The mapping is simi-
lar to superimposing a 3D object on another. The different
shades in the figure show how the data array gets mapped
to the torus. For the example in the figure, a cube of eight
chares is placed on each processor.

For 2D Stencil, the chare array is folded on to the proces-
sor torus. The longer dimension of the array is folded along
the third dimension of the torus. The shorter dimension of
the chare array is matched up with one of the torus’ dimen-
sions (generally the shorter one). The longer dimension of
the chare array is split between other two dimensions of the
torus. This is similar to splitting the 2D array into ’n’ 2D
arrays where n is one dimension of the torus and then map-

Processors Data Size Chares RR Blocks RD Blocks TO
1024 1024× 512× 512 32.84 36.54 25.79
2048 1024× 1024× 512 32.89 37.29 25.81

Table 1. Execution time (in seconds) of 3D Stencil on Blue Gene/L for different mapping strategies
(RR: Round-robin, RD: Random, TO: Topology-aware)

ping the n arrays to n planes of the torus. Again, in this case
also, chares can be grouped into boxes to favor local com-
munication and the boxes can be mapped topologically to
minimize remote communication traffic.

3.1 Evaluation of Mapping Strategies

This section compares three schemes discussed above:
1. Round-robin mapping of chares, 2. Random mapping
of blocks, 3. Topology-aware mapping of blocks. Random
mapping of chares is a naı̈ve scheme which gives the worst
performance and is not used for comparison. The appli-
cations were run on Blue Gene/L at IBM T J Watson and
Cray XT3 at PSC (BigBen) for results in this paper. Wat-
son BG/L has 20,480 nodes and the nodes are connected
by a 3D torus [1]. Each midplane of BG/L (512 nodes) is
a complete torus in itself of size 8 × 8 × 8. If one pro-
cessor per node is used, it is called the co-processor (CO)
mode and if both processors are used, it is called the virtual
node (VN) mode. Instead of using MPI, CHARM++ uses a
lower-level one-sided communication library for messaging
on BG/L [6]. BigBen has 2,112 nodes connected into a 3D
torus of size 11 × 12 × 16 by a custom SeaStar intercon-
nect [24]. Out of these 2,112 nodes only 2,068 can be used
as compute nodes. Each node has two Opteron processors.
For partitions smaller than the full machine, it is not a torus.
Also, one cannot get a contiguous allocation of nodes on
XT3 by default. Runs for this paper were done with help
from the PSC staff to set up a reservation to get a grid of
8× 8× 16 which is 1024 nodes.

Table 1 shows the execution time of 3D Stencil for dif-
ferent mapping schemes. Round-robin mapping of chares
to processors does better than a random mapping of blocks
because the round-robin mapping has an implicit benefit of
co-locating communication objects on nearby physical pro-
cessors (since consecutive ranks are mapped to nearby pro-
cessors by default). The benefit of topology-aware mapping
is seen in the comparison between a random and topology-
aware mapping of blocks of chares. Topology-aware map-
ping improves the performance by nearly 30%. Detailed
scaling results comparing round-robin and topology-aware
mapping are given in Section 4.

The reduction in hop-bytes needs to be quantified,
to measure the improvement in performance analytically.

Round−robin (CO mode)
Topology (CO Mode)
 Round−robin (VN mode)
 Topology (VN mode)

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

 1.40

 1.60

512 1,024 2,048 4,096 8,192

H
o
p
−

co
u
n
t

No. of processors

3D Stencil with chare size 16 x 16 x 16

Figure 2. Hop-counts for 3D Stencil running
on Blue Gene/L (Data Size: 512 x 512 x 512)

Hop-counts quantify the hop-bytes for Stencil, since the
size of each message in this application is same. For each
run, the total hops travelled by all messages in one iteration
are calculated. Figure 2 shows the hop-counts for running
the application on 512 to 16,384 processors of BG/L for
one iteration. Hop-counts reduce by 4 to 5 times in general
compared to round-robin mapping and at 2,048 processors,
they are reduced by 10 times. The strange variation in the
hop-counts for the round-robin case is due to the implicit
topology-awareness since consecutive ranks end up on con-
tiguous physical processors. This benefits more for certain
torus shapes and less for others. In the next section, we shall
look at the performance benefits from this technique which
motivate its automation in the runtime system.

