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Abstract

With the advent of petascale computing era, a typical petascale machine is usually

installed with hundreds of thousands of processors. To predict the performance of

existing applications running on such a machine, a simulation-based approach faces

various unprecedented challenges. One of them is the memory constraint posed by

emulating the petascale application that uses petabytes of memory on an existing

parallel machine that typically only has hundreds of terabytes of memory or less.

With an attempt to address this challenge, we present a preliminary investigation of

utilizing the out-of-core concept in the context of an existing performance prediction

framework BigSim. We have designed three basic out-of-core schemes and explored

the optimizations that could be applied to the basic schemes. The additional the-

oretical analysis models both the performance of the emulation with and without

out-of-core support, points out the very importance of the optimizations for the ba-

sic out-of-core schemes and offers suggestion to its implementation. By resolving

multiple issues across the software stack, we implemented a prototype of the basic

out-of-core support and integrated it into the emulation component of BigSim. The

experimental evaluation shows the prototype works correctly for both Charm++ and

MPI applications, and a reasonable emulation performance regarding a MPI kernel

benchmark.
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Chapter 1

Introduction

At the door of petascale computing era, people have to face unprecedented challenges

arising both for the construction of petascale machines and the application develop-

ment. On one hand, the designers of the petascale machine are making architectural

choices; they would like to make choices and trade-offs that will benefit the mix of

applications that are likely to run on this machine. But how can they determine the

efficacy of each choice? On the other hand, the application programmers have the

daunting task of scaling existing parallel science or engineering code to the petas-

cale machine typically installed with hundreds of thousands of processors. They also

would like to have their application ready for the new machine when it is deployed.

However, since such machine is still being designed or under construction, how can

they effectively tune their application without the resource?

A simulation-based approach is envisioned as one approach to surmount these

challenges. Its feasibility has been demonstrated with a proof-of-principle system

called BigSim[1] where the IBM BlueGene machine is the study target. The system

has two major components: one is the emulator providing an environment in which

users can run a parallel application as if they are running on the target machine with

its full set of processors; the other is the simulator, with input of information such

as the traces generated by the emulator, produces detailed performance data for the

application running on the simulated (target) machine.

The attempt of using BigSim for petascale machines brought additional issues

into focus. One specific issue involves the scalability of emulation so that applica-
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tions running on a very large number of processors can be emulated using a much

smaller system. It is expected that petascale machines have petabytes of physical

memory available which can be fully used by parallel applications. To emulate such

memory intensive applications on much smaller parallel machines, the memory re-

quired for emulation is highly demanding because one emulating processor typically

emulates tens to hundreds of target processors, implying that each emulating proces-

sor has to hold tens to hundreds of instances of application data in memory. It is

difficult, if not impossible, to find an existing parallel machine with sufficient mem-

ory if one is simulating real applications. The virtual memory mechanism can satisfy

the memory requirements of these applications to some extent. But this approach

typically performs poorly with random data access patterns, such as those in BigSim

due to switching between targeting processors.

Therefore, based on the out-of-core concept, we explore the schemes suitable for

the emulation component of BigSim which will not require specific knowledge of the

applications being emulated. We have designed three basic out-of-core schemes, and

investigated the possibility of optimizations that could be applied on these schemes

by taking advantage of the fact that the scheduler, responsible for processing message,

has the knowledge of the messages that are going to be active in the near future. The

theoretical analysis of the schemes and possible optimizations tells the very impor-

tance of the optimization in order to achieve good emulation performance in the case

of out-of-core execution as well as the advice on its implementation. By implementing

the prototype of basic out-of-core schemes and integrating it into the BigSim frame-

work, we resolved multiple issues related with the Charm++/AMPI runtime system.

Both Charm++ and MPI programs have been tested to validate the correctness of

the new emulation component augmented with basic out-of-core support. And an

experimental evaluation on a MPI 3D-Jacobi kernel benchmark shows a reasonable

performance for our initial implementation.
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The contributions of this thesis are:

• The design space is explored for the out-of-core technique in the context of the

BigSim framework.

• A theoretical analysis is presented for the performance of out-of-core schemes

and its effectiveness is demonstrated by the experimental results.

• The scalability of emulation is preliminarily addressed as a prototype to support

out-of-core emulation has been integrated into the existing BigSim framework.

