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Abstract

Grid computing offers a model for solving large-scale scientific problems by uniting com-

putational resources within multiple organizations to form a single cohesive resource for

the duration of individual jobs. Such an infrastructure creates a pervasive and dependable

pool of computing power that enables computational scientists to develop dramatically new

classes of applications. Despite the appeal of Grid computing, developing applications that

run efficiently in these environments often involves overcoming significant challenges.

One challenge to deploying Grid applications across geographically distributed resources

is overcoming the effects of latency between sites. Certain classes of applications, such as

pipeline style or master-slave style applications, lend themselves well to running in Grid

environments because the communication requirements of these types of applications can

be varied readily and because most communication takes place outside the critical path. In

contrast, tightly-coupled applications in which every processor performs the same task and

communicates with some subset of all processors in the computation during every iteration

present a significant challenge to deployment in Grid environments.

Another challenge to deploying applications in Grid environments is managing the het-

erogeneity that is frequently present across resources. Because supercomputing clusters in

a Grid environment are often installed and upgraded independently, components such as

processors and interconnects can present widely varying capabilities within a single Grid

job. Tightly-coupled applications, however, especially require access to as many computa-

tional resources as possible. For example, wasting processing resources due to inefficiently

mapping work to processors of heterogeneous speeds within a single Grid job is unaccept-
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able. Likewise, intra-cluster communication should take place as much as possible using

high-performance cluster interconnects, resorting to lower performance wide-area protocols

only when necessary.

This thesis examines the feasibility of deploying tightly-coupled parallel applications in

Grid computing environments. A desired outcome of this work is the capability of delivering

application performance in a Grid environment that is on par with the performance within a

single cluster while simultaneously requiring few or no modifications to application software.

To that end, the thesis explores techniques that can be deployed effectively at the runtime

system level and applied to a variety of application decomposition styles.
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Where would any of us be without teachers —

without people who have passion for their

art or their science or their craft and love it

right in front of us? What would any of us

do without teachers passing on to us what

they know is essential about life?

“Mister” Fred Rogers

(1928-2003)
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Chapter 1

Introduction

Due to the growth of distributed Grid computing technologies and environments over the

past several years [11, 12], consumers of high performance computing cycles are increas-

ingly considering the feasibility of deploying applications that span multiple geographically

distributed sites. Software such as the Globus Toolkit [10] allows the creation of so-called

“virtual organizations” in which computational resources owned by multiple physical organi-

zations are united to form a single cohesive resource for the duration of a single computational

job. For example, an application could collect data from scientific devices at two different

sites, perform a computation with the combined data on a supercomputing cluster at a third

site, and display the results of the computation with visualization tools and equipment at a

fourth site.

Despite the appeal of Grid computing, however, developing applications that can run effi-

ciently in Grid environments often involves significant challenges. One fundamental challenge

to deploying Grid applications across geographically distributed computational resources is

overcoming the effects of the wide-area latency between sites. While the interconnects used

in contemporary supercomputers and high-performance clusters can deliver data to appli-

cations with latencies on the order of a few microseconds, latencies across the wide-area are

usually measured in milliseconds. Figure 1.1 illustrates this idea. Certain classes of appli-

cations lend themselves well to running in such an environment. Pipeline style applications,

such as those that do simulation on one cluster and visualization on another, for example,

involve one-way dependencies that help them tolerate cross-site latency. Master-slave style

applications are also good candidates for Grid environments because they typically have

1



Figure 1.1: Example of an application co-allocated across two clusters

small communication requirements and because communication delays are often not on the

critical path.

Another challenge to deploying applications in Grid computing environments is manag-

ing the heterogeneity that is frequently present across resources. Because clusters in a Grid

environment are often installed and upgraded independently of one another, components

such as processors and cluster interconnects can present widely varying capabilities within

the context of a single Grid job. For example, the processors allocated to a Grid job from

one cluster may be twice as fast as the processors from a second cluster. Or, one cluster may

use Myrinet for high performance intra-cluster message passing while another cluster uses

InfiniBand; inter-cluster messages would be transmitted via lower performance communica-

tion mechanisms such as TCP/IP. As above, pipeline style applications work well in these

types of heterogeneous environments due to fact that the discrete pieces of software that

compose the pipeline application each typically reside within, and do not extend beyond,

the boundary of a single cluster, thus greatly limiting the effects of heterogeneity. Simi-
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larly, master-slave style applications also work well in heterogeneous environments because

each slave works independently, returning results as fast as it is capable and communicating

minimally with other slaves.

In contrast, some classes of applications present serious challenges to deployment in Grid

computing environments. Tightly-coupled applications in which every processor in a com-

putation performs the same task and communicates with some subset of all processes in

the computation during every iteration present a significant challenge. Examples of such

applications include most simulations of physical systems in science and engineering, for ex-

ample structured and unstructured mesh applications and applications from domains such

as molecular dynamics or cosmology in which elements in a three-dimensional space interact

with all other elements within a specified cutoff distance. Optimizing these types of applica-

tions through techniques such as masking the effects of wide-area latency and managing the

heterogeneity of resources is critical for achieving good performance in Grid environments.

To date, however, much of the work involving the deployment of tightly-coupled applications

on computational Grids has focused on algorithm-level optimizations, such as the expansion

of ghost zone regions in mesh computations [8].

1.1 Example Grid Computing Environments

The rapid growth in the use of Grid computing for solving large-scale scientific problems is

driven by a number of developments in several related and overlapping areas. For example,

the recent trend in building computational clusters from commodity off-the-shelf components

has resulted in a proliferation of dispersed pockets of significant computational power owned

by individual organizations. Connecting these dispersed pockets of computational power is

a natural next step. Developments of this nature set important directions and guidelines for

research like that presented in this thesis. To that end, the following two examples highlight

environments in which the work presented in this thesis might be applied directly.

3



The first example environment in which the work described in this thesis might be appli-

cable is that of a circumscribed campus-area network. Due to the increasing use of cluster

computing, individual departments are now able to afford to own not-insignificant amounts

of computational power which are leveraged towards unique departmental goals. However,

the sizes of these departmentally-owned computational resources are often limited either by

the availability of funding or by the infeasibility of purchasing clusters that far exceed the

expected steady-state cycle needs of the department. One can envision a situation in which

two collaborating departments on the same campus might want to join their individually-

owned cluster resources together for the purpose of solving occasional very large problems.

Certain challenges to Grid computing are not as severe in this type of environment. Because

communication is generally limited to a campus-area network, cross-cluster latencies in a

Grid computing environment of this nature are typically on the order of one to three mil-

liseconds. While this is still bad compared to the microsecond-scale latencies within a single

cluster, latencies of this scale are much more easily masked than the latencies in national

scale Grid environments where latencies are measured in tens of milliseconds. On the other

hand, other challenges to Grid computing might be very obvious in this type of environment.

For example, because individual departments often purchase clusters independently, issues

of heterogeneity, in terms of processor speeds or communication interconnects, might be

difficult to manage.

The second example environment in which the work described in this thesis might be

applicable is that of established Grid computing environments such as the TeraGrid [1]. The

TeraGrid is a multi-year effort, led by the National Science Foundation and involving nine

core sites distributed across the United States, to build and deploy the world’s largest and

fastest Grid computing environment available for open scientific research. The core TeraGrid

includes over one hundred teraflops of computational power and over fifteen petabyte of disk

storage, interconnected with a forty-gigabit-per-second national network. Figure 1.2 shows a

map of the core TeraGrid infrastructure. Such an environment presents different challenges
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Figure 1.2: Map of the NSF TeraGrid Extensible Terascale Facility core sites [1]

from ones described in the example of a campus-area network. Because the TeraGrid is a joint

effort among several collaborating sites with the express purpose of fostering Grid computing,

issues such as heterogeneity have been kept to a minimum, particularly in the context of

the original core TeraGrid resources. On the other hand, because the TeraGrid environment

spans the United States, overcoming challenges such as cross-site latencies measured in tens

of milliseconds becomes critical when optimizing tightly-coupled application performance.

1.2 Grid Computing Challenges

Viewing Grid computing in the contexts described above is useful because it allows the

challenges to efficiently executing tightly-coupled parallel applications in such environments

to be identified. This section specifically states several of these challenges.

• Wide-area communication costs – In environments consisting of resources sepa-

rated by large geographic distances, such as in the case of the TeraGrid, the efficiency

of communication taking place over the wide-area is a critical factor to consider when
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optimizing application performance. Two issues related to communication costs are

important: bandwidth and latency. Of these two issues, latency seems to be the more

challenging. Challenges involving bandwidth may often be resolved simply by building

a more capable infrastructure that can deliver more bandwidth to applications. For

example, the backbone connections in the TeraGrid bond four ten-gigabit-per-second

channels together to deliver forty gigabits-per-second. It seems likely that if, in the

future, applications demand additional bandwidth to feasibly run on the TeraGrid,

that additional bandwidth could be requisitioned. Latency, on the other hand, has

a lower bound between any two points on the TeraGrid due to the simple physics of

nature; light only travels so fast.

• Efficient mapping of work to resources – Some success has been made in using

algorithm-specific optimizations for achieving good performance of various types of

tightly-coupled problems in Grid computing environments. Work representative of

these efforts is described in Chapter 3. A downside of this type of approach is that

these types of optimizations may be quite complex for a programmer to implement

correctly. Further, optimizations of this nature may lead to optimizing an application

specifically for a particular Grid environment, requiring frustrating modifications to the

optimized implementation in order to move it to a different Grid environment at a later

time. For example, consider an unstructured mesh decomposition specifically coded

to map work evenly among two clusters in a Grid. In contrast to applications such

as master-slave decompositions in which work can readily be parceled out to available

processors, manually partitioning an unstructured mesh for efficient execution over a

Grid is non-trivial due to the complexities involved in locating good division points in

the mesh that result in approximately-equal work on both clusters while simultaneously

minimizing communication costs between the clusters. Further, the manual mapping

of work must be changed if, in the future, changes are made to the environment in
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which the application runs, such as by upgrading the nodes in one cluster to be of

a faster speed, requiring more work to be mapped to these processors relative to the

slower processors in the other cluster, or by introducing a third cluster across which

the application is mapped.

• Dynamic environment – By their very nature, Grid computing environments are

extremely dynamic. For example, latencies between parts of a computation may in-

crease or decrease depending on other competing network traffic. Effectively dealing

with the issues surrounding this dynamic nature of Grids is crucial for achieving good

application performance. Optimizing applications to run efficiently in response to

these challenges is difficult because it requires software to be able to adaptively tune

application performance at runtime.

• Pervasive heterogeneity – Many Grid computing environments, such as those com-

posed of organizations that combine resources “after the fact” of purchasing equipment

independently, contain pervasive heterogeneity. This is in contrast to proscribed Grid

environments like the core TeraGrid which are developed specifically to minimize is-

sues of heterogeneity. In the environments, heterogeneity in the form of processors

of different speeds and capabilities as well as multiple types of cluster interconnects

(e.g., Myrinet and InfiniBand) will be common. To achieve maximum performance of

tightly-coupled codes running in such an environment, this heterogeneity needs to be

managed.

1.3 Thesis Objectives

The objective of this thesis is to examine the feasibility of deploying tightly-coupled par-

allel applications in Grid computing environments. A desired outcome of this work is the

capability of delivering application performance in a Grid environment that is on par with
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the performance within a single cluster while at the same time requiring few or no modi-

fications to the application software. To that end, the thesis explores techniques that can

be deployed effectively at the runtime system (middleware) level and used in a Grid com-

puting environment consisting of multiple clusters. Such techniques include capabilities for

efficiently mapping work to the resources allocated to a Grid application and dynamically

updating this mapping in light of short-term changes in these resources (e.g., a sudden and

unexpected increase in latency between two clusters across which a Grid job is co-allocated).

Additional techniques address issues related to the heterogeneity found in a Grid environ-

ment, such as by providing abstractions to the various interconnects used throughout all

resources in a Grid job or by partitioning a Grid job to reflect processors of different speeds

or capabilities. An advantage of developing these techniques within the runtime system is

that they are automatically available to applications representing a wide variety of problem

decomposition strategies with little or no effort required by application developers. This en-

ables application developers to focus on the underlying problem, writing a software solution

in the most straightforward way possible, without being concerned with details of the Grid

environment in which the application will be deployed.

This thesis promotes a message-driven programming model for developing Grid applica-

tions. A message-driven model, as realized in systems such as Charm++ [21] and Adaptive

MPI [20], is attractive for use in Grid computing because it encourages a development style

in which an application is broken into a large number of parallel migratable objects which

are subsequently mapped onto a much smaller number of physical processors by an adaptive

runtime system. The runtime system can provide features such as message prioritization

and dynamic load balancing, allowing the runtime system to optimize a computation dur-

ing execution. A message-driven runtime system architecture coupled with optimization

capabilities allows an application to be feasibly deployed in Grid environments consisting

of several clusters that are made up of processors of various speeds and utilizing multiple

network interconnects.
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Chapter 2

Enabling Technologies

This chapter describes the enabling technologies upon which the work in this thesis is based.

These technologies include the Charm++ and Adaptive MPI runtime systems and the soft-

ware surrounding them as well as the Virtual Machine Interface message passing layer.

2.1 Charm++ and Adaptive MPI

Charm++ [21] is a message-driven parallel programming language based on C++ and de-

signed with the goal of enhancing programmer productivity by providing a high-level ab-

straction of a parallel computation while at the same time providing good performance on

platforms ranging from traditional supercomputers to more recent commodity cluster envi-

ronments. Charm++ is backed by an adaptive runtime system that provides features such

as processor virtualization, prioritized message delivery, load balancing, and optimized com-

munication libraries, especially for collective operations such as broadcasts and reductions.

Programs written in Charm++ consist of parallel objects called chares that communicate

with each other through asynchronous message passing. When an object receives a message,

the message triggers a corresponding entry method within the object to handle the message

asynchronously. Further, objects may be organized into one or more indexed collections

called chare arrays. Messages may be sent to individual objects within a chare array or to

the entire chare array simultaneously.

The chares in a Charm++ program are assigned to processors by the runtime system,

and this mapping is transparent to the user. Figure 2.1 illustrates the concept that the
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Figure 2.1: Depiction of the user’s view of a Charm++ application and the system’s view
after mapping objects to processors

user’s view of a Charm++ computation usually varies greatly from the way that the com-

putation is mapped onto physical resources. The user views the computation in terms of the

object-based abstraction, simply invoking methods on objects within the computation. The

runtime system’s view of the system is quite different, however, because it includes details

about object placement and about the messages sent between objects that correspond to

method invocations made by the user. Because the object-to-processor mapping is transpar-

ent to the user, the runtime system may change this assignment dynamically by migrating

objects among processors. A suite of measurement-based load balancers is provided to take

advantage of this capability. In addition, the migration capability is leveraged to support

other capabilities such as automatic checkpointing, fault tolerance, and the ability to shrink

and expand the set of processors used by a parallel job.

Adaptive MPI (AMPI) [20] provides the same capabilities as Charm++ in a more familiar

MPI programming model. AMPI implements the MPI standard by encapsulating each MPI

process within a user-level migratable thread. By embedding each thread within a Charm++

object, AMPI programs can automatically take advantage of the features of the Charm++

runtime system with little or no changes to the underlying MPI program. This is very

attractive for the work presented in this thesis due to the large number of MPI applications

available representing a wide-variety of styles of problem decomposition that may be readily
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deployed into Grid environments without requiring modification of application code.

The message-driven model used in the Charm++ runtime system is similar to the model

used in systems such as Active Messages [48, 49], Fast Messages [40], and Nexus [13, 14]. A

key idea with Charm++, however, is that a programmer completely decomposes a program

into a large number, tens or hundreds, of Charm++ chares or AMPI threads per physical

processor, allowing the runtime system to adaptively overlap computation in ready objects

with communication taking place in objects waiting for remote data. These objects can in

some ways be thought of as virtualizing the notion of a processor [22]. This use of processor

virtualization is similar to virtualization used in systems such as the CM-2 [2].

2.2 Virtual Machine Interface

The proliferation of high-performance clusters built from commodity off-the-shelf compo-

nents has resulted in the widespread use of several high-bandwidth low-latency cluster inter-

connects such as Myrinet [6] and InfiniBand [44]. Because these types of interconnects deliver

very good hardware performance, increased emphasis has been placed on the efficiency of the

underlying messaging software. Delivering point-to-point communication performance near

what is achievable from the raw network hardware is now the primary goal to message layer

designers. Furthermore, messaging layers are now expected to address several secondary

goals including portability, monitoring and management, and support for applications run-

ning in distributed Grid computing environments.

The Virtual Machine Interface (VMI) message layer [42, 41] is designed to be a low-

overhead abstraction layer providing several compelling features:

• Multiple interconnects – VMI is designed to provide a single programming interface

to the various network interconnects commonly used in high-performance commodity

clusters. Software implemented on VMI immediately gains access to all of the intercon-

nects supported by VMI while paying a small overhead of only a few microseconds per
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message. Furthermore, the underlying network interconnect may be switched simply

by changing the contents of a file that describes the devices used for the computation;

no recompilation or relinking of the application software is necessary.

• Data striping and automatic fail-over – Because VMI operates as a software layer

directly above the native network interconnect layer, it can stripe data across multi-

ple network interconnects, even if these network interconnects are heterogeneous. By

striping data across multiple network interconnects, VMI can deliver the aggregate

bandwidth available from all interconnects to the application. Furthermore, if one in-

terconnect fails, VMI can simply continue operating with any remaining interconnects.

• Portability – VMI is designed to be portable in two ways. First, VMI is designed to

be portable to a wide variety of network interconnects. The challenge to this goal is

the difficulty in designing a single Application Program Interface that can encompass

all of the lower-level network APIs currently available while simultaneously providing

excellent performance by giving the programmer access to some of the unique features

of individual interfaces. Second, VMI is designed to be portable to a wide variety of

platforms. Currently, VMI is available on IA-32, IA-64, and PowerPC architectures.

• Scalability – As high-performance commodity clusters increase in popularity, there

is also a trend toward an increase in the number of nodes in a single cluster. Clusters

with hundreds or thousands of nodes are now common. To this end, VMI is designed

to scale to upward of several thousand nodes.

• Support for distributed Grid-based computing – The increasing number of clus-

ter installations within collaborating organizations has led to a growing desire to con-

nect multiple clusters together in order to harness the aggregate power of all machines.

The challenges to creating a messaging layer to address this goal are twofold. First,

the messaging layer must scale to hundreds or thousands of nodes, just like in the
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case of building independent clusters that each contain a large number of nodes. Sec-

ond, the messaging layer must not only provide good performance for the variety of

interconnects used within each cluster but must also provide good performance for the

wide-area networks used to connect the clusters themselves together. Design decisions

regarding bandwidth and latency, for example, may be applicable to local area net-

works but not to the wide area. Because VMI is designed to be scalable to upward of

several thousand nodes and because it readily supports various types of interconnects,

it is a favorable platform for Grid computing. Furthermore, algorithms within VMI

are designed to be latency tolerant in order to allow VMI to function correctly over

wide-area networks.

• Dynamic monitoring and management – In order to deal with the ever-increasing

complexity of cluster and Grid computing environments, modern messaging layers add

support for monitoring and management. VMI includes capabilities for monitoring the

state of the messaging layer in real time and dynamically managing the state of the

entire network stack.

VMI achieves many of these goals by using an architecture in which software modules are

dynamically loaded at runtime. These modules are organized into a send chain and a receive

chain of modules, with all data that passes out of or into the messaging layer traveling

through the modules on the respective chain. Each module on a chain may simply pass

the data to the next module, modify the data in some way (for example, by compressing

or encrypting it), or “sink” the data by delivering it into the underlying network (in the

case of a device on the send chain) or into the application (in the case of a device on

the receive chain). This architecture leads to many novel possibilities. For example, as

described above, by loading multiple modules simultaneously, data may be striped across

multiple interconnects. This concept may be extended to allow a parallel application to run

in a Grid computing environment using a high-performance interconnect to communicate
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with local neighbors within the computation and a wide-area network to communicate with

neighbors located on remote nodes.

One of the most important contributions of VMI is its ability to provide an abstract view

of the underlying network used by all parts of a distributed Grid computation. Underneath

this abstract view, however, may be a network consisting of several heterogeneous intercon-

nects. Using VMI, message data travels over the most efficient point-to-point connection

between any pair of processes in a Grid computation. Further, the overhead of this capability

is measured in a few microseconds per message. It is for this reason that VMI is a critical

part of the work surrounding this thesis.

2.3 Efficient Implementation of Charm++ on VMI

VMI is not typically intended to be a software layer exposed directly to application devel-

opers, but rather as a layer upon which higher level message layers or runtime systems can

be built. To this end, earlier work [34] describes an efficient implementation of Charm++

that uses VMI as its underlying message passing layer. This implementation is significant

to the work described in this thesis because it delivers the features of VMI described in Sec-

tion 2.2 to Charm++ and AMPI applications without requiring any additional effort on the

part of the application developer. In light of the challenges to Grid computing described in

Section 1.2, probably the most important contribution that the efficient implementation of

Charm++ on VMI provides is abstracting the details of the various underlying interconnects

used in all parts of a Grid computation. That is, an application can run across two clusters

using, for example, Myrinet for communication in one cluster, InfiniBand for communication

in the other cluster, and TCP/IP for inter-cluster communication. All communication be-

tween any pair of processes in the computation travels over the most favorable interconnect

possible.

Figure 2.2 shows the structure of the Charm++ implementation on VMI. Charm++
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Figure 2.2: Structure of the efficient implementation of Charm++ on VMI

is implemented in terms of Converse, a portable foundation for higher-level language and

library writers. Converse includes a set of functions, the Converse Machine Interface, that

define the base functionality that must be implemented to port Charm++ to a new archi-

tecture. The implementation of Charm++ is written in terms of this Converse Machine

Interface, requiring few modifications to the core Charm++ software itself.

Using the implementation of Charm++ on VMI as a basis for the work in this thesis

provides several useful possibilities. For example, the following section describes a VMI

“delay device” that can induce arbitrary artificial latencies between pairs of processes in

a computation. This delay device allows simulating a Grid environment with any desired

latencies using a single cluster.
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2.4 Artificial Latency Environment

Because running an application in a real Grid environment does not permit varying the

wide-area latency as necessary to carry out experiments, the features of VMI can be used

to create a “simulated Grid environment” physically consisting of nodes from a single real

cluster. In this simulated Grid environment, arbitrary latencies can be inserted between any

pair of nodes, allowing cross-cluster latencies to be swept across a range to study the impact

of varying wide-area latencies on the underlying application. Creating such an environment

leverages the implementation of Charm++ running on the Virtual Machine Interface mes-

saging layer. Recall that a novel feature of VMI is the ability to organize the device driver

software modules used for communication operations into send and receive chains of drivers.

As message data travels along a chain, each module on the chain may simply pass the data

to the next module, manipulate the data in arbitrary ways, or deliver the data into the un-

derlying network. This capability of intercepting message data is used to write a VMI device

driver that injects pre-defined latencies between arbitrary pairs of nodes. This “delay device

driver” is then inserted into the VMI device chains used for experiments by constructing

send and receive chains that consist of two network drivers with the delay driver in between.

By affiliating a subset of the cluster’s nodes (i.e., those that exist on the “local cluster”) with

the first driver in the chain, message data are immediately sent between the nodes within

that subset without passing through the delay device. For nodes not in this affiliation (i.e.,

those that exist on the “remote cluster”), messages are intercepted by the delay device which

delays the message by a pre-defined amount of time before passing it to the network device

driver used to communicate over the “wide area.”

The VMI delay device carries out its work on the receive side of a communication channel.

When message data arrives at the delay device, the driver inserts the data along with the

arrival time into a linked list of delayed messages. As the runtime system periodically

“pumps” the message layer for new messages, the timestamp for the element at the head of
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the list is examined. If the current time is greater than the head element’s arrival time plus

the pre-defined artificial latency, the message is released to the runtime system for delivery.

Because messages are timestamped in the order that they are received, only the head of the

list needs to be examined for each “pump” operation; all elements following the head are

necessarily received after the head element.