4 Performance Results

Table 2 compares the time taken for 1000 iterations of
3D Stencil on BG/L for round-robin vs. topology-aware
mapping. Topology-aware (TO) mapping does better than
round-robin (RR) at all processor counts. The maximum
improvement is at 2K processors in VN mode for the 163

chare size, where the performance improves by nearly two
times. This matches the huge reduction in hop-counts in

Data Size CO mode (512× 512× 512) VN mode (1024× 512× 512)
Chare Size 16× 16× 16 32× 32× 32 16× 16× 16 32× 32× 32
Processors RR TO RR TO RR TO RR TO
512 23.06 20.49 29.11 24.86 62.15 51.09 78.44 47.08
1024 11.54 10.23 17.42 14.78 30.72 25.22 38.48 29.86
2048 6.66 5.29 8.29 7.74 23.24 11.23 19.49 17.10
4096 3.15 2.82 4.05 3.43 9.08 5.73 9.34 9.81
8192 1.68 1.51 - - 4.02 3.25 4.63 5.25
16384 0.89 0.86 - - 2.07 1.95 - -
32768 - - - - 2.47 1.23 - -

Table 2. Execution time (in seconds) of 3D Stencil on Blue Gene/L for different chare sizes. (RR:
Round-robin, TO: Topology-aware)

Chare Size 16× 16× 16 32× 32× 32
Metric Time (secs) Hop-count Time (secs) Hop-count
Processors RR TO RR TO RR TO RR TO
256 28.05 22.51 296960 53248 16.81 16.65 37888 13312
512 14.51 12.17 335872 69632 9.15 8.98 69632 17408
1024 8.21 7.14 479232 86016 5.51 5.31 94720 21504
2048 6.70 5.65 445952 118784 4.57 4.42 86992 29696

Table 3. Execution time and hop-counts for 3D Stencil on Cray XT3 for different chare sizes (Data
Size: fixed at 512× 512× 512).

Figure 2. The chare size here refers to the number of data
elements per chare which governs the grain-size of the com-
putation. The table also shows the effect of virtualization
(number of chares per processor) on performance. A bigger
chare size (signifying coarser granularity) helps on 512 pro-
cessors in VN mode but for all other runs, smaller chare size
gives us the best performance. Size of the chares decides the
number of chares per processor. Chare size of 163 gives 64
chares per processor for a 512-processor run while a chare
size of 323 gives 8 chares per processor. At 4K processors
in CO mode, for the 323 chare size, there is just one chare
per processor. We do not have timings beyond 4K, since
once the degree of virtualization becomes one, the problem
cannot be parallelized further.

Experiments similar to those on BG/L were repeated on
Cray XT3 to test our mapping schemes and the topology
interface written in CHARM++ for XT3. Table 3 shows per-
formance numbers for scaling of 3D Stencil from 256 to
2,048 processors. As expected, we get a performance im-
provement of up to 20%. On XT3, the impact of topology-
aware mapping is smaller and that this needs further inves-
tigation. We can conclude that XT3 is a more forgiving ar-
chitecture because of higher bandwidth per node. The story
of hop-counts is exactly similar to that of BG/L (Figure 2).
We get a reduction of five to six times in the hop-count.

 Communication
 Computation
Idle Time

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

RR TO RR TO RR TO RR TO

T
im

e
(s

ec
s)

No. of processors

3D Stencil with chare size 16 x 16 x 16

256 512 1,024 2,048

Figure 3. Effect of topology mapping on la-
tency on Blue Gene/L (RR: Round-Robin, T0:
Topology, Data Size: 512 x 512 x 512)

Although the improvement in hop-counts is five to six
times, improvement in performance is not as much. Reduc-
tion in hop-bytes quantifies the reduction in communication
traffic on the network. This reduces the latency of mes-
sages over the network and hence processors do not have to
wait as long for incoming messages. Hence, the reduction

in hop-counts removes the bottleneck of message latency
on the network and cannot linearly reflect on the perfor-
mance improvement achieved. To understand the effect of
topology-aware mapping, we used the performance analy-
sis tool Projections [17], a part of the CHARM++ distribu-
tion. Figure 3 shows the time spent in communication and
computation (added across all processors) for different runs.
The time when a processor is waiting for messages to arrive
is referred to as “idle time”. As is clearly visible, idle time
decreases substantially for the case of topology-aware map-
ping which signifies that message latency is significantly
reduced. The reduction is consistent across different num-
ber of processors. It should be noted that the benchmark
is very fine-grained and has a very high communication-to-
communication ratio. But this still signifies that for heavily
communication-bound applications, topology-aware map-
ping has a significant impact on performance.