This thesis comprises six chapters. Chapter 2 provides an overview of the existing

software infrastructures, including Converse, Charm++/AMPI and BigSim, on which

this work is built. Design space exploration, together with theoretical analysis are

presented in Chapter 3, followed by Chapter 4 focusing on the discussion of the

implementation issues for the out-of-core approach. Afterwards, Chapter 5 shows

the results of our experimental evaluation on the prototype for out-of-core support.

Finally, we conclude the thesis and describe the future work in Chapter 6.
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Chapter 2

Existing Software Infrastructure

The work of this thesis is built upon a sophisticated and substantial software in-

frastructure. The emulation of petascale applications leverages the existing version

of BigSim[1, 2]–a framework to help predict performance for petascale machines and

applications. As for the applications studied in this thesis, they are mainly MPI

programs enabled by the Adaptive MPI (AMPI) system[3, 4].

BigSim depends in a critical way on the object-based virtualization capabilities

provided by the Charm++[5] and Adaptive MPI (AMPI) systems. In addition, the

emulation utilizes the thread library provided by the Converse runtime[6], and this

library is indispensable for the execution of MPI programs with the AMPI system.

Converse is also the underlying software layer on which Charm++ system is built.

Therefore, a brief review of these systems is given to help readers familiarize the

background of this work. According to the dependencies among these systems, we

first begin with a description of Converse, followed by the introduction of Charm++

and AMPI systems. Finally, the current status and approach of BigSim are touched.

2.1 Converse

Converse is a multi-language, interoperable runtime framework which support differ-

ent programming paradigms such as the message-driven programming style, thread-

based programming style etc. It provides efficient and portable implementation of

all the functions typically needed by a parallel language library. This runtime envi-
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ronment has been running on most popular operating systems such as Windows and

Linux as well as on different supercomputers. Both Charm++ and AMPI systems are

built on top of this framework.

2.1.1 Scheduling in Converse

Each processor in the Converse runtime runs a scheduler which is responsible for

receiving all messages, and repeatedly picking and processing messages. The Converse

scheduler is based on the notion of schedulable entities, called Generalized Messages.

A generalized message is an arbitrary block of memory with two types. The first

type is related with message-driven execution. The first few bytes of the memory

block specify a function pointer or an index into a table of functions that will handle

the message and the rest contains the user data. The scheduler dispatches this type

of generalized message by invoking the function and passing the user data as the

function parameter in the form of a message pointer. Any function that is used

for handling messages must first be registered with the Converse environment. The

second type of the generalized message is related with thread scheduling. In this case,

the message is a scheduler entity for a ready thread or a token object which contains

a pointer to a ready thread. The latter entity is used when threads do migration or

do checkpointing where the thread would be taken out of memory. Once this thread

is brought back into memory again and ready to execute, the token object which is

associated with this thread will update its pointer to the thread. In this way, the

scheduler will correctly dispatch the thread indirectly through the token object.

2.1.2 Threads in Converse

Thread-related functions are worth noting as they are necessary for the implementa-

tion of AMPI system and the emulation of applications in BigSim. Converse provides
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an architecture-independent interface to most thread functions, thread scheduling

and synchronization of variables. For instance, CthYield() stands for the function

of yielding a thread. As mentioned in the above section, threads in Converse use

the same scheduling queue as the one used for Converse messages. Normally, when

a thread is awakened, it goes into this primary ready-queue. However, to make the

scheduling more flexible, the Converse system provides scheduling hooks for develop-

ers to make threads go into a different ready-queue, whether it is a FIFO or LIFO,

or a queue with any complicated order desired. More details can be found in the

Converse manual[7].

2.2 Charm++ and AMPI

Charm++[5] is a portable C++ based parallel programming language and runtime

system. It is based on the idea of migratable objects and resultant virtualization of

processors[8, 9]. In this approach, an application developer decomposes a problem

into N components, a.k.a virtual processes (VP) which are implmented as C++

migratable objects or user-level threads. The N VPs will execute on P processors

where N is independent of P though ideally N >> P . The programmer’s view of

the programs is of VPs and their interactions; the underlying runtime system keeps

track of the mapping of VPs to processors and performs any remapping tat might

be necessary at runtime. This idea is illustrated by figure 2.1. In Charm++, VPs

are known as chares. Chares are C++ objects with special entry methods that are

invoked asynchronously from other chares. A group of chares performing on a same

parallel task can be organized into an indexed group called a chare array. A Charm++

program typically consists of one or more chare arrays.