Creating the artificial latency environment used for the experiments in this thesis involves

few changes to the software stack used in real Grid environments. That is, the application,

runtime system, messaging layer, and underlying communication layers are all the same

both in experiments using the artificial latency environment and in experiments running

in real Grid environments; only the introduction of the delay device driver is necessary to

construct the artificial latency environment. For this reason, experiment results collected in

the artificial latency environment closely match results collected in real Grid environments.

In particular, the results for the case studies presented in Chapter 8 show very similar

performance for parallel applications running in both environments.
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Chapter 3

Related Work

The work described in this thesis shares characteristics with several other projects while at

the same time offering its own unique contributions. This chapter describes related work

and draws comparisons and contrasts to the work described in this thesis.

Viewing a distributed computation as a set of interacting objects and, accordingly, using

object oriented programming techniques to manage complexity is an attractive approach

to Grid computing. Several other projects such as Legion [16] and Globe [47] share this

characteristic with the work presented in this thesis. In contrast, however, both of these

projects tend to be focused more on the entire range of problems surrounding Grid com-

puting, including resource management, file and data access, information brokering, and

security. Indeed, the designers of Legion call such an all-encompassing system a metasys-

tem. Examples of applications running in these kinds of environments appear to be focused

on those types that can implicitly tolerate latency, such as parameter sweep applications [39],

or applications such as molecular dynamics applications running entirely within the context

of a single machine on the Grid [38]. The goal of this thesis differs from this type of work

in that this thesis is specifically focused on the topic of developing techniques for efficiently

executing tightly-coupled applications that are co-allocated across multiple resources in a

Grid environment.

Several projects extend the MPI parallel computing standard to work in a Grid envi-

ronment with the goal of allowing jobs that can span multiple clusters. Examples of such

projects include MPICH-G2 [24] and MPICH/MADIII [4]. These projects, like the work

described in this thesis, view the communication infrastructure of a distributed Grid job
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as a hierarchy of interconnects. Such a view consists of high-performance local-area inter-

connects such as Myrinet or InfiniBand at one level of the hierarchy and lower-performance

wide-area interconnects such as TCP/IP at another level of the hierarchy. The goal is to

allow any pair of processors to communicate via the most efficient channel possible within

the hierarchy. MPICH-G2 achieves this goal by being layered on top of underlying native

MPI implementations within each cluster to provide efficient intra-cluster communication

and by using TCP/IP to provide inter-cluster communication. MPICH/MADIII takes an

approach that is very similar to the implementation of Charm++ on VMI described in Sec-

tion 2.2. MPICH/MADIII is implemented on top of a communication library, Madeleine

III, that allows multiple underlying networks to be used in a way similar to VMI. Further,

MPICH/MADIII uses an efficient user-level thread library, Marcel, that provides task de-

composition capabilities similar to what is available with Charm++ objects or Adaptive MPI

threads. In contrast to MPICH/MADIII, however, the work described in this thesis seeks

to increase the number of opportunities for the adaptive runtime system to overlap useful

computation with communication by using very large degrees of virtualization, with perhaps

hundreds of objects per physical processor in the computation. MPICH/MADIII seems to

typically use a much smaller number of threads per processor. Further, the Charm++

adaptive runtime system includes the ability to dynamically load balance objects within a

distributed computation while MPICH/MADIII does not seem to offer this functionality.

This capability is important for achieving good performance on fine-grained Grid computa-

tions that span multiple clusters.

Various algorithm-level approaches to tolerating latency in Grid computing environments

exist. For example, the performance of Partial Differential Equation solvers running in a

Grid environment may be improved by increasing the number of ghost cell layers used per

processor [8]. Increasing the number of ghost zones allows each processor to buffer more

data and reduces the number of messages sent between processors. Further improvements

to the PDE algorithm allow the elimination of diagonal communications. Together, these
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algorithm-level optimizations allow the performance of the application described in the cited

paper to be improved by as much as 170%. The primary contrast between approaches such

as the one described in the paper and the work described in this thesis is that the techniques

described in this thesis operate at the runtime system layer rather than at the application

layer. While algorithm-level approaches have the advantage that they can generally achieve

very good levels of optimization, runtime-level approaches have the advantage that they are

broadly available to a wide variety of problem decomposition types (i.e., structured and un-

structured mesh decomposition, spatial decomposition, etc.) without requiring modification

of application software.

Cactus-G [3] is a Grid-enabled computational framework that is based on the Cactus

problem solving environment and the MPICH-G2 message passing library. Originally de-

signed for use in numerical relativity applications such as modeling black holes, neutron stars,

and gravitational waves, Cactus has grown into a framework well-suited to solving general

mesh decomposition problems. A novel feature of Cactus is that it consists of a central core

called the flesh which connects to application modules called thorns through an extensible

interface. The thorns in a computation encapsulate the actual scientific code governing the

application as well as capabilities such as parallel I/O, data distribution, and checkpointing.

The experiment described in the paper leverages this rich platform to perform an experiment

in which a heterogeneous environment consisting of four machines distributed between the

San Diego Supercomputing Center (SDSC) and the National Center for Supercomputing

Applications (NCSA) is synthesized and applied to a tightly-coupled mesh decomposition

problem. The authors are successful in this endeavor due to the ability to leverage thorns

that optimize the computation in three ways. First, because the resources physically allo-

cated to the computation consisted of one machine at SDSC and three machines at NCSA,

the authors positioned the gridpoints in the mesh to reflect this uneven distribution. Sec-

ond, the authors increased the size of the ghost zone layers on each processor similar to the

method used in the ghost zone expansion technique described above [8]. Third, the authors
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used a thorn to compress message data that were sent over the wide-area connection between

SDSC and NCSA. In many ways, Cactus-G can be thought of as an elaborate runtime system

that offers features similar to those found in the Charm++ runtime. The work described

in this thesis differs from the work in Cactus, however, in that the approach taken by this

thesis focuses on dividing a computation into a large number of objects and then dynam-

ically mapping and re-mapping these objects onto physical processors as the computation

progresses. In many senses, this approach is at a lower level in the software stack than the

approach taken by Cactus-G.

Load balancing of parallel applications is a well-known concept with a history dating

back more than twenty years. For example, Fox describes load balancing through the use of

randomized placement of sub-blocks within a problem [15]. Interest in load balancing has

increased in recent years in the field of Grid computing because the performance of Grid

applications can be significantly improved through the use of good load balancing. Two

primary ways of doing Grid load balancing exist: static techniques and dynamic techniques.

When using static techniques, decomposed pieces of an overall problem are assigned to the

most suitable (least loaded) processor in the computation. However, once a unit of work is

placed on a processor, it remains on that processor until the work is completed; it cannot

migrate to a new processor as is possible with the Charm++ runtime system. Frequently,

static load balancing techniques cannot fully address the unique needs of Grid environments

due to the constantly-changing nature of Grids. To that end, the work presented in this

thesis focuses on dynamic load balancing techniques provided by the Charm++ runtime

system [55].

The dynamic load balancing capabilities of the work described in this thesis are similar

to systems such as OptimalGrid [30] which monitor the runtime performance of each node

in a computation with respect to the portion of a problem that it is handling and reap-

portion successive iterations of the computation to address load imbalances. A particularly

in-depth analysis of this type of technique was carried out using a Successive Over-Relaxation

21



(SOR) mesh problem running in the PlanetLab Grid environment [9]. The biggest difference

between the dynamic load balancing research in OptimalGrid and in the PlanetLab experi-

ments and the work in this thesis is that the work presented here balances a computation in

terms of both measured CPU utilization and the object-to-object communication graph of

the computation in relation to the structure of the Grid resources used by the computation.

The common thread that differentiates the work described in this thesis from others is the

pervasive use of message-driven execution, in the form of Charm++ chares or AMPI threads,

coupled with Grid topology-aware dynamic load balancing as a means of tolerating latency

in Grid computing environments without requiring modification of application software.

22



Chapter 4

Adaptive Latency Masking

Perhaps the most important factor for successfully running tightly-coupled applications in

Grid environments is the ability to mask the effects of cross-site latency on the portions

of the computation that communicate across the wide area. Many parallel applications

are written in a way so as to minimize the effects of latency, at least to some degree.

For example, a common way of structuring MPI applications is to arrange each timestep

such that each processor asynchronously sends data in ghost cells at the borders of the

processor’s portion of application data to its neighbors in the computation, then performs

its computation required to complete the timestep, and finally receives the data necessary to

compute the next timestep from its neighbors in the computation. Thus, the time required

to communicate a processor’s data to its neighbors is partially masked by the time used by

the processor to perform its computation in the timestep. This solution, while helpful in

traditional parallel computing environments, is less useful in Grid environments because the

degree to which latency can be masked within the application varies only with the number

of processors used to decompose the problem. While this may be worthwhile within the

context of a single parallel machine with microsecond latencies between processors, it may

be much less worthwhile in a Grid environment in which inter-processor latencies may be tens

of milliseconds between some processor pairs. Further, the solution requires the application

programmer to carefully structure the application software itself to achieve latency masking,

and this may make the software much more complicated than it otherwise would need to be.

This chapter describes how the architecture of the Charm++ runtime system itself can

be used to mask the effects of latency on tightly-coupled parallel applications running in Grid
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environments. The technique described here is especially attractive because it takes place

automatically within the runtime system, allowing the application programmer to structure

the application in a more straightforward manner that does not need to take the deployment

environment into consideration. More importantly, however, the number of objects used to

decompose a Charm++ program does not depend on the number of processors on which

the application is running. This means that the number of objects can be varied to give the

application a higher degree of latency tolerance.

4.1 Adaptive Latency Masking in Grid Environments

The fundamental idea behind the Charm++ runtime system is that a programmer divides

a program into a large number of message-driven entities, implemented in the form of either

Charm++ objects or Adaptive MPI virtual processors. The number of objects or virtual

processors is independent of, and in practice much larger than, the number of physical

processors. The runtime system maps objects onto physical processors and may dynamically

adjust this mapping as the application executes to balance load or optimize communication

costs. Rather than thinking in terms of physical processors, the programmer thinks in terms

of the object abstraction and writes code to coordinate interactions among these entities.

These interactions are realized as asynchronous messages that are passed between physical

processors in the computation. As messages arrive at a physical processor, they are enqueued

in a message queue in either FIFO or priority order. When a physical processor becomes

idle, its message scheduler dequeues the next waiting message and delivers it, triggering

the execution of code that is encapsulated within an object to handle the message. This

code runs to completion, producing other messages for objects on this or another physical

processor.

Because messages are asynchronous, the runtime system may schedule the execution of a

new object immediately after execution within an existing objects completes, resulting in one
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Figure 4.1: Hypothetical timeline illustrating the use of message-driven objects to tolerate
wide-area latency

or more messages sent by the object. Rather than waiting for these messages to be delivered,

the newly-scheduled object begins work immediately, thus overlapping its computation with

the communication of the previous object. This ability to overlap useful computation with

communication is important within the context of a single parallel machine, but is especially

critical for applications that are running in a Grid environment in which nodes are separated

by a high-latency wide-area network. Figure 4.1 illustrates this concept by depicting a

hypothetical timeline for three processors running on two clusters that are connected by

a high-latency wide-area network. Processors A and B are located within one cluster and

processor C is located within the second cluster. At the left side of the timeline, processor

B sends a message to processor C; this message must cross the high-latency inter-cluster

network. Rather than waiting idly for this message to be delivered, B is free to respond to

incoming messages from processor A, and in fact performs several short computations and

message exchanges with A. Finally, processor C responds to processor B with the result of

the computation previously triggered by B. The important idea is that B is able to do useful

work during the gap between dispatching a message to C and receiving a response.

Issues related to adaptivity and granularity in Charm++ programs have been studied

extensively [23, 17, 22, 18] and are important to the discussion in this chapter. The cited
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papers report that the overhead associated with scheduling a Charm++ object invocation

is small, less than a microsecond, and that the most critical factor in determining an ap-

propriate grainsize for Charm++ applications is the communication overhead. Figure 4.2

illustrates this concept by showing the execution time of a hypothetical parallel applica-

tion as a function of grainsize. For small grainsizes, where a large number of objects are

used to decompose the problem, execution time is relatively large due to a large amount

of overhead spent in communication. As grainsize increases and approaches GL, execution

time decreases rapidly. This is because the problem is divided among a smaller number of

objects, with each object working on a larger portion of the problem space, thus requiring

less communication. Throughout the flat region of the graph, between GL and GH , execu-

tion time remains essentially unchanged because the overhead of communication is only a

small fraction of the overall execution time. Finally, when grainsize increases beyond GH ,

execution time once again increases significantly due to insufficient parallelism resulting in

wasted idle time. The important conclusion drawn in the cited papers is that the grainsize

in Charm++ programs should be as small as possible while still masking overhead. This

allows the number of objects used to decompose a problem to be independent from the

number of processors upon which the problem runs, giving the Charm++ runtime system

the maximum amount of freedom in mapping objects to processors.

4.2 Example Application: Five-Point Stencil

To examine the effectiveness of using the Charm++ runtime system’s message-driven execu-

tion model to mask latency, a simple five-point stencil finite difference method, also known

as a two-dimensional Jacobi decomposition (Jacobi2D), was examined in a simulated Grid

environment consisting of two clusters separated by a high-latency wide-area connection.

This simulated Grid environment is constructed using the VMI artificial latency environ-

ment described in Section 2.4. In this class of numerical method, a multidimensional mesh
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Figure 4.2: Execution time of a parallel application as a function of grainsize [23]

is repeatedly updated by replacing the value at each point with some function of the values

at a small, fixed number of neighboring points. In the case of the experiment described

here, the neighboring points taken into consideration are the ones directly above and below

as well as to the left and right of a given cell. This produces four discrete communication

events per cell for each time-step.

For the experiment here, meshes of size 2048x2048 and 8192x8192 cells are considered.

The problem is decomposed using Charm++ objects by dividing the cells within the mesh

evenly among a specified number of objects. For example, for an 8192x8192 mesh divided

among 256 objects, 16 objects are mapped along each axis of the mesh. Accordingly, each

object has a 512x512 square section of the mesh to operate upon. During each time step,

each object communicates values for a 512x1 vector of cells to its appropriate neighbor.

Figure 4.3 graphically depicts this example problem layout.

The mesh is divided in half and split across two clusters separated by a wide-area connec-

tion, causing every time step to involve some objects communicating with neighbors situated
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Figure 4.3: Graphical depiction of a five-point stencil decomposition in which a fixed number
of cells are divided across a variable number of objects

across the wide area. More importantly, however, both clusters contain a large number of

objects that communicate with neighbors solely within the local cluster. The expectation is

that the message-driven execution model will allow the high-latency communication opera-

tions to be masked by other communication that is carried out with neighbors situated on

the local cluster.

The five-point stencil is an attractive problem to consider because it allows a varying

degree of virtualization to be readily chosen by increasing or decreasing the number of objects

used to decompose the mesh for a fixed number of processors. Thus, the effectiveness of using

message-driven objects to mask the effects of latency can be more readily understood than

in the case of most applications in which the number of objects used is directly related to

the problem size and does not vary with the number of processors. Further, because the

problem is of a fixed size, always 2048x2048 or 8192x8192 cells, as the number of physical

processors increases the granularity of the portion of the problem residing on each processor

decreases. This fact allows conclusions to be drawn related to the impact of granularity on

the ability to mask wide-area latency to be made.

Figure 4.4 shows the results for the stencil decomposition on a 2048x2048 mesh for 8,
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16, 32, and 64 physical processors. For each number of physical processors, the number of

objects used to decompose the mesh is varied by the square of increasing powers of 2. This

is due to the geometry of how objects are arranged over the mesh. For example, for the

case of 8 physical processors, 16, 64, 256, and 1024 objects are used to decompose the mesh,

corresponding to object arrangements of 4x4, 8x8, 16x16, and 32x32 objects.

For the case of 8 physical processors (Figure 4.4(a)), the number of objects is varied

from 16 to 1024 objects. For the 16 object case in which only two objects reside on each

physical processor, the per-step execution time of the application increases steadily as latency

increases. For this configuration, half of the objects on each side of the cross-cluster partition

must make a wide-area communication operation during each iteration. Further, because

each processor only holds two objects, little or no useful work may be overlapped with this

communication. As the number of objects per processor is increased, however, the effects

of wide-area latency can begin to be effectively masked. For the 64 object case in which

8 objects reside on each processor, the per-step execution time of the application remains

flat as the cross-cluster latency increases from 0 milliseconds to 8 milliseconds. This is

because useful work in objects that have only local communication requirements may be

used to overlap the otherwise-wasted communication time in objects that communicate with

neighbors across the cluster boundary. After latencies of 8 milliseconds, however, the amount

of locally-driven work per processor is exhausted and the slope of the line begins to increase

similar to the 16 object case. The latency tolerance of the 256 object case is even more

impressive. Although the per-step execution time for 256 objects is initially worse than the

per-step time for 64 objects, approximately 25 milliseconds per step for 256 objects versus

approximately 22 milliseconds per step for 64 objects, the 256 object line stays flat through

24 milliseconds of latency, thus resulting in a better per-step time than the 16 object case for

latencies greater than 16 milliseconds. For 256 objects on 8 processors, each processor has

32 objects to use for masking the effects of latency, and this provides many more possibilities

for overlapping work in ready locally-driven objects with cross-cluster communication time.
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(a) Processors = 8 (b) Processors = 16

(c) Processors = 32 (d) Processors = 64

Figure 4.4: Performance of Jacobi2D 2048x2048 with Naive object mapping

Finally, for the case of 1024 objects, although the per-step execution time remains flat for

latencies 0 through 32 milliseconds, the per-step execution time of the application with 1024

objects, approximately 38 milliseconds per step, is much worse than the cases of fewer objects

per processor. This result indicates that the limits of virtualization have been reached and

that each processor cannot effectively make use of the much larger number of objects.

Because the problem size is fixed, always 2048x2048 cells, the granularity of the portion

of the problem residing on each processor decreases as the number of processors increases.

This is reflected in the graphs for 16 processors (Figure 4.4(b)), 32 processors (Figure 4.4(c)),

and 64 processors (Figure 4.4(d)) that show a decreasing trend in the per-step execution time
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of the application as the number of processors increases.

In terms of latency tolerance, the graphs for 16, 32, and 64 processors show results that

are similar to the graph for 8 processors. That is, as the number of objects used to decompose

each problem is increased, the overall latency tolerance of the problem improves. This result

is reflected as horizontal segments in the per-step execution time plots for each number of

objects. Also similar to the case of 8 processors, the largest number of objects used per

processor (that is, 1024 objects for 16 processors, 4096 objects for 32 processors, and 4096

objects for 64 processors) results in worse per-step execution times for the application than

smaller numbers of objects. In these graphs for larger numbers of processors, however, it

is possible to notice an important phenomenon. After the “knee” in each plot where the

line shifts from horizontal to sloping sharply upwards as latency increases, the results for

the largest number of objects per physical processor show the best performance. While the

difference between the largest number of objects and a lower number of objects is subtle,

in the neighborhood of 500 microseconds per step, the phenomenon is consistently present

in the results for 16, 32, and 64 processors. This is an exciting result because it further

confirms that the Charm++ runtime system is masking the effects of cross-cluster latency

with useful work in the locally-driven objects on each processor.

As the number of processors increases, it is possible to observe another important idea

due to the decreasing granularity of the problem. As the granularity of the problem begins

to decrease, latencies above a certain point can no longer be tolerated, and this is reflected in

the location of the knee of each line on the graphs. For example, for the case of 8 processors

and 256 objects, the knee in the graph occurs at 24 milliseconds of latency. This corresponds

approximately to the per-step execution time of the problem for this number of objects. This

makes sense: after 24 milliseconds of latency, the amount of useful computation to be done

is less than the latency of wide-area communications. The time left over cannot be used

productively because there is no useful work to do in any object on each processor. This

idea is especially obvious as the number of processors increases and the per-step execution
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times for the application fall well below the 32 milliseconds of latency at the righthand side

of the graphs. So, the overall observation is that the knee of the lower envelope of all curves

occurs near the per-step execution time of the application.

Figure 4.5 shows the results for the stencil decomposition on a 8192x8192 mesh for 8,

16, 32, and 64 physical processors. Because each side of the mesh is four times larger than

the mesh in the previous experiment, the overall problem involves sixteen times more work.

The expectation is that the per-step execution times for this problem size should be much

larger than before, and the graphs in the figure confirm this expectation. The results for the

larger problem size match the results for the previous problem in two important ways. First,

the plots corresponding to the lowest number of objects for each graph still show a steady

increase in the per-step execution time as latency increases. As before, this is due to each

processor holding only one or two objects and thus being unable to mask the effects of cross-

site latency in these cases. Second, the plots corresponding to higher numbers of objects for

each graph show improved latency tolerance characteristics until the limits of virtualization

are reached on each processor. There are many more cases of strictly horizontal lines for the

larger problem size, and this is because the per-step execution time of the application far

exceeds the range of latencies examined.

4.3 Summary

This chapter has introduced the concept of using the message-driven execution model of

the Charm++ runtime system as a way of masking the effects of latency between pieces

of a tightly-coupled parallel application co-allocated across geographically distributed Grid

resources. This latency masking happens automatically when each physical processor in

a Grid computation holds a large number of Charm++ objects or Adaptive MPI virtual

processors, allowing the runtime system to schedule work in ready objects during the time

required for messages to travel across high-latency wide-area connections. The fact that the
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(a) Processors = 8 (b) Processors = 16

(c) Processors = 32 (d) Processors = 64

Figure 4.5: Performance of Jacobi2D 8192x8192 with Naive object mapping
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technique is automatic is very attractive because it means that programmers receive the

capability of deploying applications in Grid environments “for free” without being required

to modify their software. In cases where an application is specifically modified for use in a

Grid environment, for example by modifying a mesh application to increase the number of

ghost zone regions to improve latency tolerance, the latency masking characteristics of the

Charm++ runtime system work with the application-specific modifications.

The technique presented in this chapter represents the primary architectural contribution

of this thesis in optimizing tightly-coupled parallel applications running in Grid computing

environments. In relation to this, the following three chapters build on the contributions of

this chapter in the form of techniques that represent optimizations to this architecture.

34



Chapter 5

Object Mapping Strategies

Throughout the discussion in the previous chapter, the way in which objects are mapped

onto processors in the computation is largely ignored, although it should be apparent that

there are several ways to carry out this mapping. Different mapping strategies can produce

significant variances in the performance of the five-point stencil benchmark when running in

a Grid environment due to the volume of inter-processor communication inside each cluster

and, more importantly, due to differences in the number of objects involved in wide-area

communication. The latency tolerance capabilities of Charm++ used in a Grid computing

environment rely on each processor having a relatively small number of objects that com-

municate over the wide area and a relatively large number of objects that have only local

neighbors. Thus, to achieve good performance with tightly-couple Grid applications, it is

important to use a mapping which reflects this strategy.

5.1 Naive Mapping

Perhaps the simplest and most straightforward way to map objects is to simply assign

objects to processors sequentially without regard to the location of each processor in the

Grid environment. In this thesis, this strategy is referred to as Naive mapping. Figure 5.1

graphically depicts how this strategy works for a stencil decomposition consisting of 256

objects, arranged in a 16x16 configuration, and 8 processors. As shown in Figure 5.1(a),

objects are assigned to processors 0-7 sequentially down the leftmost column; after an object

is placed on the eighth processor, the next object assigned is placed on the first processor in
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(a) Naive object mapping (b) Naive object mapping augmented to show clus-
ter placement

Figure 5.1: Naive object mapping for 256 objects mapped onto 8 processors

a round-robin fashion. Recall that for the stencil experiments described in this thesis, the

processors used in a computation are evenly divided between two clusters. In the case of 8

processors, the first cluster contains processors 0 through 3 and the second cluster contains

processors 4 through 7. Figure 5.1(b) augments the diagram to indicate to which cluster

various parts of the mesh are assigned. In this case the Naive object mapping strategy

produces two processors in each cluster that have neighbors located across the wide area.

These are processors 0 and 3 in the first cluster and processors 4 and 7 in the second cluster.