Topology mapping of 2D Stencil was done to prove that
the dimensionality of the problem need not be the same as
the dimensionality of the torus. Similar performance re-
sults are seen for 2D Stencil on BG/L (Table 4). Two chare
sizes (1282 and 2562) are used. An improvement of more
than two times is seen on 8K processors in VN mode for
the 2562 chare size. Various results for 3D and 2D Stencil
support our claim of the benefit obtainable from topology-
aware mapping on 3D torus-like machines. Motivated by
the study on topology-aware mapping of Stencil, work on a
production code has begun which we discuss briefly in the
next section.

5 NAMD: Preliminary Study

In an effort to automate the process of topology-aware
mapping for “real” applications, a molecular dynamics code
has been chosen as the test bed. NAMD [14, 18, 22] is a pro-
duction molecular dynamics code that is used for simulat-
ing small to very large molecular systems on large parallel
machines. We first motivate why NAMD is a good fit for
such schemes. Any molecular dynamics code involves the
calculation of forces due to bonds and non-bonded forces
on each atom. Non-bonded forces are composed of elec-
trostatic and Van der Waal’s forces. For parallelization, the
simulation box is divided into smaller cells (referred to as
patches in NAMD) and forces are calculated between them.
To use more processors than there are cells, NAMD does a
hybrid of spatial and force decomposition to combine the
advantages of both. For every pair of interacting patches, a
chare (called a compute) is created which is responsible for
calculating the pairwise forces between the patches. Thus
patches hold the information about the atoms and computes
do the actual calculation.

NAMD depends heavily on the load balancing framework
provided by CHARM++ for good performance. Compu-

Figure 4. Parallelization of force calculations
in NAMD

tational load in NAMD is persistent across iterations and
hence, load information from previous iterations can be
used in future iterations. Every few hundred or thousand
iterations, a few iterations are instrumented and the load in-
formation from these steps is used during the load balanc-
ing step to unload the overloaded processors. Patches and
bonded computes are non-migratable chares which means
they do not move from their home processor once assigned.
Patches are assigned by a topology aware Orthogonal Re-
cursive Bisection [18]. Non-bonded computes on the other
hand are migratable and can be moved around during load
balancing. The load balancing framework records the com-
munication information about the application and the topol-
ogy API discussed earlier gives us the required information
about the machine. With these two things, it should be pos-
sible to automate the process of topology mapping in the
load balancers.

During load balancing, when the runtime is trying to
find a processor to place the compute on, it can consider
the topology of the machine. This can reduce the distance
(in terms of hops) between the patches and the computes
they communicate with. It is best to place a compute on
a processor such that the sum of the distance from its two
patches is minimized. To ensure this, the coordinates of the
two processors which host the patches with which the given
compute interacts are obtained. The RTS then tries to find
a processor within the region enclosed by these two proces-
sors on the torus (see Figure 4). For any point within this
region (called the inner brick), the sum of distances from the
two patches (at the corners) to the compute is same. Hence
the RTS tries to find the least overloaded processor within
this brick first. If it fails, then it tries the rest of the torus
(called the outer brick). The idea is to spiral around the

Chare Size 128× 128 256× 256
Metric Time (secs) Hop-count Time (secs) Hop-count
Processors RR TO RR TO RR TO RR TO
512 55.29 53.03 149504 25600 53.58 46.75 298736 12800
1024 27.23 26.21 149504 34816 28.21 23.24 298736 17408
2048 14.00 12.91 1197824 51200 16.19 11.44 308604 25600
4096 6.98 6.63 672512 83968 10.49 5.77 467972 41984
8192 3.62 3.47 401664 100352 6.00 2.93 806844 50176
16384 1.94 1.89 266240 133120 3.10 1.51 575360 66560

Table 4. Execution time and hop-counts for 2D Stencil on Blue Gene/L (CO mode) for different de-
compositions (Data Size: fixed at 1 billion elements).

CO Mode (MB/iter) VN mode (MB/iter)
PEs Naı̈ve Topology Naı̈ve Topology
512 202.39 150.10 297.38 307.49
1024 437.01 316.29 505.34 434.62
2048 776.79 514.13 813.06 512.25
4096 1672.93 1193.04 1435.57 1155.41
8192 2920.12 2321.7 2910.08 2290.12

Table 5. Reduction in hop-bytes for NAMD on
Blue Gene/L (Benchmark:ApoA1)

inner brick on the outside and to find the first underloaded
processor. The compute is then placed on it.