Charm++ applies a message-driven execution model to determine which chare

gets control on a processor. An advantage of this approach is that no chare can
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hold a processor idle while it is waiting for a message. Since N > P , there may

be other chares on the same processor that can overlap their computation with the

communicating chare.

The object-oriented based programming style, together with the virtualization of

underlying real physical processors also enable the transparent migration of chares

(including both application code and data) and provides the property of location

independent. In other words, chares can migrate from processor to processor freely.

This migration of chares provides opportunities for the runtime sytem of dynamically

shifting chares from overloaded processors to underloaded procesors, thus achieving

better load balancing.

MPI is the de-facto standard of writing parallel applications. Therefore, Adaptive

MPI or AMPI[3, 4] is designed and implemented, based on Charm++. AMPI imple-

ments virtual MPI processes, or VPs, using migratable user-level threads, several of

which may be mapped to a single physical processor shown by figure 2.2. As a re-

sult, MPI now becomes a special case of AMPI when exactly one VP is mapped to

a physical processor. AMPI inherited many advantages from Charm++ system such

as adaptive overlapping of communication and computation, automatic load balanc-

ing by migrating user-level threads, flexibility of running on an arbitrary number of

processors.

Figure 2.1: Virtualization in Charm++
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One point is worth mentioning here: although the targets of our emulation system

are mainly normal MPI applications, applications written in the Charm++ language

are also included, such as NAMD[10] and LeanCP[11] etc.

In the forthcoming era of petascale computing when supercomputers will typically

be installed with hundreds of thousands of processors, we believe that the message-

driven execution model used in Charm++ and AMPI is suitable to exploit the full

computation power provided by petascale machines. In addition, the virtualization

of processors featured by both systems eases the parallel programming for petascale

machines as developers only focus on the logical view of the problem.

2.3 BigSim

The BigSim project software has evolved into two components: a generic emulator

of applications on petascale machines, and a simulator that allows for performance

prediction and analysis of the emulated program in a variety of situations, including

the presence of a detailed network contention model. In this work, the emulator is

extended to support the emulation of applications that use petabytes of memory.

Therefore, the emulator is the focus in the following introduction.

Figure 2.2: Implementation of AMPI virtual processes
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The emulator provides an environment in which users can run a parallel applica-

tion as if they are running on the target machine with its full set of processors. In

order to support high degree of parallelism, a low level abstraction of petascale ma-

chines is designed to provide access to machines’s capabilities. In the programmer’s

view, each node consists of a number of hardware-supported threads with common

shared memory. Those threads continuously monitor the incoming buffer for arriving

messages, which drives the progress of the application. The header of each message

encodes a handler function, which is extracted and invoked by the threads on the

destination node. This low level abstraction of the petascale architectures is general

enough to embody various parallel machines with different numbers of processors and

co-processors on each node.

Figure 2.3: Functional view of a target node

Users of this emulator can easily configure it for specific target machines. Figure

2.3 [12] describes the functional view of an emulated node (target node). Within the

node, processors or cores (target procesors) are viewed as a number of threads, which
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are divided into communication threads and worker threads. Communication threads

check incoming messages from the network. If the workload specified by the incom-

ing message is lower than a threshold, the communication thread will process this

message by itself. Otherwiese, it will put the messages in either a worker’s queue or

the node’s global queue. Concurrently with communication threads, worker threads

repeatedly retrieve messages from the queues and execute the handler functions as-

sociated with the messages. Application’s code are trapped and executed inside the

handler function. Noting that each worker thread and communication thread has its

own message scheduler. The reasons for this choice are: firstly, it maintains a consis-

tent view of target processors; secondly, it has the advantage of scalability because

there is no central control point in the emulation.