Naive assignment may produce extremely poor results, however, such as in the case when

the number of processors in the computation is equal to the number of objects per side of

the mesh. Figure 5.2 illustrates this idea. In the graphic augmented to indicate the cluster

in which objects are located, it is apparent that each cluster contains only one object that

communicates over the wide area (processors 7 and 8, respectively). The expectation with

such an object placement is that the one processor per cluster responsible for communication

with the remote cluster has far fewer opportunities to overlap cross-site communication with

locally-driven work.
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(a) Naive object mapping (b) Naive object mapping augmented to show that
only one border processor exists per cluster

Figure 5.2: Naive object mapping for 256 objects mapped onto 16 processors

5.2 Block Mapping

A more sophisticated way to map objects to processors in the computation is to use a

configuration in which objects are arranged in square or rectangular blocks. Recall that a

fundamental idea for achieving good latency tolerance with the Charm++ runtime system

in a Grid computing environment is that each processor should have a relatively small

number of objects that communicate across cluster boundaries and a relatively large number

of objects that communicate with only local neighbors. Thus an ideal object mapping

strategy would arrange objects such that the “border” objects, those that communicate

across cluster boundaries, are spread as evenly as possible across the largest number of

processors per cluster possible. The expectation here is that this strategy should provide the

greatest number of opportunities to overlap high-latency remote communication with local

communication. Figure 5.3 shows an object mapping strategy, referred to as Block mapping

in this thesis, that reflects such a configuration. In the figure, 256 objects (16x16) are divided

evenly across two clusters. Within each cluster, 128 objects are divided evenly among the 8
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Figure 5.3: Block object mapping for 256 objects mapped onto 8 processors

processors, resulting in 16 objects per processor. As shown in the figure, these are arranged

in a rectangular pattern in which 2 objects communicate across the cluster boundary and

14 objects communicate only with neighboring objects within the local cluster.

It should be noted that in a stencil decomposition problem that is not running in a

Grid environment, an optimal object mapping strategy is to arrange objects into as near

square blocks as possible. Such a configuration results in the largest amount of inter-object

communication as possible staying within each processor, and minimizes as much as possible

the amount of inter-processor communication. A square mapping strategy, however, would

not directly map objects such that the border objects were as evenly spread across all

processors within a cluster. It is possible to slightly modify the square object mapping

strategy to allow an even distribution of border objects, however. First, all objects except

the border objects on each cluster are arranged into blocks that are as close to square as

possible. Next, the border objects on each cluster are spread evenly among the processors

within the cluster. The difficulty with this strategy is that for the simple stencil benchmark

considered in this thesis, each processor must have exactly the same number of objects in

order to avoid a noticeable performance degradation due to overloading some processors and
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underloading other processors. The Block mapping strategy used in this thesis is a much

simpler approximation that ensures that each processor has an equal number of objects and

that the border objects are evenly distributed.

The graphs described in the previous chapter in Figure 4.4 and Figure 4.5 are for Naive

object mapping. Figure 5.4 and Figure 5.5 show similar graphs for Block object mapping

for the 2048x2048 and 8192x8192 mesh sizes respectively. The overall trends in these graphs

are similar to the Naive mapping graphs, however some differences do become apparent after

careful comparison. For example, for the 2048x2048 mesh on 8 processors with 64 objects

(Figures 4.4(a) and 5.4(a)), one can clearly see that although the lines for Naive and Block

mapping appear to be fairly similar through 8 milliseconds of latency, after this point the

Naive results seem to lose performance much more rapidly than the Block results. This is an

important observation because it reinforces the notion that improved latency tolerance can

be achieved by placing a relatively small number of border objects along with a relatively

large number of local-only objects on each processor. On the same graph, the results for

1024 objects are overall much worse for Naive mapping (approximately 40 milliseconds per

step) than for Block mapping (approximately 30 milliseconds per step). The graphs for

larger numbers of processors show similar results, particularly when comparing the results

between Naive and Block mappings for the largest number of objects per processor. This

also makes sense because the Block mapping reduces the overall volume of communication

necessary by mapping larger numbers of neighboring objects onto the same processor.

Similar results are also present in the graphs for the 8192x8192 mesh size. Here again, the

results for Block mapping show improved latency masking capability over Naive mapping,

such as in the case for 16 processors and 64 objects (Figures 4.5(b) and 5.5(b)) or in the

case for 64 processors and 256 objects (Figures 4.5(d) and 5.5(d)). For these graphs, the

larger mesh size makes a more pronounced impact on the differences between Naive and

Block object mappings than was observable before. Finally, as before, the results for the

largest number of objects per processor clearly show that Block mapping offers much better
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(a) Processors = 8 (b) Processors = 16

(c) Processors = 32 (d) Processors = 64

Figure 5.4: Performance of Jacobi2D 2048x2048 with Block object mapping

performance than Naive mapping.

Making detailed comparisons between the Naive object mapping data and the Block

object mapping data in the preceding graphs is somewhat difficult. Because the insights

gained from these comparisons form a significant basis for this thesis, the discussion will now

specifically examine graphs that directly compare these data for each number of processors

and each number of objects used in the stencil decomposition. For the 2048x2048 size mesh,

Figure 5.6 shows the comparison graphs for 8 processors, Figure 5.7 shows the comparison

graphs for 16 processors, Figure 5.8 shows the comparison graphs for 32 processors, and

Figure 5.9 shows the comparison graphs for 64 processors. Using these graphs, the important
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(a) Processors = 8 (b) Processors = 16

(c) Processors = 32 (d) Processors = 64

Figure 5.5: Performance of Jacobi2D 8192x8192 with Block object mapping
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characteristics of the experiments become quite apparent. For the graphs for the least

number of objects per processor (Figures 5.6(a), 5.7(a), 5.8(a), and 5.9(a)), the trend in the

data clearly indicates that there is little or no difference between Naive and Block mapping.

The data for 8 processors and 16 objects shows the most difference with Block mapping being

approximately 2 milliseconds per timestep better than Naive mapping at some points. The

data for 16 processors and 16 objects, 32 processors and 64 objects, and 64 processors and

64 objects show nearly identical results for the two mapping strategies. As described above,

this makes sense because in these cases there is only one or two objects per processor, so the

mapping strategy is largely irrelevant because either strategy produces a similar distribution

of objects onto processors. For the graphs for the largest number of objects per processor

(Figures 5.6(d), 5.7(d), 5.8(d), and 5.9(d)), the trend in the data clearly indicates that Block

mapping provides superior performance in all cases. For the case of 8 processors, the Block

mapping results are consistently better than the results for Naive mapping, however it is

apparent at 32 milliseconds of latency that the Block mapping line is beginning to slope

upwards. For 16, 32, and 64 processors, Block mapping provides better performance than

Naive mapping, as much as 5 to 6 milliseconds per application timestep. Again, after the

latency matches the per-step time for the application, each line begins to slope upwards

indicating that the effects of latency are not being completely masked.

The most interesting graphs are the ones corresponding to the middle number of objects

for each number of processors (Figures 5.6(b) and 5.6(c), 5.7(b) and 5.7(c), 5.8(b) and 5.8(c),

and 5.9(b) and 5.9(c)) because these graphs represent a sort of “middle ground” between

having far too few objects to expect any sort of latency masking and so many objects that

the effects of reduced inter-processor communications even within a single cluster have a

positive impact on performance. That is, in these middle ground graphs, it is possible to

get some idea of the usefulness of careful object placement on the latency tolerance of the

stencil problem. For example, for the case of 8 processors and 64 objects (Figure 5.6(b)),

the differences in latency tolerance that were hinted at before in Figures 4.4 and 5.4 are
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now quite apparent between 8 and 32 milliseconds of latency. This graph shows the largest

improvement in performance due to Block object mapping, and this large improvement may

actually be due to using only 8 processors (4 processors in each cluster) which is probably

the least number of processors that would realistically be used for running a realistic parallel

application. Other graphs in the middle regions show a more subtle difference due to object

mapping, such as Figure 5.7(b) between 4 and 14 milliseconds of latency, Figure 5.8(b)

between 12 and 32 milliseconds of latency, Figure 5.9(b) between 4 and 16 milliseconds of

latency, and Figure 5.9(c) between 12 and 32 milliseconds of latency. The differences in

these graphs are much less obvious, on the order of perhaps 500 microseconds per timestep

performance improvement for Block mapping over Naive mapping, but they are consistently

present. Further, although it is possible to find situations in the graphs where Naive mapping

produces slightly better performance than Block mapping, for example in Figure 5.7(c)

between 10 and 16 milliseconds of latency, these situations occur much less frequently, and

when they do appear they last for only two or three data points at a time. Overall, the

results in these graphs suggest that Block mapping does in fact offer enhanced latency

masking benefits over Naive mapping, due to careful arrangement of objects such that each

processor has a relatively small number of border objects and a relatively large number of

locally-driven objects.

For the 8192x8192 size mesh, Figure 5.10 shows the comparison graphs for 8 processors,

Figure 5.11 shows the comparison graphs for 16 processors, Figure 5.12 shows the comparison

graphs for 32 processors, and Figure 5.13 shows the comparison graphs for 64 processors.

Overall, these results closely match those from the 2048x2048 mesh size, although the larger

size problem helps to highlight the differences in performance between Naive and Block

mapping. Like before, the results for the least number of objects per processor (Figures

5.10(a), 5.11(a), 5.12(a), and 5.13(a)) produce similar results for either object mapping

strategy, and any differences that do show up between the two strategies in these graphs are

much less pronounced than the differences in the other graphs for this problem size. This
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(a) Processors = 8, Number of Objects = 16 (b) Processors = 8, Number of Objects = 64

(c) Processors = 8, Number of Objects = 256 (d) Processors = 8, Number of Objects = 1024

Figure 5.6: Performance comparison of Jacobi2D 2048x2048 Naive object mapping vs. Block
object mapping (8 processors)
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(a) Processors = 16, Number of Objects = 16 (b) Processors = 16, Number of Objects = 64

(c) Processors = 16, Number of Objects = 256 (d) Processors = 16, Number of Objects = 1024

Figure 5.7: Performance comparison of Jacobi2D 2048x2048 Naive object mapping vs. Block
object mapping (16 processors)
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(a) Processors = 32, Number of Objects = 64 (b) Processors = 32, Number of Objects = 256

(c) Processors = 32, Number of Objects = 1024 (d) Processors = 32, Number of Objects = 4096

Figure 5.8: Performance comparison of Jacobi2D 2048x2048 Naive object mapping vs. Block
object mapping (32 processors)
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(a) Processors = 64, Number of Objects = 64 (b) Processors = 64, Number of Objects = 256

(c) Processors = 64, Number of Objects = 1024 (d) Processors = 64, Number of Objects = 4096

Figure 5.9: Performance comparison of Jacobi2D 2048x2048 Naive object mapping vs. Block
object mapping (64 processors)
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lends credibility to the notion that it is the mapping strategy that is responsible for the

improvements in performance and latency tolerance in the other graphs, since there is little

or no difference in object placement for the smallest number of objects per processor between

Naive and Block strategies. Also as in the case of the smaller problem size, the results for

the largest number of objects per processor (Figures 5.10(d), 5.11(d), 5.12(d), and 5.13(d))

show that Block mapping performance is consistently better than Naive performance. It is

interesting that the results for 64 processors and 4096 objects (Figure 5.13(d)) do not seem

to show as large of an improvement as in the other graphs for the largest number of objects

per processor for this problem size, nor for the 64 processor and 4096 objects results of the

2048x2048 problem size.

For the graphs in the middle ground, the results also closely match the results for the

smaller problem size. Recall that for the larger problem size studied here, most results show

that the per-step execution time does not change at all as latency increases from 0 to 32

milliseconds between clusters. Because the time per step for the larger problem is so great,

the much smaller cross-cluster latency can easily be masked. The most interesting graphs

here are in Figure 5.11(b) and Figure 5.13(b). These graphs, like the corresponding graphs

for the smaller problem size, show a steady increase in the per-step execution time of the

application as the cross-cluster latency increases. As before, this result indicates that the

effects of cross-cluster latency cannot entirely be masked due to having only 4 object per

processor with which to overlap work with communication. However, the results of Block

mapping are much more noticeably better than the results of Naive mapping here than is

evident in the data for the smaller problem size. Further, the slope of the Block mapping

lines is much more shallow than that of the Naive mapping lines, indicating that the Block

mapping scheme provides better latency tolerance.
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(a) Processors = 8, Number of Objects = 16 (b) Processors = 8, Number of Objects = 64

(c) Processors = 8, Number of Objects = 256 (d) Processors = 8, Number of Objects = 1024

Figure 5.10: Performance comparison of Jacobi2D 8192x8192 Naive object mapping vs.
Block object mapping (8 processors)
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(a) Processors = 16, Number of Objects = 16 (b) Processors = 16, Number of Objects = 64

(c) Processors = 16, Number of Objects = 256 (d) Processors = 16, Number of Objects = 1024

Figure 5.11: Performance comparison of Jacobi2D 8192x8192 Naive object mapping vs.
Block object mapping (16 processors)
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(a) Processors = 32, Number of Objects = 64 (b) Processors = 32, Number of Objects = 256

(c) Processors = 32, Number of Objects = 1024 (d) Processors = 32, Number of Objects = 4096

Figure 5.12: Performance comparison of Jacobi2D 8192x8192 Naive object mapping vs.
Block object mapping (32 processors)

51



(a) Processors = 64, Number of Objects = 64 (b) Processors = 64, Number of Objects = 256

(c) Processors = 64, Number of Objects = 1024 (d) Processors = 64, Number of Objects = 4096

Figure 5.13: Performance comparison of Jacobi2D 8192x8192 Naive object mapping vs.
Block object mapping (64 processors)

52



5.3 Summary

This chapter has examined the effects that the strategy for mapping objects to processors has

on the performance of the five-point stencil benchmark when running in a Grid environment.

The results of experiments in the chapter suggest that a block-oriented object mapping, in

which each processor contains a relatively small number of border objects that communicate

with neighbors across cluster boundaries and a relatively large number of objects that are

driven by neighbors within the local cluster, provides the Charm++ runtime system with

the best opportunities to mask the effects of cross-cluster latency. The object prioritization

technique presented in Chapter 6 assume such a configuration of objects on each processor.

The importance of efficiently allocating blocks of work to computational resources has

been extensively studied in systems such as KeLP [5]. Manually mapping objects to proces-

sors is straightforward for simple benchmarks like Jacobi2D. For more complex applications,

the manual mapping of objects becomes increasingly difficult. The complexity continues to

increase when applications are deployed into Grid environments because of the non-uniform

structure of inter-processor communication (i.e., communication between one pair of pro-

cessors may be several orders of magnitude faster or slower than communication between

another pair) and because of the pervasive heterogeneity often found in these environments.

This is, in fact, the main conclusion that can be drawn from comparing the simple Naive

mapping strategy, which has the potential to create unintended performance bottlenecks

when used in a Grid environment, to the more complicated Block mapping strategy in this

chapter. Further, if an efficient manual mapping of objects to processors is able to be found,

this mapping may tend to encapsulate specific characteristics of the Grid environment into

the application software. This is usually undesirable because it makes the application less

portable to other environments. Automated systems, such as KeLP, are thus very desirable.

To that end, the discussion in Chapter 7 presents a set of techniques that dynamically map

objects to processors while taking the Grid environment into consideration.
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Chapter 6

Object Prioritization

Chapter 4 describes a technique for efficiently executing tightly-coupled parallel applications

in Grid computing environments by using message-driven objects within the runtime system

layer to mask the effects of cross-cluster latency. Using this technique, it is possible to deploy

tightly-coupled applications in many realistic Grid environments and achieve performance

that is on par with what the application achieves when running within a single cluster. This

technique is the fundamental architectural contribution of this thesis. As demonstrated in

Chapter 5, the technique produces the best results when each processor in a computation

contains a favorable mix of a relatively small number of border objects and a relatively large

number of local-only objects. Such a mix of objects provides each processor with an equal

chance of finding locally-driven work to use for masking latency.

This chapter presents an optimization technique in which portions of a tightly-coupled

application are prioritized to improve performance in Grid environments. This technique

is effective in situations where the effects of latency cannot be entirely masked due to an

insufficient amount of locally-driven work. In these situations, application performance

begins to deviate from the single-cluster performance, and the technique presented in this

chapter may be useful for getting the best possible performance in a Grid environment.

6.1 Object Prioritization Technique

An important insight about the latency masking capability of the Charm++ runtime system

is that it works best when the execution in objects is coordinated such that border objects
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are driven earlier than local-only objects during each timestep. That is to say, if a mechanism

existed for prioritizing the execution of the border objects on each processor such that these

objects were executed in preference to the local-only objects, it should be possible to overlap

a greater amount of the otherwise-wasted time with useful work. This is in contrast to simply

selecting the next available object without regard to whether the object is a border object

or a local-only object. With this simplistic scheduling scheme, an unfortunate scheduling

of the objects during a timestep might “waste” the locally-driven work by executing all or

most of it earlier in the timestep than the work in border objects. It should be clear that

this technique assumes a favorable mapping of objects to processors in each cluster, with

each processor holding a relatively small number of border objects and a larger number

of local-only objects. Such a favorable mapping gives each processor a roughly equivalent

opportunity to proceed through each application timestep at the same pace. Without such

a mapping, prioritizing the execution of border objects on some subset of the processors in a

cluster is likely to simply cause these processors to progress faster than processors that are

dominated by local-only objects, resulting in the processors that move faster through the

computation being forced to wait on the processors that make slower forward progress.

Section 6.2 describes details of the optimization’s implementation in terms of the Charm++

runtime system. Section 6.3 evaluates the performance benefits of this optimization in terms

of the five-point stencil decomposition benchmark examined in the previous chapters. Sec-

tion 6.4 enumerates some of the limitations of the technique.

6.2 Implementation Details

The technique described in the previous section involves prioritizing the execution of each

processor’s border objects ahead of its local-only objects. The Charm++ runtime system,

however, does not directly associate priorities with objects. Instead, object execution simply

follows the scheduling of incoming messages on each processor. Thus, in the Charm++
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message-driven execution model, prioritizing the messages destined for the border objects

on each processor has the same effect as prioritizing the border objects themselves.

Execution within Charm++ objects is carried out inside entry methods. The execution

of an entry method proceeds uninterrupted until the code path within the entry method

is exhausted. Typically, the code within an entry method generates one or more messages

which are used to drive further execution in either the same object or another object in

the computation. When execution in an entry method ends, the next waiting message is

dequeued from the Charm++ Scheduler’s message queue and this message triggers execution

within one of the waiting objects on the processor. By default, the Charm++ Scheduler

processes messages in FIFO order, although facilities exist for message prioritization using

either integer or arbitrary-length bitvector priorities. To use message prioritization, the

application tags each outgoing message with a priority. On the receiving processor, the

Charm++ Scheduler dequeues messages in priority order. Messages of equal priority are

still processed in FIFO order relative to one another.

Directly using message priorities to implement the technique of border object prioritiza-

tion presents at least two difficulties. First, the integer or bitvector priority associated with

each message must be sent along with the message data, and this increases the overhead

for each message when prioritization is in use. Because message priorities are not useful to

all Charm++ programs, the Charm++ message structure is designed to make the priority

fields optional. This means that using message priorities internally in the Charm++ kernel

would have to first determine whether the user-level application was using message priorities

and turn the feature on if it was not actively being used. This is further complicated if the

user-level application is using message priorities itself because the message priorities used

inside the Charm++ kernel would have to coexist with the user-level priorities.

The second, and more challenging, difficulty in directly using message priorities to im-

plement the technique of border object prioritization is that each processor in the compu-

tation must know which objects are border objects and which objects are local-only objects
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throughout the entire computation. Figure 6.1 illustrates this concept. The figure shows

three processors (PE0, PE1, and PE2) in two clusters separated by a wide-area connection.

PE0 and PE1 are located in the first cluster and PE2 is located in the second cluster. Six

objects are used in the figure: Objects A and B are located on PE0; Objects C, D, and E

are located on PE1; and Object F is located on PE2. Five messages are shown being sent

between objects. Based on these messages, Objects A, B, D, and E are local-only objects

because they communicate only with objects in the same cluster while Objects C and F

are border objects because they communicate with objects in other clusters. This means

that to implement the border object prioritization technique, execution on PE1 should pri-

oritize Object C over Objects D and E. Using message priorities to drive Object C with

higher priority requires the message senders to have distributed knowledge of the border

and local-only objects on PE1. For example, Object A on PE0 must know that Object E

on PE1 is a local-only object when it sends Message 1. Or, Object B on PE0 must know

that Object C on PE1 is a border object and that Object D on PE1 is a local-only object

so that it can prioritize messages to these objects accordingly. In practice, maintaining a

consistent view of this kind of distributed state is a traditionally challenging problem in

distributed systems. The Charm++ kernel already keeps a distributed database of the map-

ping of objects to processors in a computation, called the Location Manager database. This

database is updated when objects migrate to new processors, such as during load balancing,

so that messages can be sent to the correct processors. One possibility for distributing the

knowledge of border and local-only objects on each processor is to use the Location Manager

database. However, to avoid the challenging problem of keeping a consistent state for this

database on each processor, the Location Manager database is not guaranteed to contain

up-to-date information on each processor. That is, if an object migrates from one processor

to another, the Location Manager database on some processors may indicate that the object

resides on the old processor while the Location Manager database on other processors may

indicate that the object resides on the new processor. For message sends, this limitation is
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Figure 6.1: Example of border object prioritization

dealt with by having each processor agree to forward messages to the correct destination for

objects that have recently migrated away from the processor. Eventually when the Location

Manager database on each processor is updated to reflect the correct state, this forwarding

is no longer necessary. For implementing border object prioritization, imprecise information

may be sufficient; if some messages are incorrectly prioritized, it is unlikely to matter to the

overall application performance as long as correct knowledge of border and local-only objects

eventually gets distributed to each processor. However, due to the limitations of the Loca-

tion Manager database as well as the challenges to using message priorities outlined above,

this scheme is perhaps not the optimal way to implement the border object prioritization

technique.

Recall the discussion above about how object execution is scheduled by the Charm++

kernel by retrieving messages from a Scheduler Queue on each processor. An important

insight is that not only can each processor in a computation deduce knowledge about which
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of its objects are border objects and which of its objects are local-only objects by observing

the destination processor for each outgoing message, but also that each processor has its

own Scheduler that can adjust its behavior according to this knowledge. To this end, the

border object prioritization technique can be implemented by introducing a second queue

on each processor which is serviced at higher priority than the existing Scheduler Queue. By

placing messages destined for border objects into this Grid Queue as they are received and

then servicing the Grid Queue with higher priority, the border objects on each processor

will be driven before the local-only objects. An advantage of implementing the border

object prioritization technique using a separate Grid Queue is that any user-level message

priorities will continue to be honored as a second-level criteria for the next message selected

for dispatch by the Scheduler. That is, messages in the Grid Queue will be serviced in order

of their user-level message priorities, and these messages will all be serviced at a higher

priority than the messages in the Scheduler Queue which are also serviced in order of their

user-level message priorities.

Implementing the border object prioritization technique involves modifying the Charm++

kernel’s code path for both message sends and message receives. For the send code, the ob-

jective is to identify which objects send messages to objects on a remote cluster and to record

these sending objects in a table of border objects on the current processor. During a message

send, the source object and destination object are both known. The Charm++ kernel uses

the destination object identification to find the destination processor using the Location

Manager as described above. The modified code path further looks up the cluster for the

sending processor and the cluster for the destination processor. These processor-to-cluster

mappings are determined during the Charm++ startup process either by being specified by

the user or by being discovered automatically via a latency probing process and then the

mapping information is distributed to each processor in the computation. If the source and

destination clusters differ, the sending object is a border object. In this case, the sending

object’s identification, an integer group ID and three integer index values used to identify
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the object internally to the Charm++ kernel, is recorded in a table of border objects on the

processor.

On the receive side, the Charm++ header of each incoming message is examined to

determine its destination object identification. The border object table is then consulted to

determine whether the destination object is a border object. If it is, the incoming message is

enqueued into the Grid Queue, otherwise it is enqueued into the normal-priority Scheduler

Queue. When the Charm++ Scheduler looks for the next waiting message, it first examines

the Grid Queue. Any message in this queue is dequeued in order of any user-specified

message priority. If the Grid Queue is empty, the Scheduler Queue is examined in a similar

fashion and any waiting messages are dequeued. In theory, it is possible that local-only

objects could suffer from starvation in this implementation if a constant stream of incoming

messages are destined for border objects. To prevent this, after a fixed number of objects

are dequeued from the Grid Queue, a forced check of the Scheduler Queue is made.