The topology-aware scheme discussed above reduces the
hop-bytes considerably which is one metric for the eval-
uation of the mapping algorithm. Table 5 shows the re-
duction in hop-bytes as a result of topology-aware map-
ping of patches and topology-aware load balancing of com-
putes for a molecular system Apolipoprotein-A1 (ApoA1).
This system has 92,224 atoms and a patch grid of size
108.86 × 108.86 × 77.76 Å. The numbers given are hop-
bytes in MB per iteration added across all processors for all
messages. We get nearly 30% improvement (reduction in
hop-bytes) at 4K processors in CO mode. Likewise at this
point, we also get an improvement in time-step per iteration
from 4.68 to 3.88 milliseconds (ms). We just have prelimi-
nary performance numbers at this point. We hope to present
detailed performance results in a later publication.

6 Future Work and Conclusion

This preliminary work has shown success in mapping of
chare arrays in 3D Stencil. It has also provided us with use-
ful insights on important issues which one might have to
face during topology mapping. We wish to extend this idea
to do this for any application with heavy communication

(where such schemes will have an impact). Given the com-
munication dependencies between objects and topology of
a machine, the runtime should automatically do an intelli-
gent mapping. This would remove the burden of mapping
from the user and give optimized performance compared to
a random mapping.

In this direction, NAMD shows a reasonable improve-
ment in terms of hop-bytes and some improvement in per-
formance for higher processor counts. The strategy devel-
oped for NAMD’s load balancers can be applied elsewhere
quite easily. NAMD is a specific case of section multicasts
where each multicast target receives the multicast message
from only two sources. Hence, the scheme can be general-
ized to work for section-multicast and topology-aware load
balancers. This is the final goal we are aiming for.

The work presented in this paper demonstrates the bene-
fit of topology-awareness in mapping of objects on to a par-
allel machine statically or during load balancing. We hope
to utilize the insights gained from the study of these ap-
plications to create a generalized automatic framework for
topology-aware mapping. This would benefit many applica-
tions running on three-dimensional machines in the future.

Acknowledgments

This work was supported in part by a DOE Grant
B341494 funded by the Center for Simulation of Ad-
vanced Rockets and a NSF Grant ITR 0121357 for Quan-
tum Chemistry. This research was supported in part by
NSF through TeraGrid resources [10] provided by NCSA
and PSC through grants ASC050039N and ASC050040N.
We thank Shawn T. Brown and Chad Vizino from Pitts-
burgh Supercomputing Center for help with system reser-
vations and runs on BigBen. They had to do considerable
changes to the batch scheduler to accommodate our runs.
We also thank Fred Mintzer, Glenn Martyna and Sameer
Kumar from IBM for access and assistance in running on
the Watson Blue Gene/L.

References

[1] An Overview of the Blue Gene/L Supercomputer. In Su-
percomputing 2002 Technical Papers, Baltimore, Maryland,
2002. The Blue Gene/L Team, IBM and Lawrence Liver-
more National Laboratory.

[2] T. Agarwal, A. Sharma, and L. V. Kalé. Topology-aware task
mapping for reducing communication contention on large
parallel machines. In Proceedings of IEEE International
Parallel and Distributed Processing Symposium 2006, April
2006.

[3] G. Almasi, S. Chatterjee, A. Gara, J. Gunnels, M. Gupta,
A. Henning, J. E. Moreira, and B. Walkup. Unlocking the
Performance of the Blue Gene/L Supercomputer. In SC ’04:
Proceedings of the 2004 ACM/IEEE conference on Super-
computing, page 57. IEEE Computer Society, 2004.

[4] G. Bhanot, A. Gara, P. Heidelberger, E. Lawless, J. C. Sex-
ton, and R. Walkup. Optimizing task layout on the Blue
Gene/L supercomputer. IBM Journal of Research and De-
velopment, 49(2/3):489–500, 2005.

[5] A. Bhatele. Application-specific topology-aware
mapping and load balancing for three-dimensional
torus topologies. Master’s thesis, Dept. of
Computer Science, University of Illinois, 2007.
http://charm.cs.uiuc.edu/papers/BhateleMSThesis07.shtml.

[6] M. Blocksome, C. Archer, T. Inglett, P. McCarthy,
M. Mundy, J. Ratterman, A. Sidelnik, B. Smith, G. Al-
masi, J. Castanos, D. Lieber, J. Moreira, S. Krishnamoorthy,
V. Tipparaju, and J. Nieplocha. Design and Implementation
of a One-Sided Communication Interface for the IBM eS-
erver Blue Gene Supercomputer. In SC ’06: Proceedings of
the 2006 ACM/IEEE conference on Supercomputing, 2006.