Figure 2.4: A simple work flow of the idea behind BigSim

With such emulation, application developers can already test for bugs, non-

scalable data structures etc. The other purpose of emulation is to obtain the message-

level execution traces. Along with message-dependence information, the traces are

passed to the simulation component which also takes the architectural specification of

the machine as its input, and then produces detailed performance data for the appli-
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cation running on the simulated (target) machine. The whole process of performance

prediction can be simply illustrated by the figure 2.4.
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Chapter 3

Design and Analysis of the
Out-of-core Approach

In this chapter, the ideas of enabling the emulation of petabytes of memory are dis-

cussed. The approach we adopt is to use the out-of-core technique which has been

explored by Mani in the context of Charm++ system[13]. Out-of-core execution is a

general technique to handle the scenario when there is not enough memory for the

application. Since the out-of-core execution is controlled by the application devel-

oper who has better knowledge of the application’s memory access pattern than the

operating system does, the virtual memory (VM) system in the OS is not considered

here as a performance-wise technique to solve the problem of emulation of petabytes

of memory. Furthermore, the execution of the emulation is like the parallel discrete

event simulation (PDES) whose memory access pattern is not as normal as to be

predictive. The VM system in the OS cannot handle this case efficiently. Therefore,

the out-of-core technique is chosen as our current approach to emulating applications

that use petabytes of memory on petascale machines.

3.1 Design Space of the Out-of-core Scheme

Before diving into the exploration of design spaces for the out-of-core scheme, one

assumption of the memory usage by the emulation has to be stated so that poten-

tial users of this work would have clear ideas of under what the circumstances the

out-of-core technique can be turned on in the emulation. The emulation aims at the

application running on the petascale machine which consists of around hundreds of

12



thousands of target processors. This ultra-scale machine will be emulated on thou-

sands of processors available on current supercomputers. Therefore, each emulating

processor is responsible for emulating hundreds of target processors. In other words,

hundreds of instances of the application are running on each emulating processor.

Assuming each process consumes a reasonable amount of memory, hundreds of them

on a single processor pose a memory constraint. In a word, to emulate petabytes of

memory, the scenario we assume to face is that each application process consumes a

reasonable amount of memory (usually a small fraction of the total memory available

on the processor), but adding them up on a single emulating processor will exceed the

memory available on that processor. How to deal with the scenario when a single ap-

plication process consumes more memory than physically available on the emulating

processor is not the focus of this work.

3.1.1 Granularity Choice

The above assumption in turn suggests that the granularity of the preliminary out-

of-core emulation could be in the level of swapping one target processor at a time.

As for Charm++ programs, such granularity means either all the chares (including

the chare array elements) on a target processor stay in memory (in-core) or all of

them stay outside the memory (out-of-core). When it comes to AMPI programs, the

granularity means either all the virtual processes (VPs) on a target processor are

in-core or all of them are out-of-core. In most cases, we expect only one VP will be

on a target processor when we are emulating a MPI program by using AMPI system

because the performance of the MPI program to be emulated at this time is of no

interest, but the multiplexing of multiple VPs is still supported on a target processor.

In addition,the current implementation of the emulation component of BigSim also

affects the choice of the granularity of out-of-core execution in this preliminary work.

As described in section 2.3 where we briefly introduce the BigSim system, each target
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processor, i.e., each worker/communication thread runs its own message scheduler for

the sake of scalability and a logically consistent view of target processors. To maintain

these two advantages, the out-of-core execution engine is better to be put inside each

worker thread’s message scheduler (the communication thread is not considered here

because it is not responsible for processing large work load which usually contains

the allocation of large memory space). Inside the scheduler of each worker thread,

it is simpler from the perspective of logic, not to mention from the perspective of

implementation, to determine whether the thread as a single entity is in-core or not.

This is harder with the small units such as chares because the emulation system

does not know which small units are needed to be in-core when processing the next

message. Such information can either be obtained from the application itself or from

the Charm++ runtime on top which the application runs. It is complex to fetch such

cross-layer information, and may even require the change of application source codes.

Furthermore, it is far beyond the design purpose of emulation component of BigSim.

As a result, the granularity of the out-of-core execution is better chosen in the level

of swapping one target processor at a time, partly due to the current design and

implementation of the emulation component of BigSim.

3.1.2 Options of Basic Schemes

Currently, we have designed three basic out-of-core schemes. They share the same

very basic idea, illustrated by figure 3.1, in which before processing a message, the

corresponding target processor must be in memory.

The following shows these three schemes,ordering from the simple one to the

relatively complex one, and gradually becoming more flexible.

1. Per message based scheme. In this scheme, before a worker thread (i.e. a target

processor) processes a message, we will check whether itself is in-core or not. If
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it is out-of-core, then the worker thread will be brought into the memory. Then,

immediately after processing the message, the worker thread will be taken out

of the memory.