6.3 Performance Evaluation

The first step in evaluating the performance impact of object prioritization is understanding

when the optimization can improve performance. The configurations for the experiments in

Chapter 4 demonstrate the effects of increasing the number of objects per physical processor

from one or two objects per processor, such as in the example of Figure 5.6(a), to over

a hundred objects per processor, such as in the example of Figure 5.6(d). Because the

object prioritization technique relies on being able to favor the execution on some objects

(border objects) over the execution of others (local-only objects), configurations with very

small numbers of objects per processor cannot see improvements with the optimization

due to the fact that the Charm++ Scheduler has no choice regarding the next object to

schedule for execution on a processor. On the other hand, configurations in which the

largest number of objects per processor are used, such as in Figure 5.6(d), often remain flat
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for the entire range of latencies shown on the graphs, meaning that the effects of latency

are being entirely masked. That is to say, the per-step execution time for a latency of

0 milliseconds, representing the “base” performance of the application for that particular

number of processors and number of objects, includes enough overall work that latency has

no effect on the application for the range of latencies studied. The object prioritization

technique also can have little or no effect in these regions of the graphs because there is

overall enough work to mask latency; rearranging the order in which the work is performed

in these cases cannot improve performance. Further, situations where the flat region ends

and the graph transitions into a region where the per-step execution time increases linearly

with latency, such as in Figure 5.7(d), also represent situations where object prioritization

can have little or no effect because the application’s performance in these regions is totally

dominated by latency. In these cases, not enough overall work is available on each processor

to mask the increasing latency, so arranging the border object work to occur early in the

timestep relative to the locally-driven work can show little improvement in performance.

Any small performance improvement in these circumstances would be dwarfed by the large

decrease in performance due to idle time on each processor.

The circumstances where object prioritization can show an improvement in performance

are situations where the application can almost, but not quite, mask the effects of latency. In

these circumstances, the application’s per-step time increases with latency, but this increase

is less than linear. Examples of these circumstances are shown in Figures 5.6(b), 5.7(b), and

to some extent 5.8(b) for the 2048x2048 problem size, and in Figures 5.11(b) and 5.13(b)

for the 8192x8192 problem size. In these configurations, a small number of objects, four or

eight, exist per processor. Of these four or eight objects, one or two are border objects and

the remainder are local-only objects. It is in these cases where prioritizing the execution of

the border objects can slightly improve performance because the prioritization causes the

border objects to be driven early in the timestep relative to the local-only objects, allowing

more chances to mask the high cross-cluster latency as described above. The discussion in
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the following paragraphs examines the data for the graphs outlined above.

The first dataset in which the effects of object prioritization can be seen is from Fig-

ure 5.6(b). Because the effects of object prioritization are very subtle for this small problem

size, the data are shown in tabular form in Table 6.1. For this problem configuration, the

geometry of the Naive mapping results in only one processor per cluster being arranged on

the border. In the first cluster, Processor 3 contains all objects that communicate across the

cluster boundary; in the second cluster, Processor 4 contains all border objects. Because the

border objects in each cluster are arranged onto a single processor, and because this proces-

sor contains no objects other than border objects, the expectation here is that the object

prioritization technique should show no appreciable change in performance. The data in the

Table reflect this notion, with the results for Naive execution and Naive with Prioritization

closely matching each other. The geometry for the Block mapping involves each of the four

processors per cluster containing two border objects mixed with six local-only objects. This

is an ideal circumstance for the object prioritization technique to improve performance by

driving the border object execution favorably relative to the local-only objects. The data for

0 millisecond latency separating the clusters gives the basic per-step execution time of the

application, and this value is near 22 milliseconds per step for both the Block case and the

Block with Prioritization case. This per-step time remains consistent through 8 milliseconds

of cross-cluster latency. After 8 milliseconds of cross-cluster latency, however, the per-step

execution time for the Block case enters another apparently flat region, increasing to approx-

imately 23.7 milliseconds within the region between 10 and 16 milliseconds of cross-cluster

latency. That is, the increase from 8 to 10 milliseconds of cross-cluster latency causes almost,

but not quite, a corresponding 2 millisecond increase in the per-step execution time of the

application followed by another region of latency tolerance. The Block with Prioritization

case, however, shows different results in this same region. The per-step execution time of the

Block with Prioritization case appears to stay flat, near 22 milliseconds per step, through

10 and 12 milliseconds of cross-site latency. At 14 milliseconds, the 2 millisecond increase
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Naive with Block with
Latency Naive Prioritization Block Prioritization

0 21.94 21.97 21.93 21.90
1 22.42 21.91 22.23 21.87
2 22.36 22.28 21.95 21.66
3 22.11 22.09 22.07 21.90
4 22.17 22.05 21.98 21.92
5 22.11 22.09 21.90 21.99
6 22.46 22.09 22.14 21.86
7 22.86 22.87 22.01 21.82
8 22.43 22.43 21.94 21.85
10 24.51 24.68 23.71 21.51
12 24.89 24.89 23.70 21.92
14 25.26 25.54 23.41 22.85
16 25.85 26.03 23.84 23.51
20 29.09 28.93 24.86 24.56
24 30.16 30.33 28.35 28.17
28 33.56 33.76 32.23 32.14
32 35.72 35.88 35.31 36.35

Table 6.1: Performance of Jacobi2D 2048x2048 object prioritization with 8 processors and
64 objects

in cross-site latency appears to cause only an approximately 1 millisecond increase in the

per-step application execution time. This is similar to the next step between 14 and 16 mil-

liseconds of latency between clusters, where the per-step execution time increases again by

approximately only 1 millisecond. By the time the 16 millisecond point is reached, however,

the performance of the Block with Prioritization case nearly matches the performance of the

non-prioritized Block case. The next step in cross-site latency, from 16 to 20 milliseconds,

sees both cases increasing their per-step execution times by approximately 1 millisecond for

the 4 millisecond increase in latency. The results after this point, however, enter a region

where the effects of latency no longer can be masked at all. Each 4 millisecond increase in

cross-site latency increases the per-step execution time of the application by a corresponding

4 milliseconds.

The results in Table 6.1 suggest that the object prioritization technique may have an im-

pact on application performance. Unfortunately, the differences in the observed application
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performance are quite subtle for this small problem size. This is not entirely unexpected,

however. Consider the difference between unprioritized Naive and Block mapping strategies

in the same problem size. Entirely rearranging the mapping of objects to processors pro-

duces at most an approximately 4 millisecond difference in performance at 20 milliseconds

of latency. The expectation, therefore, is that any benefits of the object prioritization tech-

nique, where only the execution order of objects already mapped to a processor is changed,

would be more subtle in comparison.

Table 6.2 shows the results for 16 processors and 64 objects. Because the effects of prior-

itization are particularly well observable here, Figure 6.2 echoes the Table data graphically.

In this configuration, the Naive mapping scheme results in a situation where every object

in both halves of the computation communicates with a neighbor on the remote cluster.

Similar to the previous case, the expectation here is that prioritization cannot improve the

performance of the Naive case because every object becomes prioritized and is thus serviced

at the same priority as every other object. Indeed, the results in the Naive with Prioritiza-

tion column closely match those in the Naive column. For this problem configuration, the

Block mapping strategy results in an object layout where each of the eight processors in both

clusters contain four objects, with one of these objects being a border object and three being

local-only objects. The base per-step time of the application at 0 milliseconds of latency is

approximately 11 milliseconds, and this is reflected in both the Block results and the Block

with Prioritization results. As the cross-cluster latency increases from 0 to 1 milliseconds,

both results tolerate the latency increase somewhat by increasing the per-step execution time

by approximately 0.25 milliseconds. The latency increase from 1 to 2 milliseconds causes

approximately a 0.50 millisecond increase in execution time for both Block and Block with

Prioritization cases. As cross-cluster latencies increase in 1 millisecond increments from 2

milliseconds to 7 milliseconds, the per-step execution time continues the trend of increasing

in a latency-tolerant fashion in the neighborhood of 0.25 to 0.50 milliseconds per increment

of cross-site latency. The interesting points in the data appear at 8 and 10 milliseconds of
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cross-cluster latency. During the transition from 7 to 8 milliseconds of latency, the Block

performance increases from 14.23 to 15.36 milliseconds per timestep, an increase of approx-

imately 1 millisecond. The Block with Prioritization performance, however, increases from

only 14.22 to 14.55 during this same region, suggesting that the prioritization technique

allows better latency tolerance at this point when the non-prioritized case begins to lose its

ability to mask latency. Both configurations have the same number of objects with which

to work, but the better performance for the Block with Prioritization case seems to indicate

that it is arranging this work in such a way as to make the best use of its locally-driven

objects to mask the effects of cross-site latency. As the cross-cluster latency increases from 8

to 10 milliseconds, the Block case execution time increases by 1 millisecond per step. During

this same period, however, the Block with Prioritization case increases by 1.3 milliseconds

per step. This makes sense: in situations where unprioritized execution begins to show signs

of decreased latency tolerance, prioritized execution retains its ability to “hang on” to better

performance by rearranging the order of object execution in order to make the best use of

locally-driven work. However after some amount of this reordering process, the ability of the

prioritization technique breaks down faster as latency increases due to the fact that cross-

cluster messages take longer to arrive onto the processor. This means that locally-driven

work has a higher chance of being executed earlier in a timestep even though prioritization

is in use, since the Charm++ Scheduler will execute lower-priority locally-driven objects

rather than letting the processor sit idle waiting for messages from the remote cluster to

arrive. Thus, the prioritized execution case will begin to “catch up” to the unprioritized

execution case as both cases approach the limits of effective latency tolerance. This happens

in the data from the table by the time both cases reach the 12 millisecond latency point. By

the 16 milliseconds of cross-site latency point, both cases are clearly dominated by latency

and begin to increase linearly with latency.

Table 6.3 shows the results for 32 processors and 256 objects. The geometry of this

problem is similar to the 16 processor and 64 object configuration, and as in the previous
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Naive with Block with
Latency Naive Prioritization Block Prioritization

0 11.02 11.06 10.98 11.01
1 11.40 11.35 11.25 11.22
2 11.91 11.69 11.73 11.71
3 12.50 12.24 12.02 12.05
4 12.90 12.97 12.61 12.44
5 13.68 13.21 12.96 13.06
6 13.94 13.61 13.70 13.52
7 15.34 15.41 14.23 14.22
8 15.94 15.74 15.36 14.55
10 16.83 16.92 16.34 15.87
12 17.40 16.89 16.83 16.87
14 17.99 17.96 17.96 17.93
16 18.96 18.97 18.92 18.88
20 23.00 22.84 22.80 22.77
24 26.83 26.79 26.78 26.79
28 30.79 30.77 30.78 30.77
32 34.79 34.79 34.78 34.79

Table 6.2: Performance of Jacobi2D 2048x2048 object prioritization with 16 processors and
64 objects

Figure 6.2: Performance comparison of Jacobi2D 2048x2048 object prioritization with 16
processors and 64 objects
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example, every object in the Naive case has a neighbor across the cluster boundary. In the

Block case, each processor contains one border object mixed with seven local-only objects.

The results here for prioritization first appear at 10 milliseconds of cross-site latency and are

especially noticeable by 12 milliseconds of latency, although the effect is much less noticeable

in this example than in earlier examples due to the very small base per-step execution time

of the application. The maximum improvement in performance appears at 12 milliseconds.

It is interesting to note that the improvement even in this example where the base per-

step execution time is small is near 5%, and that this is also near the best improvement in

performance for the previous example with a similar configuration of border objects for Block

mapping. Further, the improvement to the 8 processor and 64 object case in the first example

are closer to 10%, however in that example each processor in the Block mapping case had two

border objects to use for masking latency. The consistency of these results suggest that the

object prioritization technique can improve application performance in an observable way.

In larger problem sizes, the performance improvement should be correspondingly larger

and more noticeable. To this end, the following two examples examine the use of object

prioritization on the larger 8192x8192 problem size.

For the larger 8192x8192 problem size, Table 6.4 shows the results for 16 processors and

64 objects. As in the case of the corresponding smaller-size problem, the geometry of this

problem results in the Naive mapping arranging every object with a neighbor across the

cluster boundary and the Block mapping arranging the objects such that each processor has

one border object and three local-only objects. As before, because every object in the Naive

case is a border object, the Naive and Naive with Prioritization results are similar. For this

larger problem size, the improvements in performance due to better object mapping are much

larger and more obvious than in the smaller problem size, and this is reflected in a greater

difference between the results in the Naive and Block columns of the table. The expectation,

then, is that any difference in performance due to the object prioritization technique should

also be more observable here than in the smaller problem size. Indeed, this is the case.
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Naive with Block with
Latency Naive Prioritization Block Prioritization

0 6.91 7.02 6.31 6.30
1 7.02 7.08 6.33 6.28
2 7.03 7.07 6.35 6.30
3 7.04 7.08 6.40 6.32
4 7.04 7.07 6.92 6.80
5 7.05 7.04 7.82 7.50
6 7.90 7.85 8.52 8.53
7 8.83 8.72 9.39 9.27
8 9.78 9.74 9.99 10.02
10 11.71 11.68 11.46 11.20
12 13.82 13.70 13.55 12.94
14 15.98 16.02 15.17 14.93
16 18.08 18.07 17.17 16.92
20 21.76 21.74 21.20 21.01
24 25.76 25.66 25.14 24.95
28 29.71 29.70 29.15 28.95
32 33.75 33.63 33.28 33.17

Table 6.3: Performance of Jacobi2D 2048x2048 object prioritization with 32 processors and
256 objects

Both the Block and Block with Prioritization results start out in the same neighborhood

of 217 or 218 milliseconds per timestep at 0 milliseconds of cross-cluster latency. By the

time the experiment reaches 5 milliseconds of cross-cluster latency, the Block results have

advanced to 222.74 milliseconds per-step execution time while the Block with Prioritization

results appear to remain flat near 219 milliseconds per step. Despite the unexpectedly high

result at 6 milliseconds of cross-site latency, the Block with Prioritization results appear

to remain reasonably flat, in the range of 219 to 222 milliseconds per timestep, certainly

through 14 milliseconds of latency and possibly through 16 milliseconds of latency, where

the Block with Prioritization results record a per-step execution time of 222.97 milliseconds.

In contrast, the unprioritized Block column has clearly advanced into the neighborhood

of 226 milliseconds per timestep by the time the cross-cluster latency has reached 12 to

16 milliseconds. The overall trend here is important. The unprioritized Block per-step

execution time increases from 217.43 milliseconds to 226.47 milliseconds (an increase of 9.04
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milliseconds per step) from 0 milliseconds to 12 milliseconds of cross-site latency. However,

the Block with Prioritization per-step execution time increases from 218.09 milliseconds to

221.29 milliseconds (an increase of 3.2 milliseconds per step) during the same 12 millisecond

range. That is, even the Block case demonstrates some effect of latency tolerance because

the increase of 12 milliseconds of latency is reflected in only an increase of 9 milliseconds of

per-step execution time. However, the Block with Prioritization case demonstrates better

latency tolerance because the same 12 millisecond increase in latency is reflected in a much

smaller 3 millisecond per-step execution time increase. This trend continues through the

remaining data through 32 milliseconds of cross-cluster latency. This is an exciting result that

corresponds closely with the insight described above regarding when the object prioritization

technique is applicable. Namely, the object prioritization technique applies to situations in

a middle region between complete latency masking (flat regions in the per-step execution

data) and a total inability to mask latency (linear increases in the per-step execution data).

It is further interesting to note that the biggest improvement in performance between Block

and Block with Prioritization results appears at 14 milliseconds of cross-site latency, and

this improvement is around 3%. This is similar to the percentage improvement observed in

the previous examples for similar object configurations with the smaller problem size.

Table 6.5 shows the results for 64 processors and 256 objects. The geometry of this

problem once again results in the Naive case arranging every object with a neighbor across

the cluster boundary. The Block case, however, arranges the objects in a way that has

not yet been examined in the discussion in this Section. The 256 objects are arranged into

a 16x16 mesh which is then divided in half between the two clusters in the experiment.

This means that the cross-cluster division has only 16 border objects to divide among the

32 processors in each cluster. Thus, in each cluster, half of the processors contain one

border object and three local-only objects while the other half of the processors contain four

local-only objects. As in previous examples, the base application performance of Block and

Block with Prioritization are similar, around 52 milliseconds per step at 0 milliseconds of
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Naive with Block with
Latency Naive Prioritization Block Prioritization

0 220.20 219.90 217.43 218.09
1 219.89 219.45 219.45 216.64
2 220.33 220.45 219.09 218.70
3 221.16 220.89 220.68 219.03
4 222.30 222.09 219.63 218.53
5 223.42 223.01 222.74 219.10
6 223.42 223.93 222.37 222.48
7 225.25 225.22 222.94 220.43
8 225.68 225.20 223.06 219.35
10 228.39 228.02 223.59 220.04
12 228.62 228.31 226.47 221.29
14 230.54 231.22 226.48 219.37
16 233.23 233.16 226.94 222.97
20 238.26 238.36 227.39 224.79
24 239.13 238.07 229.88 228.46
28 240.74 240.68 235.17 229.28
32 244.33 244.95 234.25 228.48

Table 6.4: Performance of Jacobi2D 8192x8192 object prioritization with 16 processors and
64 objects

cross-cluster latency. Both sets of data appear nearly flat through at least 10 milliseconds of

latency, although both sets of data do show an increase in per-step execution time over this 10

millisecond increase in latency, with unprioritized Block execution increasing by at least 1.87

milliseconds per step and Block with Prioritization increasing by at least 1.15 milliseconds

per step. After 10 milliseconds of latency, the Block results begin to increase, reaching 57

milliseconds per step at 14 milliseconds of latency, while the Block with Prioritization results

appear to remain nearly flat through 12 and 14 milliseconds of latency (54.69 milliseconds

per step and 54.91 milliseconds per step respectively) and reach only 54.91 milliseconds per

step at 14 milliseconds of cross-cluster latency. While a similar trend continues through the

remainder of the dataset at 32 milliseconds of cross-site latency, the Block results increase

by nearly 5 milliseconds per step between 28 and 32 milliseconds of cross-cluster latency.

While the Block with Prioritization results increase by around half this amount during the

same region, it is likely that the limits of latency tolerance have nearly been reached for
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Naive with Block with
Latency Naive Prioritization Block Prioritization

0 54.75 55.03 52.71 52.10
1 55.09 54.61 52.55 52.73
2 55.33 54.89 54.67 54.41
3 57.49 58.02 54.60 53.09
4 57.94 57.83 54.95 52.79
5 57.58 57.35 55.12 53.15
6 58.74 58.35 56.28 54.31
7 60.27 60.01 56.94 55.79
8 61.29 60.81 56.97 53.40
10 61.17 61.62 54.58 53.25
12 62.45 62.20 55.76 54.69
14 62.56 62.89 57.00 54.91
16 64.45 64.51 58.57 56.07
20 65.95 65.81 61.25 58.98
24 66.28 66.55 61.09 59.64
28 70.25 70.32 64.25 61.56
32 74.05 74.34 69.16 64.03

Table 6.5: Performance of Jacobi2D 8192x8192 object prioritization with 64 processors and
256 objects

this problem by this point and that extending the dataset beyond 32 milliseconds of latency

would rapidly show both Block and Block with Prioritization results increasing linearly.

6.4 Limitations

The discussion in the previous section highlights some limitations of the object prioritization

technique. Perhaps the most important limitation is that the technique can be applied only

in situations where most of the processors in each cluster of a Grid computation have a

favorable ratio of a small number of border objects mixed with a larger number of local-

only objects. This allows the border objects to be prioritized and driven in a more useful

way by the Charm++ Scheduler such that the best use is made of the work driven in the

local-only objects. Furthermore, the number of objects per processor must be in a sort of

“sweet spot” between too few objects, where little or no work exists for the purposes of
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latency masking, and too many objects, where increasing cross-site latency tends to cause

the per-step application execution time to abruptly shift from flat to linear. Seen another

way, the prioritization technique delays the onset of the latency-dominated regime in each

graph, tolerating somewhat larger latencies than non-prioritized techniques.

Another limitation of the object prioritization technique is that it is implemented in terms

of chare arrays in the Charm++ kernel. As described in Section 2.1, chare arrays are indexed

collections of Charm++ objects that allow all objects in the array to be addressed simulta-

neously or allow objects in the array to be addressed individually. The implementation relies

on border objects to register themselves with the Charm++ kernel so that incoming mes-

sages, which carry header information describing the destination object in terms of an array

ID along with one or more index values into the array, can be placed into the high-priority

Grid Queue or the low-priority Scheduler Queue. In practice, this limitation is not much

of a problem because most modern Charm++ programs are implemented in terms of chare

arrays, including all Adaptive MPI applications due to the fact that AMPI is implemented

using chare arrays internally.

6.5 Summary

This chapter has introduced a technique for improving the performance of tightly-coupled

parallel applications running in Grid computing environments by prioritizing the execution

of the border objects that communicate with neighbors located on remote clusters. The

technique is an optimization to the latency masking technique described in Chapter 4. By

prioritizing the execution of the border objects on each processor, better use is made of the

locally-driven objects for the purposes of masking the effects of cross-cluster latency in a

Grid environment.

The technique in this chapter is best suited for situations in which the number of objects

on each processor is enough to partially, but not entirely, mask the effects of cross-site la-

72



tency. These situations tend to be limited to the regions of performance graphs in which an

application is in the process of shifting from a completely latency-tolerant regime to a com-

pletely latency-dominated regime. In practice, these regions may be limited in size. Further,

in the case of practical non-benchmark applications running in actual Grid environments,

both the granularity of the problem and the latency separating parts of the computation

are likely fixed at values that cannot easily be changed. Unless these values happen to fall

within a fortunate range for a given problem, object prioritization is unlikely to significantly

improve application performance. Finally, even in the best circumstances, the performance

benefits of using object prioritization seem to be on the order of only a few percent improve-

ment. Further work should investigate whether the technique can be improved to give better

results over a more broad range of latencies.
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Chapter 7

Grid Topology-Aware Load Balancing

Chapter 4 describes the primary architectural technique of this thesis for efficiently executing

tightly-coupled parallel applications in Grid computing environments. This technique uses

message-driven objects within the runtime system layer to mask the effects of cross-cluster

latency. Chapter 5 demonstrates that the latency tolerance capabilities of the Charm++

runtime system can be optimized by carefully mapping objects to processors such that each

processor holds a relatively small number of border objects and a much larger number

of local-only objects. Such a mapping provides every processor with approximately the

same amount of locally-driven work to use in masking wide-area latency, ensuring that each

processor can make forward progress in the computation at about the same rate.

This chapter presents a set of optimization techniques in which the objects in a tightly-

coupled application are dynamically load balanced during execution to improve performance

in Grid environments. These techniques leverage the Charm++ load balancing frame-

work [55] coupled with knowledge of the computational resources and communication topol-

ogy of a Grid environment. The optimizations are applicable to situations where a com-

putation contains a reasonably large number of objects that can be mapped to processors

within the computation to effect an improvement in performance. The aim of the techniques

explored in this chapter is to achieve performance comparable to ad-hoc application-specific

object mapping using much more general purpose automatic techniques.

Load balancing is traditionally a challenging and important topic in parallel computing

due to the fact that many tightly-coupled parallel applications are dynamic in nature. That

is, the computational requirements of an application can change as the application executes
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due to factors such as progress in a simulation or refinement in an iterative solver. In a

Grid environment, however, load balancing is more challenging and more important because

computational resources can be heterogeneous and because the environment itself can change

as an application executes. For example, the processors in one cluster may be faster than

the processors in another cluster, or the latency between clusters may increase or decrease

as an application executes due to external network traffic. Thus, it may be difficult or

impossible for a human to optimize a Grid application based only on a priori knowledge of

the environment.

The specific techniques employed by Grid topology-aware load balancers can vary greatly

in complexity. The primary objective common to the load balancers developed in this thesis

is to ensure that the processors in a computation are balanced in terms of CPU utilization.

In a Grid environment, successfully addressing this objective requires recognizing that the

processors used within a single job may be of heterogeneous performance and allocating

work accordingly. Beyond this primary objective, the three load balancers presented here

attempt to achieve secondary objectives aimed at optimizing the object-to-object commu-

nication characteristics of a Grid computation. Section 7.1 describes a basic load balancing

technique in which the border objects and local-only objects in each cluster of a Grid com-

putation are distributed evenly among the processors in each cluster. Section 7.2 describes

a much more complex load balancing technique in which the communication graph of a

Grid application is optimized using graph partitioning algorithms to reduce the volume of

cross-cluster communication as well as the volume of communication within each cluster.