[7] E. Bohm, G. J. Martyna, A. Bhatele, S. Kumar, L. V. Kale,
J. A. Gunnels, and M. E. Tuckerman. Fine Grained Paral-
lelization of the Car-Parrinello ab initio MD Method on Blue
Gene/L. IBM Journal of Research and Development: Appli-
cations of Massively Parallel Systems (to appear), 52(1/2),
2007.

[8] S. H. Bokhari. On the mapping problem. IEEE Trans. Com-
puters, 30(3):207–214, 1981.

[9] S. W. Bollinger and S. F. Midkiff. Processor and link assign-
ment in multicomputers using simulated annealing. In ICPP
(1), pages 1–7, 1988.

[10] C. Catlett and et. al. TeraGrid: Analysis of Organization,
System Architecture, and Middleware Enabling New Types
of Applications. In L. Grandinetti, editor, HPC and Grids in
Action, Amsterdam, 2007. IOS Press.

[11] K. Davis, A. Hoisie, G. Johnson, D. J. Kerbyson, M. Lang,
S. Pakin, and F. Petrini. A Performance and Scalability
Analysis of the Blue Gene/L Architecture. In SC ’04: Pro-
ceedings of the 2004 ACM/IEEE conference on Supercom-
puting, page 41. IEEE Computer Society, 2004.

[12] Deborah Weisser, Nick Nystrom, Chad Vizino, Shawn T.
Brown, and John Urbanic. Optimizing Job Placement on
the Cray XT3. 48th Cray User Group Meeting 2006 Pro-
ceedings, 2006.

[13] F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation
onto a hypercube by recursive mincut bipartitioning. In Pro-
ceedings of the third conference on Hypercube concurrent

computers and applications, pages 210–221. ACM Press,
1988.

[14] L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gur-
soy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan,
and K. Schulten. NAMD2: Greater scalability for paral-
lel molecular dynamics. Journal of Computational Physics,
151:283–312, 1999.

[15] L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth, and
G. Zheng. Programming Petascale Applications with
Charm++ and AMPI. In D. Bader, editor, Petascale Comput-
ing: Algorithms and Applications. Chapman & Hall / CRC
Press, 2008.

[16] L. V. Kale and S. Krishnan. Charm++: Parallel Program-
ming with Message-Driven Objects. In G. V. Wilson and
P. Lu, editors, Parallel Programming using C++, pages
175–213. MIT Press, 1996.

[17] L. V. Kale, G. Zheng, C. W. Lee, and S. Kumar. Scaling ap-
plications to massively parallel machines using projections
performance analysis tool. In Future Generation Computer
Systems Special Issue on: Large-Scale System Performance
Modeling and Analysis, volume 22, pages 347–358, Febru-
ary 2006.

[18] S. Kumar, C. Huang, G. Zheng, E. Bohm, A. Bhatele, J. C.
Phillips, H. Yu, and L. V. Kalé. Scalable Molecular Dynam-
ics with NAMD on Blue Gene/L. IBM Journal of Research
and Development: Applications of Massively Parallel Sys-
tems (to appear), 52(1/2), 2007.

[19] S.-Y. Lee and J. K. Aggarwal. A mapping strategy for par-
allel processing. IEEE Trans. Computers, 36(4):433–442,
1987.

[20] M.Blumrich, D.Chen, P.Coteus, A.Gara, M.Giampapa,
P.Heidelberger, S.Singh, B.Steinmacher-Burow, T.Takken,
and P.Vranas. Design and Analysis of the Blue Gene/L
Torus Interconnection Network. IBM Research Report, De-
cember 2003.

[21] P. Sadayappan and F. Ercal. Nearest-neighbor mapping of
finite element graphs onto processor meshes. IEEE Trans.
Computers, 36(12):1408–1424, 1987.

[22] K. Schulten, J. C. Phillips, L. V. Kale, and A. Bhatele.
Biomolecular modeling in the era of petascale computing.
In D. Bader, editor, Petascale Computing: Algorithms and
Applications, pages 165–181. Chapman & Hall / CRC Press,
2008.

[23] B. E. Smith and B. Bode. Performance Effects of Node Map-
pings on the IBM Blue Gene/L Machine. In Euro-Par, pages
1005–1013, 2005.

[24] J. S. Vetter, S. R. Alam, T. H. D. Jr., M. R. Fahey, P. C. Roth,
and P. H. Worley. Early evaluation of the cray xt3. In Pro-
ceedings of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2006.

[25] H. Yu, I.-H. Chung, and J. Moreira. Topology mapping for
Blue Gene/L supercomputer. In SC ’06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing, page 116,
New York, NY, USA, 2006. ACM.