(Note: the above description sounds self-contradicting as if the worker thread

is in execution mode, how could it not be in core? In the context, the “in-core”

means that all the user-level data on this target processor are in memory. For

Charm++ programs,the user-level data refers to the chares; for AMPI programs,

this refers to the threads that represent MPI processes. If and only if the user-

level data is in memory, the message could be correctly processed. The “out-of-

core” has the opposite meaning of “in-core”. Therefore, when we say bringing

a worker thread or a target processor into memory, we mean bringing all the

user-level data on this target processor into memory. Similarly, taking a worker

thread out of memory refers to taking all the user-level data out of memory.)

This idea behind this scheme is simple and it is designed to speedup the im-

plementation of adding out-of-core functionality into the emulation component

of BigSim without considering the associated performance issues. Furthermore,

its implementation will lay a solid foundation for the implementation of other

out-of-core design schemes.

Figure 3.1: The basic idea of all out-of-core schemes
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2. Multiple target processors based scheme. In this scheme, the emulation compo-

nent allows multiple target processors or worker threads staying in-core. The

number of target processors allowed in-core is a tunable parameter but fixed

during the execution time. The first out-of-core scheme could be viewed as a

specific case of this scheme where only one target processor is allowed in-core at

a time. Before a worker thread processes a message, we will again check whether

itself is in-core or not. If in-core, we do nothing and begin to process the mes-

sage. Otherwise,we will first check if the number of worker threads allowed in

memory has reached the limit. If yes, a worker thread that is currently in-core

will be taken out of the memory based on an eviction policy. For example, if we

use the least-recently-used (LRU) policy, the worker thread that has not pro-

cessed a single message for the longest time will be evicted from the memory.

Afterwards, the worker thread that is going to process the message is brought

into memory and the message is processed. Advantages of this approach are

that it is easy to implement and delivers reasonable performance.

3. Memory based scheme. In this scheme, the emulation component allows a dy-

namic number of worker threads to stay in-core based on the maximum amount

of memory to be devoted to the emulation. To make it more flexible, the maxi-

mum amount of memory could be specified by the user, or be set to the amount

of memory totally available on the emulating processor. This is a evolved ver-

sion of the second scheme as it allows a dynamic rather than static number of

target processors in-core. The working flow of this scheme is similar to the other

two schemes. Firstly, we still check whether the worker thread is in-core before

it processes a message. If not, we estimate the amount of memory required

by this worker thread based on its execution history, and compare the esti-

mated amount against the remaining unoccupied memory. If less, we bring this
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worker thread into memory. Otherwise, we continue to evict currently in-core

worker threads from memory until the left amount of empty memory satisfies

the requirement of the this worker thread. The eviction of worker threads is

also based on an eviction policy such as the LRU one mentioned in the second

scheme. The advantage of this scheme is that it will potentially deliver the best

performance as it maximizes the usage of available memory. The side-effect is

the relatively complex implementation.

3.1.3 Optimizations for Basic Schemes

The optimizations discussed in this section mainly target the last two schemes.

• Choosing the most appropriate eviction policy. Both schemes share a

common problem: which worker thread should be evicted from the memory

when there are resource constraints, i.e., either the maximum number of target

processors allowed in-core has been reached or the remaining empty memory

is not enough for the worker thread that is going to be brought into memory.

This refers to the eviction policy, choice of which first exposes opportunities for

optimizing the basic schemes to achieve better performance. In the description

of the design schemes for out-of-core emulation, we have cited one option of

this policy as the LRU. The LRU may not be an appropriate policy in this em-

ulation context after a second thought. The progress of the parallel application

usually depends on the consumption of messages. For instance, the message

received contains the data that is required for this worker thread to continue its

computation. In the context of message-driven execution model as used by the

Charm++ and AMPI system, this claim is more applicable. The least recently

used worker thread is likely to be waiting for an arrival of a message to continue

its execution while the most recently used worker thread may have just finished

17



one piece of work and could have to wait for the next message delivered by

some other worker thread. According to this reasoning, the least recently used

worker thread should not be evicted as its expected message should arrive very

soon after the longest waiting time among all the in-core worker threads. In

this sense, the most recently used worker thread should be evicted out of the

memory instead.