Finally, Section 7.3 describes a hybrid load balancing technique that attempts to leverage

the best characteristics of the first two balancers, using graph partitioning to optimize cross-

cluster communication and the even distribution of border objects and local-only objects to

optimize communication internal to each cluster.
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7.1 Basic Grid Communication Load Balancing

This section describes a very simple Grid-aware load balancer, called GridCommLB, that

attempts to balance a computation based on the measured CPU load and communication

characteristics of individual objects. Because no relationship between objects is considered,

the design and implementation of the technique used in this load balancer is straightforward.

Thus, GridCommLB represents a good starting point for Grid-aware load balancing.

7.1.1 Load Balancer Technique

Recall from the discussion in Chapter 4 that the basic latency tolerance capabilities of

Charm++ and Adaptive MPI are due to the runtime system’s ability to overlap the time

spent waiting for messages to travel between clusters with work driven on each processor in

local-only objects. The technique employed by GridCommLB is a simple corollary to this

observation that attempts to optimize the performance of a Grid computation by distributing

the border objects and local-only objects in each cluster evenly among the processors in the

cluster while at the same time ensuring that each processor is allocated an amount of work

proportional to its relative performance. A major advantage of the technique is that it can

be implemented and executed very simply. By observing which objects send messages to

neighbors on remote clusters, the border objects can be identified. When load balancing

takes place, these objects can then be balanced independently without considering their

relationship with other objects in the computation at any more extensive level.

No objects are ever migrated across cluster boundaries in the simple technique devel-

oped in GridCommLB. That is, every object remains somewhere in the cluster in which it is

originally mapped. This greatly simplifies the implementation of the load balancer because

each cluster is load balanced independently of the other clusters in the computation. This

assumes, however, that the objects are initially mapped to processors mostly uniformly. For

most Charm++ applications, this is likely a safe assumption. For the case of Adaptive MPI
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applications, AMPI handles the task of assigning virtual processors to physical processors,

and this assignment is such a uniform mapping. If objects are not mapped somewhat uni-

formly, overall application performance can suffer with GridCommLB due to the processors

in one cluster being overloaded in terms of work relative to the amount of work being done

in other clusters.

7.1.2 Implementation Details

Based on the description of the general technique described in the previous section, the im-

plementation of GridCommLB is reasonably straightforward. During application execution,

the Charm++ load balancing framework collects statistics about the runtime characteristics

of the objects in the application. Such statistics include the measured CPU load of each

object as well as information about the number of messages and number of bytes sent be-

tween every pair of objects. For each communication event that takes place within a load

balancing period, the source object and destination object for the event are examined. The

corresponding processors upon which the source and destination objects reside are also de-

termined by examining a vector supplied by the load balancing framework that contains the

current object-to-processor mapping. Finally, the clusters in which the source and destina-

tion processors reside are determined based on information provided by the user or probed

automatically by the runtime system during program startup. If the source and destination

processors reside in different clusters, the count of wide-area messages and message bytes for

the source object is incremented; otherwise the count for local-area messages and message

bytes is incremented.

After all communication events are examined, objects can be migrated to new destination

processors based on the amount of wide-area communication they have done during the past

load balancing period. Because the basic load balancing technique does not migrate objects

across cluster boundaries, each cluster is considered independently when making migration

decisions. For each cluster, objects are iteratively placed onto processors by means of a
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greedy algorithm in which the current heaviest object is mapped onto the lightest loaded

processor. To map an object onto a processor, the object’s entry in a vector is updated

to reflect the new mapping. The process repeats until all of the objects located on the

current cluster have been mapped to processors. The overall process is then repeated for

the remaining clusters in the computation. At the end of load balancing, the Charm++

load balancing framework uses the new object-to-processor mapping vector to update the

positions of all objects in the computation.

The greedy algorithm used to identify the current heaviest object is slightly more complex

than simply choosing the object with the largest number of cross-cluster communication

events. Using the number of cross-cluster communication events as the only criteria for

selecting the next object to migrate can lead to large CPU load imbalances throughout

the computation as some processors become overloaded with work despite the fact that all

processors are balanced in terms of the number of border objects and local-only objects.

Instead, the greedy algorithm must take into consideration both the measured CPU load of

each object as well as the number of cross-cluster messages of each object when selecting the

heaviest object for load balancing. The process by which this is carried out in GridCommLB

is as follows. First, all objects in the current cluster are examined to determine the object

with the largest measured CPU load as well as the object with the largest number of cross-

cluster messages. If the object with the largest measured CPU load happens to also be

the object with the largest number of cross-cluster messages, or happens to have a cross-

cluster message count matching that of the object with the largest number of cross-cluster

messages, then this object is the overall heaviest object in the cluster and can be mapped

next. Otherwise, all objects in the current cluster are examined again to identify the objects

that have a measured CPU load within a given tolerance of the maximum CPU load. This

tolerance defaults to a value of 10%, although it can be adjusted by the user at runtime. Of

the objects that have a measured CPU load within the specified tolerance of the maximum

measured CPU load, the object with the largest number of cross-cluster messages is selected
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as the heaviest object by the greedy algorithm.

The greedy algorithm described above works because the objects in most parallel appli-

cations tend to fall into broad categories based on their functionality within the application.

Objects in each category tend to have similar characteristics including measured CPU load

and number of messages. For example, the objects in a molecular dynamics application

might be categorized into objects that represent cells and objects that represent cell pairs,

as well as various objects that perform system-level tasks. Objects in different categories

tend to have heterogeneous characteristics, while objects within the same category generally

have much more homogeneous characteristics. Although the design of the greedy algorithm

used in GridCommLB is not specifically intended to identify these categories, in practice

this often tends to be the case. Thus, the algorithm tends to map all of the objects in each

category separately, beginning with the category with the largest measured CPU load and

ending with the category with the least measured CPU load. After load balancing has been

entirely completed, the border objects in each cluster are spread evenly across the processors

in the cluster, and these processors also tend to be balanced in terms of measured CPU load.

A similar greedy algorithm is also used to choose the lightest loaded processor in the

current cluster. All processors in the current cluster are examined to determine the processor

with the lowest measured CPU utilization as well as the processor with the least number of

cross-cluster messages. If the processor with the lowest measured CPU utilization happens

to also be the processor with the least number of cross-cluster messages, or happens to

have a cross-cluster message count matching that of the processor with the least number

of cross-cluster messages, then this processor is the overall lightest loaded processor in the

cluster and can be used as the destination for the next object to be mapped. Otherwise, all

processors in the current cluster are examined again to identify the processors that have a

measured CPU utilization within the given tolerance of the minimum CPU utilization. Of

the processors that have a measured CPU utilization within the specified tolerance of the

minimum measured CPU utilization, the processor with the least number of border objects
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is considered to be the lightest processor. If two processors that are both within the specified

tolerance have an equal number of border objects, the processor with the least number of

cross-cluster messages is considered to be the lightest processor.

Because the processors within a cluster may be of heterogeneous performance, the greedy

algorithm for choosing the lightest loaded processor must also scale the measured CPU loads

of the objects placed onto a processor based on the processor’s measured performance. For

example, some clusters in the core TeraGrid [1] have processors of heterogeneous performance

with some 1.3 GHz processors and some 1.5 GHz processors. When the Charm++ load bal-

ancing framework is initialized, the speed of each processor is measured and made available

to the load balancers to use in whatever way they choose. GridCommLB uses this informa-

tion to map more objects onto faster processors in each cluster. Thus in the example of the

TeraGrid clusters, any 1.3 GHz processors used in a computation would receive only about

85% of the work mapped onto any 1.5 GHz processors in the computation. However, because

the technique used by GridCommLB never migrates objects across cluster boundaries, more

work cannot be allocated to remote clusters that are composed entirely of better-performing

processors. Unfortunately, this seems to be a more likely scenario for heterogeneity in a Grid

computation, with one cluster being composed entirely of the same performance of processor

and another cluster being composed entirely of the same higher-performance processor.

Finally, an assumption made during the implementation of GridCommLB is that all

communication operations taking place in the computation are of the same weight. No

differentiation is made between very small messages and very large messages when making

load balancing decisions. Only the absolute number of communication events that an object

is involved in is considered as a basis for load balancing.
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7.1.3 Performance Evaluation

The performance of GridCommLB was evaluated using the five-point stencil benchmark

introduced in Chapter 4. Problem sizes of 2048x2048 and 8192x8192 were evaluated. In

all experiments, Naive mapping was used to initially map objects onto processors and then

GridCommLB was invoked to load balance the application by adjusting the object mapping

based on measured CPU load and number of cross-cluster messages sent by each object.

Figures 7.1, 7.2, 7.3, and 7.4 show the results for the 2048x2048 problem size for 8, 16, 32,

and 64 processors respectively. For the graphs corresponding to the lowest number of objects

per processor (Figures 7.1(a), 7.2(a), 7.3(a), and 7.4(a)), little or no change is apparent in

the results for GridCommLB. This is expected due to the fact that each processor holds only

one or two objects in these configurations, so the load balancer has little or no opportunity

to make useful adjustments in these cases. Unfortunately, however, as the number of objects

per processor increases, the load balancer still produces little or no change in performance

from the starting point Naive mapping performance. This is also the case in the larger

8192x8192 problem size results shown in Figures 7.5, 7.6, 7.7, and 7.8.

In many ways, the Jacobi2D benchmark is a worst-case scenario for the load balancing

technique employed by GridCommLB due to the fact that the objects have nearly identical

measured CPU loads and communication characteristics. The GridCommLB load balancer

works by balancing the objects in a computation on their measured CPU loads while ad-

ditionally spreading the border objects and local-only objects evenly among the processors

in each cluster. In a simple benchmark like Jacobi2D, overloading any processor by even

a single object produces a very noticeable degradation in performance. So, in some ways,

the fact that performance does not get worse after load balancing is a useful result for these

experiments. Further, the expectation is that any improvements to latency masking due

to the load balancing strategy employed by GridCommLB will only really be noticeable as

latency increases. That is, the useful effects of GridCommLB would primarily be seen on
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(a) Processors = 8, Number of Objects = 16 (b) Processors = 8, Number of Objects = 64

(c) Processors = 8, Number of Objects = 256 (d) Processors = 8, Number of Objects = 1024

Figure 7.1: Performance of Jacobi2D 2048x2048 with GridCommLB (8 processors)
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(a) Processors = 16, Number of Objects = 16 (b) Processors = 16, Number of Objects = 64

(c) Processors = 16, Number of Objects = 256 (d) Processors = 16, Number of Objects = 1024

Figure 7.2: Performance of Jacobi2D 2048x2048 with GridCommLB (16 processors)
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(a) Processors = 32, Number of Objects = 64 (b) Processors = 32, Number of Objects = 256

(c) Processors = 32, Number of Objects = 1024 (d) Processors = 32, Number of Objects = 4096

Figure 7.3: Performance of Jacobi2D 2048x2048 with GridCommLB (32 processors)
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(a) Processors = 64, Number of Objects = 64 (b) Processors = 64, Number of Objects = 256

(c) Processors = 64, Number of Objects = 1024 (d) Processors = 64, Number of Objects = 4096

Figure 7.4: Performance of Jacobi2D 2048x2048 with GridCommLB (64 processors)
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(a) Processors = 8, Number of Objects = 16 (b) Processors = 8, Number of Objects = 64

(c) Processors = 8, Number of Objects = 256 (d) Processors = 8, Number of Objects = 1024

Figure 7.5: Performance of Jacobi2D 8192x8192 with GridCommLB (8 processors)

the righthand sides of the performance graphs. For the larger 8192x8192 problem size, most

of the performance graphs are near horizontal, indicating complete latency tolerance due

to the Charm++ runtime system finding enough work to fill in otherwise-wasted idle time

on each processor. For the smaller 2048x2048 problem size, the righthand portions of each

graph where latency is not entirely masked do not show significantly different performance

between the Naive mapping of objects and the Block mapping of objects. In more complex

problems, such as those examined as case studies in Chapter 8, GridCommLB does make

noticeable improvements in application performance.
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(a) Processors = 16, Number of Objects = 16 (b) Processors = 16, Number of Objects = 64

(c) Processors = 16, Number of Objects = 256 (d) Processors = 16, Number of Objects = 1024

Figure 7.6: Performance of Jacobi2D 8192x8192 with GridCommLB (16 processors)
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(a) Processors = 32, Number of Objects = 64 (b) Processors = 32, Number of Objects = 256

(c) Processors = 32, Number of Objects = 1024 (d) Processors = 32, Number of Objects = 4096

Figure 7.7: Performance of Jacobi2D 8192x8192 with GridCommLB (32 processors)
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(a) Processors = 64, Number of Objects = 64 (b) Processors = 64, Number of Objects = 256

(c) Processors = 64, Number of Objects = 1024 (d) Processors = 64, Number of Objects = 4096

Figure 7.8: Performance of Jacobi2D 8192x8192 with GridCommLB (64 processors)
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7.1.4 Overhead

The algorithm that GridCommLB uses to identify the heaviest object and lightest processor

is a linear search. Because a typical Charm++ program has many more objects than proces-

sors, GridCommLB is bounded by an asymptotic running time of O(n2) for a computation

with n objects. A trivial optimization is possible by using heap data structures to hold

the list of objects and the list of processors. This optimization would allow the asymptotic

running time to be reduced to O(n ∗ log(n)).

Table 7.1 shows the amount of time required to balance the Jacobi2D examples shown in

the previous section. “Strategy Time” is the time required by GridCommLB itself. “Load

Balancing Time” is the entire amount of time required to complete the load balancing

operation, including the time to set up the data structures that are passed to the load

balancer, the time to execute the load balancer strategy, and the time to migrate all objects

to new processors. Even in the case of 4096 objects, the maximum for any application in

this thesis including the case study applications described in Chapter 8, the time required

by GridCommLB is approximately 250 milliseconds while the overall load balancing time is

less than one second.

7.1.5 Limitations

The basic communication load balancing technique used by GridCommLB presents a good

starting point for Grid-aware load balancing due to its simplicity. In more complex appli-

cations than the simple Jacobi2D benchmark used in this chapter, such as the molecular

dynamics application studied in Chapter 8, GridCommLB can achieve good improvements

in performance by balancing on the measured CPU load of each object in addition to evenly

distributing the border objects and local-only objects across the processors in a cluster. In

practice, the improvements seen by GridCommLB are on par with those achieved by mea-

sured CPU load balancing alone, and can exceed measured CPU load balancing in situations

90



Number of Number of Strategy Time Load Balancing Time
Processors Objects (seconds) (seconds)

8 16 0.000063 0.164543
8 64 0.000190 0.152617
8 256 0.001307 0.162919
8 1024 0.017534 0.245300
16 16 0.000065 0.122482
16 64 0.000217 0.113564
16 256 0.001371 0.173171
16 1024 0.016811 0.189855
32 64 0.000242 0.102072
32 256 0.001542 0.139849
32 1024 0.017486 0.171907
32 4096 0.265889 0.504590
64 64 0.000317 0.086065
64 256 0.001621 0.098221
64 1024 0.021951 0.159211
64 4096 0.263361 0.637086

Table 7.1: Overhead of the basic load balancing technique in GridCommLB

of high cross-cluster latency.

One limitation of the basic communication load balancing technique is that objects are

never migrated across cluster boundaries. In theory, situations where an application was

running in a Grid environment with a large number of very small clusters would likely result

in CPU load imbalances throughout the computation due to some objects with extremely

high CPU loads being “trapped” on a fixed cluster. In practice, however, the number of

clusters used in a realistic Grid application is likely to be small, on the order of two to four,

so this limitation is possibly not critical.

The biggest limitation of the basic communication load balancing technique is that it

has no way of identifying the communication relationship between objects. This is evident

in the results shown in Section 7.1.3. Because all objects in the Jacobi2D benchmark have

approximately the same measured CPU load, the balancer can make little or no improve-

ment by remapping objects to optimize processor utilization. For this problem, the largest

possible improvements are related to the structure of the communications in the application,
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as demonstrated by the differences in performance between the Naive and Block mapping

strategies discussed in Chapter 5. Since GridCommLB does not identify the communication

relationship between objects, however, it cannot arrange objects into block-type structures

that improve the communications volume internal to each cluster. Thus, the only benefits

achievable by GridCommLB are those that results from improved latency tolerance due to

distributing the border objects and local-only objects in an application evenly among the

processors in each cluster. As shown in Section 7.1.3, this optimization results in only a

subtle improvement in performance for the Jacobi2D benchmark in most cases.

7.2 Graph Partitioning Load Balancing

The previous section describes a basic communication load balancing technique that dis-

tributes the border objects and local-only objects in an application evenly among the pro-

cessors in each cluster while simultaneously ensuring that each processor is allocated an

amount of work proportional to its relative performance. This technique is quite limited

because it does not identify any relationship between the objects in a computation. In a

tightly-coupled Grid application, however, identifying the relationship between objects and

optimizing the application accordingly is crucial for achieving good performance.

This section describes a load balancing technique based on partitioning the communica-

tion graph of the application to reduce the volume of cross-cluster communication and the

volume of communication within each cluster. Graph partitioning improves significantly on

the technique of the previous section by identifying the relationship between objects and

load balancing the computation to reflect this relationship.

7.2.1 Load Balancing Technique

A Grid computation can be thought of as representing a hierarchy of communication laten-

cies. At the lowest level of this hierarchy is lightweight intra-processor communication, such
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as when two neighboring objects are co-located on the same processor. The next level of

the hierarchy is represented by slightly heavier weight intra-cluster communication, such as

when two neighboring objects are co-located within the same cluster. Finally, at the highest

level of the hierarchy, heavy-weight cross-cluster communication is used when two neighbor-

ing objects must communicate with each other over high-latency wide-area communication

channels. Latencies within this hierarchy can vary from sub-microsecond intra-processor

latencies, to intra-cluster latencies measured in tens of microseconds, and finally to cross-

cluster latencies measured in tens or hundreds of milliseconds.

If the relationship between objects in a tightly-coupled parallel application can be de-

termined and used in conjunction with knowledge of the communication hierarchy of the

Grid environment itself, much better improvements in performance are possible than with

the basic Grid communication load balancing technique described in the previous section.

One possible way of doing this is by using graph partitioning techniques to find a favorable

“cut” in the communication graph of the objects in an application and thereby reduce the

volume of cross-cluster communication required in the application. By reducing the vol-

ume of cross-cluster communication in the application overall and then using the latency

masking architecture of the Charm++ runtime system described in Chapter 4, very good

performance is possible with tightly-coupled applications in Grid computing environments.

7.2.2 Implementation Details

The first step in creating a Grid topology-aware graph partitioning load balancer is discov-

ering where the discrete breaks in the communication hierarchy are located. In the case of

intra-processor latencies, this is trivial – the actual processors allocated to the computation

define these boundaries. In the case of cross-cluster latencies, all that is necessary is to deter-

mine which processors belong to each cluster. This information is available to the Charm++

load balancing framework based on information provided by the user or probed automat-

ically by the runtime system during program startup. This overall information about the
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communication hierarchy of a Grid job is then used to make topology-aware load balancing

decisions.

After the topology of a Grid computation is discovered, the next step is to load bal-

ance the running application to reflect this topology based on the statistics collected by the

Charm++ load balancing framework about each object’s measured CPU load and commu-

nication with other objects. To do this, a favorable mapping of objects to processors can be

computed by using graph partitioning techniques to produce a better cut in the object com-

munication graph across cluster boundaries. Ideally, this would be a minimal cut resulting

in the smallest volume of cross-cluster traffic that is theoretically possible. Unfortunately,

graph partitioning is NP-complete and determining a minimal cut in the communication

graph is computationally infeasible for non-trivial numbers of objects. Efficient heuristic

procedures for partitioning arbitrary graphs exist that are both effective in finding optimal

partitions and fast enough to be practical for use in applications with non-trivial numbers

of objects [31]. Several software packages exist that further refine these heuristic techniques

by applying fast approximations to reduce the time required to find a good solution. These

software packages include Metis [28, 26, 25, 27], Chaco [19], Jostle [52, 51, 53, 50], and

Scotch [43]. The implementation of a Grid topology-aware graph partitioning load balancer

described here uses Metis, although this choice was arbitrary based on familiarity with the

software and it is expected that any of the other efficient graph partitioners could be used

with similar results. The resulting load balancer implementing the technique of this chapter

is called GridMetisLB.

Simply partitioning the object communication graph into a number of partitions equal

to the number of processors in the computation would not result in an optimal mapping,

because this mapping would not reflect the fact that the inter-processor latency between

some pairs of processors is much greater than the latency between other pairs in a Grid

computation. Instead, a two-phase algorithm is used to partition objects onto processors

while producing a better volume of communication in the communication graph across cluster
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boundaries. This algorithm is described as follows.

• Phase 1: In the first phase, objects are partitioned into the clusters in the Grid

computation. At this stage, no consideration is given to balancing the computation on

the measured CPU load of each object. Rather, the sole criteria for balancing is the

measured number of object-to-object messages. This is to ensure that the partitioning

of objects produced in this phase results in as good of a cut as possible with the

heuristics used by Metis on the edges of the communication graph that cross cluster

boundaries.

To carry out this phase, a graph is constructed for input to Metis that includes every

object in the computation. Weights on the edges of the graph represent the number

of messages passed between any pair of objects. Vertex weights are ignored. Metis

is then instructed to partition the communication graph into a number of partitions

related to the number of clusters in the computation. In some cases, the number of

partitions used may not necessarily be exactly equal to the number of clusters in the

computation, and this discrepancy is described below.

• Phase 2: In the second phase, objects within each cluster are partitioned onto the

processors within their assigned clusters. This partitioning considers both the mea-

sured CPU load of each object as well as the object-to-object communication graph

internal to each cluster, producing an object mapping that likely improves the volume

of internal cluster communication while simultaneously attempting to balance the CPU

utilization of each processor. Inter-object communication that crosses cluster bound-

aries is ignored at this phase due to the fact that Phase 1 above determines a favorable

edge cut across cluster boundaries as long as each border object appears anywhere

within the cluster to which it was assigned in Phase 1.

To carry out this phase, graphs are constructed for input to Metis that includes every

object in each cluster. Weights on the edges of these graphs represent the number of
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messages passed between objects. Vertex weights represent the measured CPU load of

each object. Metis is then instructed to partition the graph into a number of partitions

related to the number of processors in the associated cluster. Again, in some cases,

the number of partitions used may not necessarily be exactly equal to the number of

processors in a given cluster, and this discrepancy is described below.

After completing this two-phase process, the resulting object mapping is likely such that

all objects in the computation have been balanced to produce a favorable cut in the object

communication graph that reduces the volume of communication across cluster boundaries,

as well as in a way that balances CPU utilization and intra-cluster object communication

within each cluster.

As mentioned previously, the number of partitions requested from Metis in the phases of

the algorithm described above may not necessarily exactly match the number of clusters in

the computation (Phase 1) or the number of processors in a given cluster (Phase 2). This

discrepancy is due to the possibility of a heterogeneous allocation of resources used in a

Grid computation. For example, the processors within a single cluster may be of varying

speeds. In such a case, it is desirable to allocate more work to the faster processors and

less work to the slower processors. In order to get Metis to do this, the measured CPU

speed of each processor, collected automatically by the Charm++ load balancing framework

during program startup and initialization, is normalized against the slowest processor in each

cluster. This produces a multiplier for each processor; the sum of these multipliers is used

as the number of partitions for Metis. The resulting object map from Metis is then related

to the physical processors in terms of this multiplier. That is, a processor that is twice as

fast as the slowest processor in its cluster receives a multiplier of two, and is accordingly

assigned objects from two partitions of the object map produced by Metis. Similarly, and

more likely in a real Grid computation, clusters may be of unequal power, due either to an

unequal number of processors (e.g., Cluster A has twice as many processors as Cluster B)

or to heterogeneous processor speeds between clusters. The solution here is to compute a
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multiplier for each cluster, based on the sum of the multipliers for the processors that make

up each cluster, and to use the sum of these as the number of partitions for Metis.