A further tuning of the eviction policy takes advantage of the emulation runtime

information owned by each emulating processor. Currently, each emulating pro-

cessor only knows how many target processors (worker threads) are emulated

(running) on itself, but does not track the order of the execution of these worker

threads. The latter information is only known by the Converse scheduler which

schedules both the messages and the threads. If we trap the “yielding”, “sus-

pending” and “awakening” points of these worker threads on each emulating

processor before directing these three thread scheduling functionalities to the

Converse scheduler, we can keep a record of the execution order of these worker

threads on each emulating processor. Making use of this scheduling information,

we have the ability of looking into the future to precisely know which worker

thread is going to be invoked to process a message. Therefore, the eviction

policy based on this lookahead scheme will be perfect since no cases will occur

that the just-evicted worker threads are going to process a message in the very

near future.

• Overlapping the message processing with bringing the next worker

thread into memory. The speed of disk I/O lags far behind that of memory

and CPU. Therefore, frequent disk I/O operations will severely under-utilize

the computation power provided by the CPU, and become the performance

bottleneck of the emulation. To mitigate the high latency of disk I/O, based on
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the lookahead information described above, prefetching the contents of the next

target processor could be applied so that the time consumed on the bringing

the next worker thread into memory is at least partially overlapped with that of

processing messages by the current worker thread. If overlapping perfectly, the

performance achieved by this optimization will be the same with that as if all

the target processors are in-core. There are two different schemes to perform the

prefetch. The first one is just touching the virtual addresses of all the contents

on a target processor but without filling in the actual data. In this approach,

only the physical memory is pinned down. Differently from the first light-weight

approach, the second one is heavy-weight in that not only the physical memory

is pinned down but also the actual data is filled in. Similar schemes are also

mentioned in Mani’s work [13] for supporting out-of-core execution in Charm++

runtime system.

Both prefetch schemes will encounter the problem of choosing an appropriate

eviction policy if the memory size requirement exceeds the remaining empty

memory size. In this case, the eviction policy based on the lookahead scheme

described previously is utilized. To implement the prefetch optimization, we

can either use a separate thread to perform the job or use asynchronous I/O

(AIO)[14] which becomes a standard support on Linux 2.6 kernel. The for-

mer is expected to be more complicated since all the functions related with

finishing a disk I/O have to be explicitly managed by the emulation compo-

nent. In contrast, in the AIO approach, the underlying OS has provided a good

encapsulation and exposed a nice library interface to the software layer above

it.
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3.2 Theoretical Analysis

In this section, we present theoretical analysis to show how the straightforward out-of-

core technique will affect the emulation performance. The analysis will also shed some

light on to what extent the prefetching optimization will improve the performance

and how it should be implemented to help the emulation achieve best performance.

Before starting the analysis, we assume the execution pattern of the out-of-core

emulation is abstracted as if using the out-of-core technique, the emulation repeatedly

performs computation work intermixed with out-of-core operations; if not, the emula-

tion’s computation work is intermixed with the page fault service provided by virtual

memory (VM) where one “out-of-core operation” refers to an operation, either taking

a target processor out of memory or bringing a target processor back to memory. In

addition, we use the following symbols to facilitate the discussion.

• N : the number of computation chunks

• Tc: the average execution time of each computation chunk

• To: the average operation time of one out-of-core operation

• fo: the frequency of the out-of-core operation, i.e., the number of out-of-core

operations per computation chunk

• Tp: the average time of page fault service by the operating system.

• fp: the frequency of the page fault service, i.e., the number of page fault service

per one computation chunk

• Two: the total execution time of the emulation without out-of-core support

• Tw: the total execution time of the emulation with out-of-core support
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• Pr: the performance ratio calculated by Tw/Two. Pr > 1 indicates the out-of-

core emulation is slower than the normal emulation while Pr < 1 indicates the

opposite.

We divide the discussion into two cases according to the size of the computation

chunk:

3.2.1 Large Computation Chunk

The assumption in this scenario is Tc ≥ To. The emulation with/without basic out-

of-core support is illustrated by (a) and (b) respectively in figure 3.2. Accordingly,

the execution time of the emulation can be expressed by equation 3.1 and equation

3.2 respectively.

Two = N ∗ (Tc + fp ∗ Tp) (3.1)

Tw = N ∗ (Tc + fo ∗ To) (3.2)

From the two equations, Pr is shown by equation 3.3

Pr =
Tc + fo ∗ To

Tc + fp ∗ Tp

(3.3)

When the emulation exceeds the physical memory available on the emulating pro-

cessor, which motivates the out-of-core support in emulation, we expect To ≈ Tp.