7.2.3 Performance Evaluation

The performance of GridMetisLB was evaluated using the Jacobi2D benchmark introduced

in Chapter 4. Problem sizes of 2048x2048 and 8192x8192 were evaluated. In all experiments,

Naive mapping was used to initially map objects onto processors and then GridMetisLB was

invoked to load balance the application by adjusting the object mapping based on measured

CPU load and number of messages sent between each pair of objects.

Figures 7.9, 7.10, 7.11, and 7.12 show the results for the 2048x2048 problem size for 8,

16, 32, and 64 processors respectively. For the graphs corresponding to the lowest number

of objects per processor (Figures 7.9(a), 7.10(a), 7.11(a), and 7.12(a)), little or no change

is apparent in the results for GridMetisLB. This is expected due to the fact that each

processor holds only one or two objects in these configurations, so the load balancer has

little or no opportunity to make useful adjustments in these cases. As the number of objects

per processor begins to increase, the load balancer begins to show some improvements to

the performance of the computation. For example, for the configuration with 8 processors

and 64 objects (Figure 7.9(b)), the load balanced results improve on the Naive mapping

results between 10 and 24 milliseconds of cross-cluster latency. The results are not entirely

consistent, however, as in the case of 16 processors and 64 objects (Figure 7.9(b)) where

the load balanced results are actually worse from 12 through 32 milliseconds of cross-cluster

latency. This discrepancy from the results in the previous graph make some sense, though,

as this problem size gives the load balancer only 4 objects per processor with which to work

while the previous problem gives the load balancer 8 objects per processor. The similar

configurations for 32 processors and 256 objects (Figure 7.11(b)) and 64 processors and 256

objects (Figure 7.12(b)) show little or no improvements due to load balancing. These results

make sense here, however, because for these problem sizes there is little or no difference
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between the performance of Naive mapping and Block mapping for object placement. The

intuition, then, is that rearranging the mapping of objects to processors cannot improve the

performance for these configurations in any appreciable way.

The configurations where GridMetisLB performs exceptionally well are those involving

a more generous number of objects per processor in the computation (Figures 7.9(c) and

7.9(d), 7.10(c) and 7.10(d), 7.11(c) and 7.11(d), and 7.12(c) and 7.12(d)). In these graphs,

GridMetisLB is able to identify object mappings that give performance matching that of

Block mapping. In many ways, the Jacobi2D benchmark is an ideal scenario for the load

balancing technique employed by GridMetisLB due to the fact that the objects have nearly

identical measured CPU loads and communication characteristics. It is no coincidence that

the results for load balancing closely match those of Block mapping. When GridMetisLB

takes the Grid topology into consideration by partitioning the object communication graph

in such a way as to reduce the volume of communication across the cross-cluster boundary

(Phase 1) as well as the volume of communication between processors within each cluster

(Phase 2), it is in fact mapping objects to processors in a block-oriented structure. Further,

this explains why the results for load balancing in Figure 7.12(d) for 64 processors and 4096

objects are better than the results for Block mapping. Recall from the discussion in Sec-

tion 5.2 that the mapping strategy that results in the minimum amount of inter-processor

communication is a square mapping, and that the use of Block mapping in this thesis is

simply a convenient approximation. For the case of 64 processors and 4096 objects, Grid-

MetisLB arranges the objects into a mapping that results in an even lower communication

volume than Block mapping.

Figures 7.13, 7.14, 7.15, and 7.16 show the results for the 8192x8192 problem size for

8, 16, 32, and 64 processors respectively. The results here are similar to the results for

the smaller problem size. As before, the most noticeable improvements in performance due

to load balancing are in the configurations with larger numbers of objects per processor.

The results for 8 processors and 1024 objects (Figure 7.13(d)), 16 processors and 1024
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(a) Processors = 8, Number of Objects = 16 (b) Processors = 8, Number of Objects = 64

(c) Processors = 8, Number of Objects = 256 (d) Processors = 8, Number of Objects = 1024

Figure 7.9: Performance of Jacobi2D 2048x2048 with GridMetisLB (8 processors)
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(a) Processors = 16, Number of Objects = 16 (b) Processors = 16, Number of Objects = 64

(c) Processors = 16, Number of Objects = 256 (d) Processors = 16, Number of Objects = 1024

Figure 7.10: Performance of Jacobi2D 2048x2048 with GridMetisLB (16 processors)
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(a) Processors = 32, Number of Objects = 64 (b) Processors = 32, Number of Objects = 256

(c) Processors = 32, Number of Objects = 1024 (d) Processors = 32, Number of Objects = 4096

Figure 7.11: Performance of Jacobi2D 2048x2048 with GridMetisLB (32 processors)
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(a) Processors = 64, Number of Objects = 64 (b) Processors = 64, Number of Objects = 256

(c) Processors = 64, Number of Objects = 1024 (d) Processors = 64, Number of Objects = 4096

Figure 7.12: Performance of Jacobi2D 2048x2048 with GridMetisLB (64 processors)
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(a) Processors = 8, Number of Objects = 16 (b) Processors = 8, Number of Objects = 64

(c) Processors = 8, Number of Objects = 256 (d) Processors = 8, Number of Objects = 1024

Figure 7.13: Performance of Jacobi2D 8192x8192 with GridMetisLB (8 processors)

objects (Figure 7.14(d)), 32 processors and 1024 objects (Figure 7.15(c)), and 32 processors

and 4096 objects (Figure 7.15(d)) in particular demonstrate the ability of GridMetisLB

to improve the performance of the Naive mapping such that the load balanced per-step

execution time closely matches that of Block mapping. Even in the largest problem sizes

where the differences between Naive mapping and Block mapping are not as large (Figures

7.16(c) and 7.16(d)), GridMetisLB still produces results that are noticeably better than the

original Naive mapping starting point.
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(a) Processors = 16, Number of Objects = 16 (b) Processors = 16, Number of Objects = 64

(c) Processors = 16, Number of Objects = 256 (d) Processors = 16, Number of Objects = 1024

Figure 7.14: Performance of Jacobi2D 8192x8192 with GridMetisLB (16 processors)

104



(a) Processors = 32, Number of Objects = 64 (b) Processors = 32, Number of Objects = 256

(c) Processors = 32, Number of Objects = 1024 (d) Processors = 32, Number of Objects = 4096

Figure 7.15: Performance of Jacobi2D 8192x8192 with GridMetisLB (32 processors)
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(a) Processors = 64, Number of Objects = 64 (b) Processors = 64, Number of Objects = 256

(c) Processors = 64, Number of Objects = 1024 (d) Processors = 64, Number of Objects = 4096

Figure 7.16: Performance of Jacobi2D 8192x8192 with GridMetisLB (64 processors)
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7.2.4 Overhead

Graph partitioning, even with good heuristics coupled with optimizations to improve the

performance of the algorithms, is computationally expensive. An efficient heuristic procedure

described by Kernighan and Lin varies with the number of partitions and has a running time

of between O(n2) and O(n2∗log(n)) depending on optimizations that determine the exactness

of the solution found [31]. The implementation of graph partitioning used in Metis varies

by the number of edges in the graph and the number of partitions. Metis uses O(|E|) steps

that are each between O(log(n)) and O(n2) based on the solution found by a randomized

algorithm at each step.

Table 7.2 shows the amount of time required to balance the Jacobi2D examples shown

in the previous section. As before, “Strategy Time” is the time required by GridMetisLB

itself while “Load Balancing Time” is the entire amount of time required to complete the

load balancing operation, including the time to set up the data structures that are passed to

the load balancer, the time to execute the load balancer strategy, and the time to migrate

all objects to new processors. These results clearly show that the superior results obtained

by GridMetisLB come at a somewhat larger cost in terms of computational effort required

by the load balancer when compared to the results for the much simpler GridCommLB in

Table 7.1.

7.2.5 Limitations

The graph partitioning load balancing technique used by GridMetisLB can produce very

good results in tightly-coupled parallel applications running in Grid computing environments

because it takes into consideration the relationship between objects in the computation and

couples this with knowledge of the topology of the Grid resources used to run the applica-

tion. One limitation of this technique is that graph partitioning is quite computationally

expensive. This potentially impacts the use of the technique in realistic applications in two
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Number of Number of Strategy Time Load Balancing Time
Processors Objects (seconds) (seconds)

8 16 0.000541 0.212311
8 64 0.001075 0.205982
8 256 0.004150 0.191413
8 1024 0.035866 0.291728
16 16 0.000477 0.118791
16 64 0.001102 0.128452
16 256 0.004395 0.181656
16 1024 0.036623 0.262652
32 64 0.001302 0.113375
32 256 0.004959 0.117854
32 1024 0.038734 0.195174
32 4096 0.746509 0.986518
64 64 0.001629 0.068660
64 256 0.005585 0.102355
64 1024 0.040867 0.197998
64 4096 0.754307 0.995384

Table 7.2: Overhead of the graph partitioning load balancing technique in GridMetisLB

ways. First, the memory requirements necessary for doing graph partitioning may become

prohibitive for very large applications. The data structures required in the implementation

of GridMetisLB to construct representations of the communications graph for input to Metis

consume an amount of memory that varies with the number of objects in the computation.

The asymptotic space complexity of the memory usage is O(n2), although improvements to

data structures could reduce this by half or more. For large computations, tens or hundreds

of megabytes of memory might be required to hold the data structures needed for graph

partitioning. Second, and possibly more critical, the wallclock time required to partition the

communication graph may become large enough that load balancing the application is no

longer worthwhile for very large numbers of objects. That is, the Metis developers report

that graphs with hundreds of thousands of vertices and millions of edges can be partitioned

into several hundred partitions in under a minute. In order for this investment in time to

be worthwhile, the improvements in performance must be large enough to exceed the time

invested in load balancing. Many practical scientific applications run for days or weeks,
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however, so it seems likely that the benefits of load balancing many realistic applications

would easily offset even a few expensive load balancing operations lasting for several minutes

of the application’s entire execution time.

One possible solution to the two problems outlined above might be to use a parallel

implementation of Metis called ParMetis [29]. Because the application is already running

in a parallel environment, it makes sense also to leverage this resource for the purposes of

load balancing. Doing so could benefit the implementation of GridMetisLB both in terms of

the memory requirements and the wallclock time required to partition the communication

graphs of very large applications. The trade-off of using ParMetis is that it comes at the

cost of additional software complexity.

There are two other significant limitations of the graph partitioning load balancing tech-

nique used by GridMetisLB. First, the graph partitioning algorithm employed by Metis

primarily considers the edge weights of a communication graph and only secondarily con-

siders the vertex weights. Metis attempts to produce partitions of approximately equal size,

although some partitions may end up with a few more objects than others. This means that

the object mapping generated by GridMetisLB may overload some processors in terms of

CPU utilization due to placing more objects on some processors in the computation than oth-

ers. Such a mapping is likely to degrade overall application performance after load balancing

rather than improve it. Second, the object-to-processor mapping generated by GridMetisLB

does not guarantee that the border objects and the local-only objects assigned to a clus-

ter will be evenly spread among the processors in the cluster. The primary observation of

Chapter 5 is that this type of object mapping enhances the latency masking capabilities of

the Charm++ runtime system. Thus, while the object mapping produced by GridMetisLB

is good for optimizing the volume of communication internal to each cluster, it is likely to

be less conducive to optimal application performance as cross-site latency increases.
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7.3 Hybrid Load Balancing

The previous two sections describe Grid-aware load balancing techniques that range from

the very simple technique of evenly distributing the border objects and local-only objects

across the processors in each cluster, employed by GridCommLB, to the much more complex

technique of using graph partitioning algorithms to reduce the volume of inter-object com-

munication across cluster boundaries and within each cluster, employed by GridMetisLB.

This section describes a load balancing technique that attempts to leverage the most effec-

tive characteristics of the previous two techniques to create a hybrid load balancer called

GridHybridLB.

7.3.1 Load Balancer Technique

The most important characteristic of the basic communication load balancing technique is

that it ensures that each processor is allocated an amount of work proportional to its relative

performance while simultaneously establishing an even distribution of the border objects and

the local-only objects across the processors in each cluster in a Grid computation. Arranging

the objects in this way allows the runtime system to overlap the otherwise-wasted idle time

spent in wide-area communication with locally-driven work as much as possible on each

processor.

The biggest shortcoming of the basic communication load balancing technique is that

it does not migrate objects across cluster boundaries. Because objects remain within the

cluster in which they are initially allocated, no reduction in the overall volume of cross-

cluster communication is possible since messages must still be transferred between clusters

regardless of where the sending object is placed within its (local) cluster and the receiving

object is placed within its (remote) cluster. Additionally, it is possible for the overall CPU

utilizations of the clusters in a Grid computation to be unbalanced relative to each other due

to several high-load objects being “trapped” within a single cluster, unable to be migrated
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to clusters with lower overall CPU utilization. The more sophisticated graph partitioning

load balancing technique addresses these deficiencies by using graph partitioning algorithms

to examine inter-object communication patterns. The two-phase technique first balances the

communication graph across cluster boundaries, thereby reducing the volume of cross-cluster

communication traffic, and second balances the communication graph within each cluster.

While balancing objects across cluster boundaries is highly desirable, using expensive graph

partitioning algorithms to balance the objects within each cluster may be overkill due to the

fact that latencies within clusters are usually two or three orders of magnitude lower than

latencies between clusters. That is, reducing the volume of communication between clusters

is significantly more important than reducing the volume of communication within clusters.

Furthermore, the graph partitioning technique only attempts to allocate to each processor

an amount of work proportional to its relative performance but does not guarantee that

the final object mapping will have this characteristic, nor does it guarantee that the border

objects and local-only objects will be spread evenly among the processors in each cluster.

With these ideas in mind, the hybrid load balancing technique implemented in GridHy-

bridLB combines the most desirable characteristics of the previous techniques to create a

Grid-aware load balancing solution that can produce potentially superior results. GridHy-

bridLB utilizes a graph partitioning algorithm to do the initial placement of objects onto

clusters, allowing a reduction in the volume of communication traversing cross-cluster bound-

aries as well as allowing objects with high loads to be migrated away from each other. Within

each cluster, GridHybridLB utilizes the approach taken by GridCommLB of allocating a pro-

portional amount of work to each processor, based on relative performance compared to the

other processors in the cluster, while simultaneously establishing an even distribution of

border objects and local-only objects among the processors in the cluster. A refinement to

this approach, described below, identifies communication relationships among the objects

within a cluster and attempts to co-locate neighboring objects in the computation on the

same processor as much as possible. This refinement allows the interprocessor communica-
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tion volume within each cluster to be reduced at the cost of additional time taken during

load balancing.

7.3.2 Implementation Details

The implementation of GridHybridLB follows directly from the implementations of Grid-

MetisLB and GridCommLB. Like GridMetisLB, the hybrid load balancing technique uses

a two-phase algorithm. The first phase is identical to the first phase of the algorithm em-

ployed by GridMetisLB which partitions objects into the clusters in the Grid computation.

The partitioning of objects produced in this phase cuts the communication graph in the

computation in a way that likely reduces the number of messages that must cross cluster

boundaries. Furthermore, because this phase of the algorithm takes into consideration the

relative overall performance of each cluster, in terms of the number of processors and their

speeds, objects can be allocated to clusters in a way that does not significantly overload any

single cluster.

In the second phase, objects within each cluster are placed onto the processors within

their assigned clusters. This phase can operate in one of three “modes” that may be selected

by the user at runtime. The first mode causes the algorithm to behave identically to the

algorithm employed by GridCommLB within each cluster. That is, the objects are placed

onto processors by means of a greedy algorithm that selects the heaviest object in terms

of the number of cross-cluster communication events and places it on the lightest loaded

processor. The algorithm also employs the technique used by GridCommLB of selecting

better candidate objects that fall within a user-specified tolerance (defaulting to 10%) of

the largest measured CPU load of all unassigned objects in the cluster. Additionally, the

algorithm takes into consideration the relative performance of each processor, assigning

proportionally more work to faster processors. The end result is that each processor in

each cluster is balanced in terms of the number of border objects, the number of local-only

objects, and overall proportional processor utilization. This is a significant improvement
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over the technique employed by GridMetisLB.

For many computations the simple balancing strategy employed in the second phase is

likely sufficient, given that typical intra-cluster latencies are measured on the order of a few

microseconds. These latencies generally dwarf both the typical inter-cluster latencies in a

Grid computation as well as the typical time consumed performing work in the Charm++

entry methods of many parallel applications. However, an additional mode of operation

may be specified for the second phase of load balancing, allowing objects to be placed onto

processors more intelligently by examining the communication relationship between objects

within each cluster. To do this, the algorithm begins by placing the heaviest objects onto the

lightest processors using the greedy algorithm described previously. Once each processor in

the cluster holds one object, the behavior of the algorithm continues by using the first object

on each processor as a “seed” for selecting additional objects. To do this, the algorithm first

identifies the heaviest remaining object assigned to the cluster as before. Next, the algorithm

examines the border objects that are neighbors in the computation to the already-placed

seed object. Only neighboring border objects that have a measured CPU load within the

user-specified tolerance are considered; this is to ensure that particularly CPU-heavy objects

will still be placed onto processors in a timely manner. Of the neighboring border objects

that fall within the tolerance, the one that communicates the most with the seed object is

chosen as the next object for placement onto the processor. This process continues, using the

subsequent objects placed onto each processor as additional seeds from which the heaviest

neighboring border object is selected. When all border objects assigned to the cluster have

been placed onto processors, the local-only objects are placed onto processors using the

border objects on each processor as seeds. The algorithm concludes when all objects assigned

to the cluster have been placed onto processors. As with the traditional greedy algorithm

employed by GridCommLB, the resulting object mapping causes the processors to be well-

balanced in terms of processor utilization and in terms of the number of border objects and

local-only objects. The seeding algorithm extends these characteristics so that the objects
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residing on each processor after load balancing also tend to be neighbors in the computation.

7.3.3 Performance Evaluation

As with the previous load balancers, the performance of GridHybridLB was evaluated using

the Jacobi2D benchmark with 2048x2048 and 8192x8192 problem sizes. The second phase

of the hybrid load balancing algorithm was done using the seed technique described in the

implementation details above.

Figures 7.17, 7.18, 7.19, and 7.20 show the results for the 2048x2048 problem size for

8, 16, 32, and 64 processors respectively. The observations and conclusions that can be

made about GridHybridLB directly from these graphs are generally similar to the conclu-

sions drawn about the previous two load balancers. Because the load balancing technique

implemented in GridHybridLB is a hybrid of the previous two load balancing techniques, it

is understandable that the most useful insights are found by comparing the GridHybridLB

performance graphs to the graphs of the previous balancers. Comparing the GridHybridLB

graphs to the congruous GridCommLB graphs (Figures 7.1, 7.2, 7.3, and 7.4) reveals no-

ticeably better results with the hybrid technique, particularly for the problem sizes with the

largest number of objects for a given number of processors. This is apparent by observing

that the GridHybridLB technique improves the performance of the initial Naive mapping

to be much closer to the goal Block mapping performance than the GridCommLB tech-

nique does. Due to the uniform structure of the Jacobi2D benchmark, the first phase of

the GridHybridLB algorithm cannot be responsible for these improvements in performance

since there is no way to reduce the volume of cross-cluster traffic by repartitioning objects

in this problem. Therefore, the performance improvements that GridHybridLB achieves

over GridCommLB must be due to the use of the seed technique in the second phase of

GridHybridLB.

The corresponding results for GridMetisLB (Figures 7.1, 7.2, 7.3, and 7.4) are generally

better than the results for GridHybridLB. Although this may initially seem to be an unsatis-
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fying outcome, it is expected for this particular benchmark. The seed technique employed by

the second phase of GridHybridLB at best can produce a mapping that matches the Block

object mapping. In practice, the seed technique correctly places neighboring border objects

onto the same processor but has more difficulty when assigning the local-only objects to

processors. The algorithm has no way of determining whether the next neighboring local-

only object to assign to a given processor falls within the same block of objects (the ideal

candidate) or an adjacent block (either the block above or below) because all communication

within the benchmark is uniform. The best neighboring object therefore is selected on the

basis of heaviest CPU load. The result is that the objects are mapped onto processors in

irregular partial block structures that produce less intra-cluster communication than Naive

mapping but more intra-cluster communication than Block mapping. This contrasts the

mapping produced by GridMetisLB which arranges objects onto processors in square shapes

that produce even less inter-cluster communication volume than Block mapping.

Despite these shortcomings, there is reason to believe that GridHybridLB can produce

better results than GridMetisLB on more realistic problems. First, the object mapping pro-

duced in the second phase of GridHybridLB guarantees that each processor is proportionally

balanced in terms of CPU utilization while the object mapping produced in the second phase

of GridMetisLB does not. In problems with non-uniform structures, such as the Finite El-

ement Method problem studied in Chapter 8, using the graph partitioning technique to

map objects to processors within each cluster can cause the application to perform worse

after load balancing due to some processors being overloaded. Second, the object mapping

produced in the second phase of GridHybridLB ensures that each processor holds the same

mix of border objects and local-only objects, allowing the Charm++ runtime system the

best opportunity to overlap cross-cluster latency with useful work. Because of the very small

granularity of the Jacobi2D benchmark studied here, the performance graphs transition very

rapidly from being latency tolerant to being latency dominated. In more realistic applica-

tions, however, this transition is often less rapid and the importance of having a favorable
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(a) Processors = 8, Number of Objects = 16 (b) Processors = 8, Number of Objects = 64

(c) Processors = 8, Number of Objects = 256 (d) Processors = 8, Number of Objects = 1024

Figure 7.17: Performance of Jacobi2D 2048x2048 with GridHybridLB (8 processors)

mix of object types on each processor is more noticeable in high-latency situations.

Figures 7.21, 7.22, 7.23, and 7.24 show the results for the 8192x8192 problem size for

8, 16, 32, and 64 processors respectively. The results again compare favorably with the

corresponding results for GridCommLB, particularly for the problem configurations with

the largest number of objects for a given number of processors. The conclusions drawn

during the discussion of the results of the smaller problem size are consistent these additional

results.
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(a) Processors = 16, Number of Objects = 16 (b) Processors = 16, Number of Objects = 64

(c) Processors = 16, Number of Objects = 256 (d) Processors = 16, Number of Objects = 1024

Figure 7.18: Performance of Jacobi2D 2048x2048 with GridHybridLB (16 processors)
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(a) Processors = 32, Number of Objects = 64 (b) Processors = 32, Number of Objects = 256

(c) Processors = 32, Number of Objects = 1024 (d) Processors = 32, Number of Objects = 4096

Figure 7.19: Performance of Jacobi2D 2048x2048 with GridHybridLB (32 processors)
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(a) Processors = 64, Number of Objects = 64 (b) Processors = 64, Number of Objects = 256

(c) Processors = 64, Number of Objects = 1024 (d) Processors = 64, Number of Objects = 4096

Figure 7.20: Performance of Jacobi2D 2048x2048 with GridHybridLB (64 processors)
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(a) Processors = 8, Number of Objects = 16 (b) Processors = 8, Number of Objects = 64

(c) Processors = 8, Number of Objects = 256 (d) Processors = 8, Number of Objects = 1024

Figure 7.21: Performance of Jacobi2D 8192x8192 with GridHybridLB (8 processors)
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(a) Processors = 16, Number of Objects = 16 (b) Processors = 16, Number of Objects = 64

(c) Processors = 16, Number of Objects = 256 (d) Processors = 16, Number of Objects = 1024

Figure 7.22: Performance of Jacobi2D 8192x8192 with GridHybridLB (16 processors)
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(a) Processors = 32, Number of Objects = 64 (b) Processors = 32, Number of Objects = 256

(c) Processors = 32, Number of Objects = 1024 (d) Processors = 32, Number of Objects = 4096

Figure 7.23: Performance of Jacobi2D 8192x8192 with GridHybridLB (32 processors)
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(a) Processors = 64, Number of Objects = 64 (b) Processors = 64, Number of Objects = 256

(c) Processors = 64, Number of Objects = 1024 (d) Processors = 64, Number of Objects = 4096

Figure 7.24: Performance of Jacobi2D 8192x8192 with GridHybridLB (64 processors)

123



7.3.4 Overhead

The first phase of load balancing with GridHybridLB uses Metis to partition objects onto

clusters. The computational complexity of this phase matches that of GridMetisLB. If the

second phase of load balancing uses the simpler object placement method employed by

GridCommLB, then the asymptotic upper bound of the overall load balancing operation is

dominated by the time spent in the first phase. Alternatively, if the second phase of load

balancing uses the more complex seed technique, the time spent in the second phase of the

algorithm becomes the upper bound. For a computation with n objects, n passes must be

made through an O(n2) algorithm that first locates the objects that are mapped to a given

processor and then the objects that neighbor each mapped object, so the overall complexity

is O(n3). Maintaining a heap data structure for each object containing neighboring objects

would allow the seed technique running time complexity to be reduced to O(n∗ log(n)), and

this means that the overall running time complexity of balancing would be dominated by

the time spent partitioning the communication graph in the first phase.

Table 7.3 shows the amount of time required to balance the Jacobi2D examples shown in

the previous section. The results for 4096 objects clearly show the effects of the inefficient

algorithm used to implement the seed technique in the second phase of load balancing.

Correcting this is an important item of future work.

7.3.5 Limitations

GridHybridLB is probably the generally best Grid topology-aware load balancer developed in

this thesis since it is effective at reducing the volume of cross-cluster traffic as well as effective

at balancing the objects assigned to each cluster. The biggest limitation of the load balancer

is the fact that the initial graph partitioning phase of the algorithm is computationally

expensive. Unfortunately, all objects in the computation must be considered to carry out

this phase correctly since it is the first task the load balancer must perform. That is, it
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Number of Number of Strategy Time Load Balancing Time
Processors Objects (seconds) (seconds)

8 16 0.000499 0.147321
8 64 0.000965 0.145194
8 256 0.014053 0.160757
8 1024 0.781349 0.947041
16 16 0.000504 0.087855
16 64 0.001029 0.094099
16 256 0.009317 0.211854
16 1024 0.425668 0.594995
32 64 0.000817 0.057670
32 256 0.006251 0.071199
32 1024 0.238152 0.332838
32 4096 6.667677 6.848874
64 64 0.000799 0.053880
64 256 0.005090 0.049011
64 1024 0.146505 0.202453
64 4096 6.880359 7.093415

Table 7.3: Overhead of the hybrid load balancing technique in GridHybridLB

seems that there is no clever way to optimize the load balancer by ignoring some objects

during this phase. This seems to suggest that solutions like ParMetis are necessary for large

computations.

7.4 Summary

This chapter has introduced techniques for improving the performance of tightly-coupled

parallel applications running in Grid computing environments by load balancing. The tech-

niques differ from other approaches used by Charm++ load balancers because they take into

consideration details of the Grid environment topology in addition to characteristics of the

application such as the measured CPU load or messages sent in the objects that make up the

computation. The techniques in this chapter are best suited for situations in which the total

number of objects in the computation is large enough that an adjustment in the mapping of

objects to processors can produce an observable improvement in performance. In practice,
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these situations are probably more likely to be found in realistic applications than the more

constrained situations where the object prioritization technique of the previous chapter is

applicable.

The three load balancing techniques developed in this chapter involve tradeoffs that make

each technique suitable for use in certain circumstances. GridCommLB is best used to bal-

ance applications in which objects do not need to migrate across cluster boundaries since

this balancer lacks this capability. For example, a common practice in structural dynam-

ics problems that involve irregularly-shaped objects is to overlay “patches” of structured

meshes over the object rather than using a single computationally-expensive irregular mesh.

These patches could manually be assigned to clusters in a Grid environment by placing one

or more patches on each cluster. In this scenario, communication between clusters corre-

sponds directly to communication between patches in the problem. Because the structure of

the problem starts out mostly balanced through manual effort, a Grid topology-aware load

balancer can most likely best improve application performance simply by ensuring that the

border objects and local-only objects in each cluster are spread evenly among the processors

in the cluster while simultaneously maintaining balanced CPU utilization. GridCommLB

does exactly this without paying the overhead of considering object migrations across clus-

ter boundaries, which are probably not necessary in this problem. In many other problems,

however, migrating objects across cluster boundaries is important for establishing good ap-

plication performance. In these situations, GridMetisLB or GridHybridLB are much better

choices for load balancing. In cases where an application is expected to be well within

a latency-tolerated regime, such as when cross-site latencies are less than the application

per-step time, GridMetisLB is probably the best choice of load balancer. This is because

GridMetisLB likely creates a more favorable volume of communication inside each cluster

than GridHybridLB can, at the expense of not as evenly spreading the border objects and

local-only objects among the processors in each cluster. In cases where the application is

operating beyond complete latency tolerance, GridHybridLB is likely to give better results
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due to its ability to enhance the latency masking capabilities of the Charm++ runtime sys-

tem by evenly distributing border objects and local-only objects across the processors in

each cluster. Finally, because GridHybridLB combines the best features of GridCommLB

and GridMetisLB into a load balancer that optimizes the wide-area communication of an

application as well as producing a good balance of objects within each cluster, it is probably

the best choice for situations in which the structure of an application is not well understood.
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Chapter 8

Case Studies

The discussion in Chapter 4 introduces the use of message-driven objects as a technique for

masking the effects of latency in tightly-coupled parallel applications running in Grid com-

puting environments. This is the primary architectural contribution of this thesis. Chapter 5

demonstrates that the latency masking capabilities of the Charm++ runtime system may be

enhanced by (manually) mapping objects to processors such that each processor holds a rel-

atively small number of border objects and a relatively large number of local-only objects.

Chapters 6 and 7 present automated techniques that act as optimizations to the latency

masking capabilities of message-driven execution, improving application performance par-

ticularly when cross-site latency begins to increase. Throughout these four chapters, the

techniques are illustrated through the running example of a simple five-point stencil bench-

mark (Jacobi2D). The primary advantage of using a simple benchmark to illustrate these

techniques is that it is easy to understand the benchmark in its entirety and reason about the

effects of each particular technique on the benchmark’s performance. However, Jacobi2D

is in many ways not representative of practical scientific applications. For example, the

benchmark is very symmetrical in its structure, and this results in all objects throughout

the benchmark having identical characteristics such as measured CPU load and number of

messages sent.

This chapter presents two case studies in which the techniques of the thesis are employed

to optimize practical scientific applications. These studies give some perspective on the

feasibility of deploying typical tightly-coupled parallel applications in real Grid computing

environments through the use of techniques presented in this thesis.
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8.1 Experiment Environments

The case study applications are examined in two environments: an artificial latency en-

vironment used for the experiments in the previous chapters and a real Grid computing

environment consisting of clusters at three high-performance computing centers. This sec-

tion describes details of these two environments.

8.1.1 Artificial Latency Environment

The examples in Chapters 4 through 7, as well as the case studies in the current chapter, are

studied in an artificial latency environment described in Section 2.4. In this environment,

the application being examined is run on real machines using a system software stack that

is nearly identical to that used to run the application in an actual Grid environment. The

only difference between the system software stack used in the artificial latency environment

and that used in a real Grid environment is the introduction of a “delay device” driver in the

Virtual Machine Interface (VMI) message layer to inject specified latencies in the message

paths between arbitrary pairs of nodes. Thus, machines from a single real cluster can be used

to very accurately simulate a Grid computing environment for the purposes of conducting

the experiments in this thesis.

A disadvantage of the artificial latency environment is that it requires access to the type

and number of computational resources for which results are to be obtained. This differs from

experiments run in some type of simulation environment, where the simulator may run on

machines that are entirely different from the machines that are being simulated. A distinct

advantage of the artificial latency environment, however, is that results obtained using this

environment match the results obtained in a real Grid environment very closely. Some

of the effects of the optimizations described in this thesis (e.g., the technique described in

Chapter 6) are quite subtle, so it is important that the experiments be run in an environment

that is as close to a real Grid environment as possible in order to be able to draw conclusions
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from these results.

The artificial latency environment used for all experiments in this thesis consists of dual-

processor 1.5 GHz Intel Itanium 2 compute nodes in the TeraGrid cluster Mercury, located

at the National Center for Supercomputing Applications [1]. Each dual-processor node has

4 gigabytes of memory. Nodes within each simulated cluster communicate with each other

via a high-performance Myrinet, while messages that pass between simulated clusters are

sent via TCP/IP over Gigabit Ethernet (in addition to being intercepted, and delayed, by

the VMI delay device driver).

8.1.2 TeraGrid Environment

To validate the results obtained in the artificial latency environment described above, the

case study experiments were also run in a real Grid computing environment consisting of

clusters from three TeraGrid sites at the National Center for Supercomputing Applications

(NCSA) in Urbana, Illinois; Argonne National Laboratory (ANL) in Chicago, Illinois; and

the San Diego Supercomputer Center (SDSC) in San Diego, California. These sites are

shown on the map in Figure 1.2.

The topology of the wide-area network connecting the three TeraGrid sites used for

experiments consists of a forty-gigabit-per-second optical trunk, made up of four ten-gigabit-

per-second lines, connecting a Chicago hub to a Los Angeles hub. Both NCSA and ANL

connect to the Chicago hub via a thirty-gigabit-per-second (three ten-gigabit-per-second)

connection while SDSC connects to the Los Angeles hub via a similar thirty-gigabit-per-

second connection. Cross-site latency, not bandwidth, is generally the limiting factor for

distributed applications running in this environment. One-way latencies were measured

using ICMP Ping between NCSA and ANL as 1.7 milliseconds, between ANL and SDSC as

29.1 milliseconds, and between NCSA and SDSC as 30.1 milliseconds. For all experiments

used in this thesis, comparisons can be made to the results recorded for artificial latencies

of 2 milliseconds and 32 milliseconds.
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The compute nodes used for all cross-site experiments in this chapter match those used

in the artificial latency environment described above (dual-processor 1.5 GHz nodes with

4 gigabytes memory each). Within each cluster, nodes communicate with each other via a

high-performance Myrinet network. Communication across clusters is via TCP/IP over the

trunked wide-area TeraGrid network. VMI is used as the underlying messaging layer, and

in the case of the real TeraGrid, the VMI delay device is removed from the communication

stack.

8.2 Molecular Dynamics

The first case study application considered in this chapter is a classical molecular dynam-

ics application. Molecular dynamics is a form of computer simulation that examines the

behavior of biomolecular systems. In these simulations, atoms and molecules are allowed

to interact for a period of time under known laws of physics. The computational complex-

ity of such simulations is usually quite extreme, and thus the use of parallel computing is

important. Due to its message-driven object style of problem decomposition, Charm++ is

well-suited for developing molecular dynamics software.

8.2.1 LeanMD

The molecular dynamics application used for the experiments in this thesis is LeanMD [37].

LeanMD is implemented as a framework for parallel molecular dynamics simulations and

provides a core parallelization infrastructure along with input and output routines for reading

and writing simulation data. It serves as a simpler version of NAMD [45], a production-

quality application used by biophysicists around the world, allowing easy experimentation

and scaling to extremely large petascale-sized machines.

Molecular dynamics codes typically employ a spatial decomposition style in which the

atoms of a biomolecular system, composed of proteins, cell membranes, SNA, and waters,
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interact with the other atoms that are within a certain cutoff distance. Each timestep

involves calculating the forces acting on all atoms and then using these forces to update the

positions and velocities of each atom.

Within LeanMD, all computation takes place within a simulation box, a bounding box

for all atoms involved in the simulation. The space within a simulation box is divided into

regular cubic regions of simulation space called cells. Each cell is responsible for all the

atoms that fall within its boundary, their coordinates, and the forces exerted on them. As

described above, molecular dynamics simulations involve the interaction of atoms with other

atoms within a certain cutoff distance. In a simulation with a k-away cutoff distance, a cubic

region of simulation space formed by (2k + 1)3 cells is considered.

Electrostatic and van der Waals interactions between every pair of neighboring cells are

computed by a separate cell-pair object. These interactions constitute the bulk of processor

time used by the application, although there are other force computations involving bonds

between atoms. In each time-step, each cell “integrates” all forces on its atoms and changes

their positions based on new acceleration and velocities calculated. It then multicasts its

atoms’ coordinates to the 26 cell-pairs (three-dimensional region of 3 × 3 × 3) that depend

on it. Each cell pair calculates forces on the two sets of atoms it receives, and sends them

back to the two cells.

For the simulation used in this thesis, it is important to note that the computation in

each cell pair depends on messages from at most two other objects, possibly on two different

processors. Thus, in the benchmark used here, there are 216 cells and 3,024 cell pairs

(k = 1). On each processor, there may be several tens of cell-pair objects. In a multi-cluster

context, some subset of these objects (“subset A”) require messages from cells within their

own cluster, while a different subset (“subset B”) may require one or both messages from

outside the cluster. As a result, a processor is able to execute objects in subset A while

waiting for high-latency messages for objects in subset B from another cluster. This renders

the application latency tolerant to some extent.
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(a) Processors = 16 (b) Processors = 32

(c) Processors = 64 (d) Processors = 128

Figure 8.1: Performance of LeanMD

8.2.2 Performance in Artificial Latency Environment

Figure 8.1 shows the performance of LeanMD for 16, 32, 64, and 128 processors running in

the artificial latency environment with cross-cluster latencies ranging from 8 milliseconds to

128 milliseconds. As before, the application is partitioned between two clusters, with half

the processors in one cluster and half the processors in the second cluster. For example, the

16 processor experiment is executed with 8 processors in the first cluster and 8 processors

in the second cluster.

Results are shown for the application running without load balancing, as well as with

the basic Grid communications load balancer (GridCommLB), the graph partitioning load

133



balancer (GridMetisLB), and the hybrid load balancer (GridHybridLB) described in Chap-

ter 7. As an additional point of reference, results are also shown for GreedyLB, a load

balancer that adjusts object mapping based on measured CPU load to ensure that each pro-

cessor has the same amount of computation work. GreedyLB makes no consideration to the

communication properties of each object. GreedyLB is known to produce good results with

LeanMD [37], and is important for achieving good scalability with the application beyond

32 processors.

Figure 8.1(a) shows the results for 16 processors. The results here are mostly unremark-

able except to note that the results without load balancing show a per-step execution time of

approximately 1000 milliseconds per timestep, while the results for all load balancers show

approximately a 10% improvement in performance with a per-step execution time of ap-

proximately 900 milliseconds per timestep. The horizontal lines on the graph for each set of

results indicate that the effects of cross-site latency have no impact on the per-step execution

time of the application. That is, for 16 processors, the application gets the same performance

running in a Grid environment consisting of two clusters separated by 128 milliseconds of

latency as it gets running entirely within a single cluster.

Figure 8.1(b) shows the results for 32 processors. Scalability of the results without load

balancing is reasonable; doubling the number of processors results in a per-step execution

time that is roughly half of the previous results (approximately 550 milliseconds per timestep

with 32 processors versus approximately 1000 milliseconds per timestep with 16 processors).

Again, the results for all load balancers show good improvements over the results without

load balancing, and all load balancers give somewhat similar results. However, the results for

GreedyLB and GridCommLB seem to be more on par with each other while GridMetisLB

and GridHybridLB seem to give slightly better results, particularly as cross-cluster latencies

increase. This is not entirely unexpected. The algorithm used by GridCommLB does nothing

to reduce the volume of cross-cluster communication and only balances the objects in terms of

their measured CPU loads while simultaneously spreading the border objects evenly among
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the processors in each cluster. This resembles the strategy employed by GreedyLB, except

GreedyLB does not take each object’s communication characteristics into consideration when

making load balancing decisions. It is likely that this explains the results for these two load

balancers on the right-most three data points (96, 112, and 128 milliseconds of latency). For

these three data points, the results for GridCommLB outperform those of GreedyLB. Both

sets of results show a slight upward trend here, indicating that the effects or cross-cluster

latency are not entirely being masked, but evenly distributing the border objects and local-

only objects among each cluster’s processors in the GridCommLB case allows a small degree

of improved latency masking. Better performance, however, is evident in the results for

GridMetisLB and GridHybridLB which remain clearly horizontal through 128 milliseconds

of latency.

Figure 8.1(c) shows the results for 64 processors. The results without load balancing

show an extreme lack of scalability with this doubling of the number of processors. It is

interesting to observe the right-most three data points here show a slight upward trend in

the per-step execution time of the application. The per-step time of the unbalanced appli-

cation is around 425 milliseconds per step, and this is similar to the per-step time of the

GreedyLB and GridCommLB results for 32 processors above where the three right-most

data points show an upward trend. The most interesting results here are those for the

four load balancers. Load balancing in terms of measured CPU load makes a significant

improvement in per-step execution time (425 milliseconds per-step unbalanced improves to

225 milliseconds per-step balanced). As the cross-site latency increases, however, the results

for both GreedyLB and GridCommLB begin to show an upward trend in execution time

somewhere around 48 milliseconds of latency. The results for GridMetisLB and GridHy-

bridLB are especially promising, though, in that they remain nearly horizontal through 64

milliseconds of latency. Additionally, the results for GridMetisLB and GridHybridLB are

markedly better than those for the other two load balancers through 128 milliseconds of

latency. This is likely due to partitioning the object communication graph to reduce the
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volume of cross-site communication. The overall best results as latency increases, however,

are clearly evident in GridHybridLB. In addition to partitioning the communication graph,

this balancer also evenly distributes the border objects and local-only objects among the

processors in each cluster, allowing the Charm++ runtime system to more effectively mask

the effects of higher latency than is possible with the object distribution resulting from

GridMetisLB’s use of graph partitioning within each cluster.

Finally, Figure 8.1(d) shows the results for 128 processors. Again, the scalability of the

unbalanced results is poor. This time, however, the per-step execution time for the case

without load balancing is small enough that the effects of cross-site latency are noticeable in

these results. By 64 milliseconds of latency, the unbalanced results show a definite increase

in per-step execution time. The results for all four load balancers once again improve greatly

on the unbalanced results. At 8 and 16 milliseconds of latency, all four balancers produce

roughly equal results, although even as early as at 16 milliseconds the results for GridHy-

bridLB appear to be distinguishably better than the results of the other three balancers.

Beyond 16 milliseconds of latency, a trend similar to the one noticed in the 64 processor

results can be observed. The results for GreedyLB and GridCommLB are closely matched

through the entire range of the graph while the results for GridMetisLB and GridHybridLB

clearly show superior latency tolerance. GridHybridLB is the exciting success here. The

results for GridHybridLB remain nearly flat through 32 milliseconds of latency, and from 32

to 64 milliseconds of latency seem to stay more flat than the results for GridMetisLB. As in

the 64 processor case, this result strongly suggests that the even distribution of border and

local-only objects across processors is giving superior latency tolerance.

8.2.3 Performance in TeraGrid Environment

The experiments were repeated using a real Grid environment consisting of TeraGrid clusters

at NCSA, ANL, and SDSC. Table 8.1 shows the results for executing LeanMD with the

application co-allocated on clusters at NCSA and ANL. These clusters are separated by a
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Number of Execution Time Execution Time
Processors Load Balancer (Artificial Latency) (TeraGrid)

16 No Load Balancing 985.957 1000.397
16 GreedyLB 896.084 897.297
16 GridCommLB 924.732 927.960
16 GridMetisLB 899.336 913.681
16 GridHybridLB 890.645 910.141
32 No Load Balancing 546.597 532.960
32 GreedyLB 464.077 456.137
32 GridCommLB 470.128 470.743
32 GridMetisLB 447.77 454.399
32 GridHybridLB 451.448 463.295
64 No Load Balancing 439.826 429.915
64 GreedyLB 233.828 270.271
64 GridCommLB 246.077 254.541
64 GridMetisLB 227.421 256.479
64 GridHybridLB 235.782 233.138
128 No Load Balancing 227.506 229.904
128 GreedyLB 119.736 135.841
128 GridCommLB 123.477 145.163
128 GridMetisLB 120.212 130.401
128 GridHybridLB 119.21 119.918

Table 8.1: Performance comparison of LeanMD in artificial latency environment and Tera-
Grid environment (NCSA-ANL)

latency of approximately 1.7 milliseconds. The results are compared to artificial latency

results collected for 2 milliseconds of latency. The results for the real Grid environment

match closely to the results for the artificial latency environment. This is expected, due to

the close similarities between the hardware and system software stacks used to collect both

sets of results.

Table 8.2 shows the results for executing LeanMD with the application co-allocated on

clusters at NCSA and SDSC. These clusters are separated by a latency of approximately

30.1 milliseconds. The results are compared to artificial latency results collected for 32

milliseconds of latency. As above, the results for the real Grid environment closely match

the results for the artificial latency environment.
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Number of Execution Time Execution Time
Processors Load Balancer (Artificial Latency) (TeraGrid)

16 No Load Balancing 1011.502 1002.572
16 GreedyLB 911.816 896.570
16 GridCommLB 922.868 916.856
16 GridMetisLB 911.96 884.034
16 GridHybridLB 889.386 913.13
32 No Load Balancing 548.913 539.880
32 GreedyLB 459.457 460.123
32 GridCommLB 476.243 468.587
32 GridMetisLB 447.924 445.519
32 GridHybridLB 455.845 461.753
64 No Load Balancing 424.3 436.902
64 GreedyLB 238.155 267.978
64 GridCommLB 243.531 266.131
64 GridMetisLB 222.617 267.207
64 GridHybridLB 234.262 236.403
128 No Load Balancing 226.45 230.342
128 GreedyLB 150.043 139.156
128 GridCommLB 143.764 136.462
128 GridMetisLB 136.364 142.361
128 GridHybridLB 127.838 127.771

Table 8.2: Performance comparison of LeanMD in artificial latency environment and Tera-
Grid environment (NCSA-SDSC)
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8.3 Finite Element Analysis of an Unstructured Mesh

The second case study application considered in this chapter is a Finite Element Analysis

code. Finite Element Analysis is commonly used to determine stresses and displacements in

mechanical objects and systems. Finite Element Analysis is used to find approximate solu-

tions to complex systems for which closed-form analytical solutions are difficult or impossible

to find.

Finite Element Analysis uses a numerical technique called the Finite Element Method

(FEM) in which a structure to be studied is divided into an unstructured mesh consisting

of triangles (2D) or tetrahedrons (3D). The mesh discretizes the continuous domain of the

structure into a set of discrete sub-domains that can be solved independently. Thus, the

FEM is a natural fit for solving on parallel computers. An attractive characteristic of the

FEM is that it can be applied easily to problems with irregular geometries and to problems

in which anomalies are present (e.g., a crack that propagates through a solid structure).

A computational challenge to parallel solutions of these types of situations is that load

imbalances are frequently encountered. Due to its dynamic nature, the Charm++ runtime

system can be leveraged for efficiently implementing solutions to irregular FEM problems.

8.3.1 Fractography3D

The Finite Element Method application used for the experiments in this thesis is called

Fractography3D [56]. Fractography3D is a software application for simulating the sponta-

neous initiation and propagation of a crack through a solid structure. Fractography3D takes

advantage of the FEM implementation provided by ParFUM [35], a parallel framework for

unstructured meshes. ParFUM handles the details of decomposing the problem in parallel

by laying a mesh over the structure to be studied, partitioning the mesh across the proces-

sors allocated to the computation, and defining shared “ghost zone” cells that exist along

partition boundaries. ParFUM itself is written as an MPI application that takes advantage
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of the dynamic nature of the Adaptive MPI runtime system.

The particular problem used for the experiments here involves a fracture propagating

through a solid structure with dimensions of five meters wide, five meters high, and one

meter thick. This problem is configured to use 1000 AMPI virtual processors, and this

configuration is fixed and independent of the number of physical processors used to run the

application. Thus, increasing the number of physical processors results in each processor

having a smaller number of virtual processors mapped to it.

The Fractography3D application execution progresses in discrete timesteps. Due to the

dynamic nature of the problem being studied, each timestep can vary in duration from other

timesteps. Further, a given timestep may take a significantly different amount of time on two

different processors in the computation because some processors can have significantly more

work to do than other processors. In order to produce measurable and reproducible results

for this thesis, the Fractography3D application was modified to take a global barrier after

every 100 timesteps of execution. Further, a load balancing step was inserted at timestep

500. Finally, an average per-step execution time for the application was recorded for the

time taken to execute the application between timesteps 600 to 700. This configuration gives

the application enough time to properly start up and provide the Charm++ load balancing

framework with sufficient execution history to make a good load balancing decision. After

this load balancing adjustment, the application has enough time to fall into somewhat regular

execution. Even here, however, the average per-step time for each 100-timestep period can

still vary. To normalize against this, each run of the application was restarted from the

beginning, and its average per-step execution was recorded at timestep 700. These results

were found to vary little from run to run.

8.3.2 Performance in Artificial Latency Environment

Figure 8.2 shows the performance of Fractography3D for 8, 16, 32, and 64 processors running

in the artificial latency environment with cross-cluster latencies ranging from 8 milliseconds
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to 128 milliseconds. As before, the application is partitioned between two clusters, with half

the processors in one cluster and half the processors in the second cluster. For example, the

8 processor experiment is executed with 4 processors in the first cluster and 4 processors in

the second cluster.

The results here are mostly unremarkable. The average per-step execution time of the

application is horizontal on all four graphs, indicating that the application performance in

a Grid environment, even when the clusters are separated by as much as 128 milliseconds of

latency, is on par with the application performance for a single cluster. This is not surprising

considering that the per-step execution time for the application running on 8 processors is

near 3000 milliseconds per step. Even with 64 processors and an average per-step execution

time of 375 to 400 milliseconds, the application has enough work to completely mask the

effects of cross-site latency. Load balancing in all four cases has little or no effect on the

application performance, however it is interesting to notice that the results for GridMetisLB

on 64 processors appear to be slightly worse than the results with no load balancing.

Figure 8.3 shows the performance of Fractography3D for 128 processors. In this figure,

the results without load balancing are flat through 64 milliseconds of latency, indicating that

the effects of cross-site latency are being entirely masked. After 64 milliseconds of latency,

the non-load balanced results show a linear upward slope, indicating that the application

transitions into a latency-dominated regime rather abruptly. The results for GreedyLB

closely follow the non-load balanced results, transitioning rapidly from latency tolerance to

latency-dominated near 64 milliseconds of latency. Both sets of results make sense due to

the fact that the communication pattern of Fractography3D is more complex than any of

the applications previously examined in this thesis, with each cell in the FEM depending on

up to six neighbors. Not optimizing the computation with respect to the Grid topology in

which the application is executing causes the effects of cross-cluster latency to have sudden

negative impacts on performance.

In the figure, it is very apparent that the results for GridMetisLB are significantly worse
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(a) Processors = 8 (b) Processors = 16

(c) Processors = 32 (d) Processors = 64

Figure 8.2: Performance of Fractography3D
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than the results without load balancing. This is due to the fact that the use of graph

partitioning within each cluster does not guarantee that each processor will end up with a

balanced CPU utilization. At the beginning of the computation, the 1000 objects are evenly

distributed among the 128 processors, resulting in each processor holding 7 or 8 objects. Af-

ter load balancing with GridMetisLB, however, some processors hold as many as 10 objects

while others hold as few as 5 objects. That is, Metis places more emphasis on optimizing

the edge weights of the partitioned graph at the expense of having slightly unequal numbers

of objects within each partition (processor). In previous benchmarks and applications in

this thesis, this phenomenon has not been observed due to the fairly uniform nature of the

problems being studied. In this application, however, the non-uniform nature of the com-

munication causes this result. The other load balancers do not suffer from this difficulty

because they all specifically ensure that each processor is allocated an approximately-equal

amount of work, scaled to the processor’s relative performance compared to the other pro-

cessors in the same cluster, in addition to optimizing the communication characteristics of

the application.

The most interesting results in the figure are for GridCommLB and GridHybridLB.

Through 64 milliseconds of latency, the results of both balancers closely resemble the re-

sults without load balancing and for GreedyLB. However, after 64 milliseconds of latency,

GridCommLB and GridHybridLB significantly outperform the other results. The plots for

GridCommLB and GridHybridLB stay horizontal through at least 80 milliseconds of la-

tency. Even after this point, the slope of the line between 80 and 128 milliseconds of latency

is slightly less than linear. This indicates that the technique of spreading the border objects

and local-only objects evenly across processors gives the application improved latency tol-

erance compared to the mapping that results from GreedyLB that does not take the object

type into consideration. Further, because each processor in each cluster is guaranteed to be

balanced in terms of CPU utilization (scaled to the relative performance of each processor)

with the load balancing techniques employed by GridCommLB and GridHybridLB, the re-
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Figure 8.3: Performance of Fractography3D on 128 processors

sults for these balancers cannot suffer the same decrease in performance as happens when

balancing the problem with GridMetisLB.

8.3.3 Performance in TeraGrid Environment

The experiments were repeated using a real Grid environment consisting of TeraGrid clusters

at NCSA, ANL, and SDSC. Table 8.1 shows the results for executing Fractography3D with

the application co-allocated on clusters at NCSA and ANL. These clusters are separated by

a latency of approximately 1.7 milliseconds. The results are compared to artificial latency

results collected for 2 milliseconds of latency. As in the case of LeanMD, the results for the

real Grid environment match closely to the results for the artificial latency environment.

Table 8.2 shows the results for executing Fractography3D with the application co-allocated

on clusters at NCSA and SDSC. These clusters are separated by a latency of approximately

30.1 milliseconds. The results are compared to artificial latency results collected for 32 mil-
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Number of Execution Time Execution Time
Processors Load Balancer (Artificial Latency) (TeraGrid)

8 No Load Balancing 2847.265 2851.474
8 GreedyLB 2859.825 2852.847
8 GridCommLB 2847.670 2845.958
8 GridMetisLB 2876.524 2862.626
8 GridHybridLB 2840.316 2838.330
16 No Load Balancing 1437.385 1437.782
16 GreedyLB 1451.436 1450.238
16 GridCommLB 1433.360 1433.323
16 GridMetisLB 1441.121 1439.643
16 GridHybridLB 1444.560 1442.589
32 No Load Balancing 726.742 727.146
32 GreedyLB 736.830 734.770
32 GridCommLB 741.093 740.047
32 GridMetisLB 752.630 752.779
32 GridHybridLB 736.955 736.034
64 No Load Balancing 381.374 381.838
64 GreedyLB 373.846 374.711
64 GridCommLB 374.876 374.426
64 GridMetisLB 392.551 390.058
64 GridHybridLB 376.345 377.162
128 No Load Balancing 191.708 190.991
128 GreedyLB 187.513 188.295
128 GridCommLB 188.076 188.594
128 GridMetisLB 226.957 227.257
128 GridHybridLB 187.392 187.272

Table 8.3: Performance comparison of Fractography3D in artificial latency environment and
TeraGrid environment (NCSA-ANL)
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Number of Execution Time Execution Time
Processors Load Balancer (Artificial Latency) (TeraGrid)

8 No Load Balancing 2862.865 2863.270
8 GreedyLB 2861.515 2856.887
8 GridCommLB 2858.864 2857.214
8 GridMetisLB 2853.903 2850.893
8 GridHybridLB 2837.086 2832.548
16 No Load Balancing 1429.286 1427.986
16 GreedyLB 1448.782 1446.878
16 GridCommLB 1443.447 1439.726
16 GridMetisLB 1457.795 1458.324
16 GridHybridLB 1444.868 1442.542
32 No Load Balancing 725.611 722.746
32 GreedyLB 744.435 743.349
32 GridCommLB 736.320 737.582
32 GridMetisLB 739.023 737.982
32 GridHybridLB 739.158 737.124
64 No Load Balancing 383.909 384.147
64 GreedyLB 376.279 376.657
64 GridCommLB 375.996 375.310
64 GridMetisLB 393.945 394.172
64 GridHybridLB 375.579 374.355
128 No Load Balancing 193.056 194.311
128 GreedyLB 190.248 191.009
128 GridCommLB 189.657 191.350
128 GridMetisLB 231.628 232.239
128 GridHybridLB 188.871 189.298

Table 8.4: Performance comparison of Fractography3D in artificial latency environment and
TeraGrid environment (NCSA-SDSC)

liseconds of latency. As above, the results for the real Grid environment closely match the

results for the artificial latency environment.

8.4 Summary

This chapter has presented two case studies in which the techniques developed in this thesis

are used to optimize practical scientific applications in both a simulated Grid environment

and in the national TeraGrid environment. Overall, the results of these experiments suggest
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that rather than challenging the effectiveness of the thesis techniques for efficiently execut-

ing tightly-coupled parallel applications in Grid computing environments, the more complex

computations and communication structures of realistic scientific applications, compared to

the simpler Jacobi2D benchmark studied previously, are in fact a good match for the tech-

niques developed in this thesis. The basic latency masking capabilities of the Charm++

runtime system are immediately available to both native Charm++ applications (such as

LeanMD) and more traditional MPI applications (such as Fractography3D), and these capa-

bilities can be enhanced by the use of optimization techniques such as Grid topology-aware

load balancing that extend the latency masking capabilities into regions of greater cross-site

latencies.

These results are very encouraging because they strongly suggest that techniques devel-

oped at the runtime system level can be effective at allowing the efficient execution of tightly-

coupled parallel applications in Grid computing environments, and that these techniques can

be readily applied to applications that use a variety of common problem decomposition styles

without requiring modifications to the application software.
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Chapter 9

Conclusion

This thesis has presented a toolbox of techniques that can be applied to the problem of

efficiently executing tightly-coupled parallel applications in Grid computing environments.

The primary architectural contribution of the thesis is the use of message-driven objects at

the runtime system (middleware) level to mask the effects of cross-site latency on an appli-

cation that is co-allocated across clusters at multiple geographically-distributed Grid sites.

By performing useful work in ready objects during the otherwise-wasted time required for

messages to travel across a high-latency wide-area network, a tightly-coupled parallel appli-

cation can achieve performance in a Grid environment that is on par with its performance

in a single cluster.

The thesis also develops optimization techniques that enhance the performance of the

message-driven object architecture. One optimization technique is object prioritization. By

tuning the runtime system’s object scheduler to prioritize the execution of border objects,

which communicate with neighbors on remote clusters, over the execution of local-only ob-

jects, which communicate only with neighbors within the local cluster, execution within each

application timestep is adjusted such that the border objects occur nearer to the beginning

of the timestep. This gives more opportunities to overlap the high-latency cross-site mes-

sages sent by the border objects with work driven in local-only objects and improves overall

application performance. This technique is generally only suited for situations in which the

number of objects on each processor is somewhat limited, resulting in the runtime system

being able to somewhat, but not entirely, mask the effects of cross-site latency.

With a greater number of objects on each processor, the second optimization technique,
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Grid topology-aware load balancing, becomes effective. This technique takes into consider-

ation characteristics of the objects that make up the computation, including such things as

measured CPU load and communication characteristics, and couples this information with

knowledge of the topology of the Grid environment itself in order to make dynamic adjust-

ments to the mapping of objects to processors. Three sub-techniques are used here. The

first, and simplest, balances objects based on their measured CPU loads and additionally

organizes the objects in each cluster such that the border objects and local-only objects

are spread as evenly across the processors in each cluster as possible. This hopefully gives

each processor a favorable mixture of border objects and local-only objects which can be

used to mask cross-site latency. The second load balancing technique is more complex and

takes into consideration the relationship between pairs of objects in a computation by using

graph partitioning algorithms in an attempt to reduce the volume of cross-cluster commu-

nication as well as the volume of communication internal to each cluster. Finally, the third

load balancing technique combines the best features of the first two techniques, employing

graph partitioning algorithms at the wide-area level and simpler object balancing within

each cluster, to create a hybrid technique that delivers all-around good results.

The primary research question posed at the beginning of the research in this thesis is

whether it is feasible to deploy tightly-coupled parallel applications representative of realistic

scientific workloads in Grid computing environments. To demonstrate this, two case studies

were undertaken to examine the Grid deployment of two tightly-coupled parallel applications

from the fields of molecular dynamics and structural dynamics. These case study applications

are representative of realistic scientific workloads. The results of the case study experiments

strongly suggest that it is indeed feasible to deploy tightly-coupled applications in Grid

computing environments and expect to achieve application performance levels that are on

par with the performance of the application executing within a single cluster.

It has been observed that many modern high-performance computing environments, such

as clusters of SMPs, represent a hierarchy of communication interconnects [36]. Grid comput-
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ing environments are no exceptions to this observation, however Grid environments present

one significant challenge that is not present in other environments: characteristics of a Grid

environment can change during the execution of a job. To that end, it seems likely that

successful Grid runtime systems and middleware must employ dynamic techniques that can

optimize an application’s performance during execution based on measurements collected

both about the application and about the Grid environment itself. The rich features of

the Charm++ and Adaptive MPI systems make them ideal candidates for Grid work, and

this may be in contrast to simpler and somewhat more static runtime systems that support

languages such as Titanium [54].

Recent trends suggest a growing interest in deploying realistic scientific applications in

Grid computing environments. For example, a technology demonstration at the SC05 con-

ference held in November 2005 in Seattle, Washington linked the United States TeraGrid

and the UK National Grid Service via a transatlantic fiber connection to conduct interac-

tive simulations in three large-scale applications [7]. These applications were NEKTAR, a

simulation of blood flow in the human arterial tree using fluid dynamics (led by George

Karniadakis at Brown University); SPICE (Simulated Pore Interactive Computing Environ-

ment), studying translocation of nucleic acids across membrane channel pores in biological

cells (led by Peter Coveney at University of London); and VORTONICS, a vortex dynamics

simulation using 3D Navier-Stokes computations (led by Bruce Boghosian at Tufts Uni-

versity). Overall, the techniques presented in this thesis may offer interesting possibilities

for leveraging Grid computing resources on an ad-hoc basis for applications such as these.

Two of the techniques, the primary message-driven architectural technique and the Grid

topology-aware load balancing technique using graph partitioning, have been particularly

well received by Grid computing practitioners [32, 33]. Additionally, independent research

conducted by Ragu Reddy and David C. O’Neal at the Pittsburg Supercomputing Center

and presented at the 2006 TeraGrid Conference in Indianapolis, Indiana [46] reproduces the

findings of Chapter 4 of this thesis.
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Bachelor of Science, Indiana University - Purdue University Fort Wayne, 1996
Major: Mathematics

Bachelor of Science (with Honors), Indiana University - Purdue University Fort Wayne, 1995
Major: Electrical Engineering Technology

Bachelor of Science, Indiana University - Purdue University Fort Wayne, 1993
Major: Computer Science
Minor: Mathematics

PROFESSIONAL POSITIONS

Research Assistant (September 1998 - August 2006)
National Center for Supercomputing Applications−University of Illinois at Urbana-Champaign

• Researcher in the Security Research Group, leading a project to develop secure on-
demand utility computing solutions using supercomputing clusters

• Researcher in the Security Research Group, leading a project to develop security tools
designed to monitor the security of distributed supercomputing clusters

• Developer for the Virtual Machine Interconnect (VMI) project, a high-bandwidth low-
latency messaging layer for high-performance supercomputing clusters

156



Network Software Engineer (January 1995 - June 1996; June 1998 - August 1998)
Fort Wayne Internet

• Architected and developed an application consisting of a Windows GUI, ActiveX con-
trols, SQL Server integration, and Unix daemons for managing users across a medium-
sized (approximately 30,000 users) Internet Service Provider

• Extended the above software to be a Web application available to users from a standard
Web browser environment

• Installed and maintained telecommunications equipment for multiple T-1 lines

Research Programmer (August 1996 - June 1998)
Department of Computer Science − University of Illinois at Urbana-Champaign

• Assisted in the development of the High Performance Virtual Machine (HPVM) project
to create high-performance computation clusters using Windows NT

• Developed a Java-based front-end to enable batch jobs to be submitted into the HPVM
environment from a standard Web browser environment

Research Assistant (January 1996 - August 1996)
Mathematics and Computer Science Division − Argonne National Laboratory

• Assisted in the development of Nexus, an asynchronous remote procedure call library
used for parallel and distributed computing

• Researched and developed cryptographic authentication and encryption extensions to
Nexus to create a new project called Zipper

Network Systems Programmer (January 1993 - January 1996)
Indiana University - Purdue University Fort Wayne

• Developed system-level and network software for a wide variety of computing platforms
including Microsoft Windows, Novell NetWare, OpenVMS, and Unix

• Administered the primary campus research and educational computing resources run-
ning on an OpenVMS cluster

• Administered the campus network of approximately twenty Novell NetWare fileservers

Special Projects Consultant (October 1987 - January 1993)
Indiana University - Purdue University Fort Wayne

• Provided desktop support to faculty and staff members

• Taught miscellaneous short courses to faculty and staff members

• Assisted faculty, staff, and student users of university computing resources
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PROFESSIONAL SERVICE

• Co-chair of the 2nd International Workshop on Cluster Security (in conjunction with
the 6th IEEE International Symposium on Cluster Computing and the Grid)

• Program committee member for the 2nd International Workshop on Cluster Security
(in conjunction with the 6th IEEE International Symposium on Cluster Computing
and the Grid)

• Program committee member for the 1st International Workshop on Cluster Security
(in conjunction with the 5th IEEE International Symposium on Cluster Computing
and the Grid)

• Member of the Association of Computing Machinery

PRESENTATIONS

• “Grid Computing with Charm++ and Adaptive MPI,” Gregory A. Koenig, 5th Annual
Workshop on Charm++ and its Applications, April 18, 2007.

• “Efficient Execution of Tightly-Coupled Parallel Applications in Grid Computing En-
vironments,” Gregory A. Koenig, Thesis Defense, January 11, 2007.

• “Optimizing Charm++ Messaging for the Grid,” Gregory A. Koenig, 4th Annual
Workshop on Charm++ and its Applications, October 18, 2005.

• “Faucets Tutorial,” Esteban Pauli and Gregory A. Koenig, 4th Annual Workshop on
Charm++ and its Applications, October 19, 2005.

• “On-Demand Secure Cluster Computing (ODSCC),” William Yurcik and Gregory A.
Koenig, TRECC/NCASSR Annual Meeting, August 31, 2005.

• “Cluster Security Research Challenges,” William Yurcik, Adam J. Lee, Gregory A.
Koenig, Nadir Kiyanclar, Dmitry Mogilevsky, and Michael Treaster, NSF Infrastruc-
ture Experience 2005, NSF/CISE/CNS Cluster Computing Infrastructure Experience
Workshop, July 27, 2005.

• “Searching for Open Windows and Unlocked Doors: Port Scanning in Large-Scale
Commodity Clusters,” Adam J. Lee, Gregory A. Koenig, Xin Meng, and William
Yurcik, 1st International Workshop on Cluster Security (in conjunction with the 5th
IEEE International Symposium on Cluster Computing and the Grid), May 9, 2005.

• “Using Message-Driven Objects to Mask Latency in Grid Computing Applications,”
Gregory A. Koenig and Laxmikant V. Kale, 19th IEEE International Parallel and
Distributed Processing Symposium, April 2005.

• “Using Charm++ to Mask Latency in Grid Computing Applications,” Gregory A.
Koenig, 3rd Annual Workshop on Charm++ and its Applications, October 19, 2004.
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matt Buchanan, Kay Connelly, Louis Giannini, Greg Koenig, Sudha Krishnamurthy,
Qian Liu, Scott Pakin, and Geetanjali Sampemane, Design and Evaluation of an
HPVM-based Windows NT Supercomputer International Journal of High Performance
Computing Applications, 1999.

Refereed Conference Papers

[2] Gregory A. Koenig and Laxmikant V. Kalé, Optimizing Distributed Application Per-
formance Using Dynamic Grid Topology-Aware Load Balancing, In Proceedings of the
21st IEEE International Parallel and Distributed Processing Symposium, March 2007.

[3] Dmitry Mogilevsky, William Yurcik, and Gregory A. Koenig, Generalizable Byzantine
Fault Detection: A Foundation for Cluster Survivability and Availability, In Proceedings
of the 7th LCI International Conference on Linux Clusters, May 2006.

[4] Nadir Kiyanclar, Gregory A. Koenig, and William Yurcik, Maestro-VC: On-Demand
Secure Cluster Computing Using Virtualization, In Proceedings of the 7th LCI Interna-
tional Conference on Linux Clusters, May 2006.

[5] Adam J. Lee, Gregory A. Koenig, and William Yurcik, Cluster Security with NVi-
sionCC: The Forseti Distributed File Integrity Checker, In Proceedings of the 6th Sym-
posium of the Los Alamos Computer Science Institute, October, 2005.

[6] Michael Treaster, Gregory A. Koenig, Xin Meng, and William Yurcik, Detection of Priv-
ilege Escalation for Linux Cluster Security, In Proceedings of the 6th LCI International
Conference on Linux Clusters, April 2005.

[7] Gregory A. Koenig and Laxmikant V. Kalé, Using Message-Driven Objects to Mask
Latency in Grid Computing Applications, In Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium, April 2005.

[8] Gregory A. Koenig and William Yurcik, Design of an Economics-Based Software Infras-
tructure for Secure Utility Computing on Supercomputing Clusters, In Proceedings of
the 12th International Conference on Telecommunication Systems Modeling and Anal-
ysis, July 2004.

[9] William Yurcik, Xin Meng, Gregory A. Koenig, and Joseph Greenseid, Cluster Security
as a Unique Problem with Emergent Properties: Issues and Techniques, In Proceedings
of the 5th LCI International Conference on Linux Clusters, May 2004.

[10] William Yurcik, Xin Meng, and Gregory A. Koenig, A Cluster Process Monitoring Tool
for Intrusion Detection: Proof-of-Concept, In Proceedings of the 29th IEEE Conference
on Local Computer Networks, 2004.
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[11] Ian Foster, Nicholas T. Karonis, Carl Kesselman, Greg Koenig, and Steven Tuecke, A
Secure Communications Infrastructure for High-Performance Distributed Computing,
In Proceedings of the 6th IEEE Symposium on High-Performance Distributed Comput-
ing, 1997.

Other Publications

[12] Matthew Smith, Thomas Friese, Michael Engel, Bernd Freisleben, Gregory A. Koenig,
and William Yurcik, Security Issues in On-Demand Grid and Cluster Computing, 2nd
International Workshop on Cluster Security, In Proceedings of the 6th IEEE Interna-
tional Symposium on Cluster Computing and the Grid, May 2006.

[13] Nadir Kiyanclar, Gregory A. Koenig, and William Yurcik, Maestro-VC: A Paravirtu-
alized Execution Environment for Secure On-Demand Cluster Computing, 2nd Inter-
national Workshop on Cluster Security, In Proceedings of the 6th IEEE International
Symposium on Cluster Computing and the Grid, May 2006.

[14] Dmitry Mogilevsky, Gregory A. Koenig, and William Yurcik, Byzantine Anomaly Test-
ing for Charm++: Providing Fault Tolerance and Survivability for Charm++ Empow-
ered Clusters, 2nd International Workshop on Cluster Security, In Proceedings of the
6th IEEE International Symposium on Cluster Computing and the Grid, May 2006.

[15] Dmitry Mogilevsky, Gregory A. Koenig, and William Yurcik, Cluster Survivability
with ByzwATCh: A Byzantine Hardware Fault Detector for Parallel Machines with
Charm++, 2nd Workshop on High Performance Computing Reliability Issues, In
Proceedings of the 12th IEEE International Symposium on High-Performance Computer
Architecture, February 2006.

[16] William Yurcik, Adam J. Lee, Gregory A. Koenig, Nadir Kiyanclar, Dmitry Mogilevsky,
and Michael Treaster, Cluster Security Research Challenges, NSF Infrastructure Expe-
rience 2005, NSF/CISE/CNS Cluster Computing Infrastructure Experience Workshop,
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[17] Makan Pourzandi, David Gordon, William Yurcik, and Gregory A. Koenig, Clusters
and Security: Distributed Security for Distributed Systems, 1st International Workshop
on Cluster Security, In Proceedings of the 5th IEEE International Symposium on Cluster
Computing and the Grid, May 2005.

[18] Gregory A. Koenig, Xin Meng, Adam J. Lee, Michael Treaster, Nadir Kiyanclar, and
William Yurcik, Cluster Security with NVisionCC: Process Monitoring by Leveraging
Emergent Properties, 1st International Workshop on Cluster Security, In Proceedings of
the 5th IEEE International Symposium on Cluster Computing and the Grid, May 2005.

[19] Adam J. Lee, Gregory A. Koenig, Xin Meng, and William Yurcik, Searching for Open
Windows and Unlocked Doors: Port Scanning in Large-Scale Commodity Clusters, 1st
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160



[20] Michael Treaster, Nadir Kiyanclar, Gregory A. Koenig, and William Yurcik, A Dis-
tributed Economics-based Infrastructure for Utility Computing, ACM Computing Re-
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