Considering the memory page size is usually smaller than the memory image size of

the target processor, and the fact of the granularity of our initial out-of-core support,

we expect fp < fo. Therefore, we will have Pr > 1 meaning the emulation with the

basic out-of-core support will be slower than the one without the support.

In the extreme case when the emulation totally fits into the physical memory and

we still do the very basic out-of-core emulation (say adopting the second basic design

scheme), Two now is reduced to N ∗ Tc as fp = 0 (i.e., there is no page fault), hence
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leading to the new performance ratio shown by equation 3.4:

Pr =
Tc + fo ∗ To

Tc

= 1 +
fo ∗ To

Tc

(3.4)

Now we examine Tw with the prefetch optimization described in section 3.1.3.

Since Tc ≥ To, we expect to see the perfect overlapping between the computation and

the out-of-core operation as illustrated by (c) in figure 3.2. Accordingly, we have the

following two equations:

Tw = N ∗ Tc

Pr = Tc

Tc+fp∗Tp

Observing that Pr < 1 unless the emulation totally fits into the physical memory, the

performance of the emulation with the optimized out-of-core support is always better

than the one without the support. This also demonstrates the importance of doing

the prefetch optimization, otherwise the out-of-core emulation will show no benefit.

3.2.2 Small Computation Chunk

The assumption in this scenario is Tc < To. This case has the identical equations for

Tw, Two and Pr as those in the large computation chunk scenario if the emulation

Figure 3.2: Timeline in the case of large computation chunk
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Figure 3.3: Timeline in the case of small computation chunk

is performed with the basic out-of-core support. So it has the same performance

analysis as the basic out-of-core support. However, its execution pattern is a little

bit different as illustrated by the figure 3.3. Now more computation chunks (which is

abstracted in figure 3.3 as multiple versus one in figure 3.2) can be executed before

one page fault service or one out-of-core operation.

In this case, the computation chunk is small which implies the data size (i.e.

the memory footprint) associated with this computation chunk is small, therefore,

the memory could hold more computation chunks before the necessity of performing

page fault service or out-of-core operation. Assuming the average number of these

computation chunks is K, the following analysis shows the performance of the prefetch

optimization scheme is affected by this number K. There are two possibilities:

• K ∗Tc ≥ To: the execution pattern under this circumstance is illustrated by (c)

in figure 3.3. Actually this pattern is the best case we will have during emulation
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as the computation totally hides the latency of one out-of-core operation. This

happens if and only if we begin to prefetch the data of the dTo

Tc
eth computation

chunk after the first computation chunk that just starts to execute. In other

words, the lookahead has to be at least dTo

Tc
e chunks. This conclusion can be

viewed as a piece of advice to implement the prefetch optimization for basic

schemes if we wish to achieve the minimal emulation time. Practically, this is

very difficult to achieve. The following equation gives the ideal execution time

and performance ratio that can be obtained.

Tw = N ∗ Tc

Pr = Tc

Tc+fp∗Tp

• K ∗Tc < To: the execution pattern under this circumstance is illustrated by (d)

in figure 3.3. The analysis is almost the same with that of the other possibility

except that the latency of the out-of-core operation can not be hidden even in

the ideal case. Now the ideal execution time and performance ratio are different

as follows:

Tw = N ∗ (fo ∗ To)

Pr = fo∗To

Tc+fp∗Tp

Based on the equations, the emulation with the optimized out-of-core support

may or may not outperform the normal emulation.

In conclusion, based on the above analysis, the basic out-of-core scheme will not

buy anything compared with page fault service provided by the virtual memory sys-

tem unless the prefetch optimization is applied. In addition, when it comes to the

small computation chunk, the prefetch optimization will have to be more compli-

cated in terms of implementation in order to have the least emulation time since the

lookahead is larger than one.
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Chapter 4

Implementation of the Out-of-core
Approach

This chapter introduces the implementation of the basic schemes discussed in chapter

3.

4.1 Implementation Overview

So far, the three basic schemes presented in the previous chapter have been imple-

mented and integrated into the latest BigSim version. The optimization scheme that

applies the prefetch technique to improve the performance of out-of-core emulation

is still in progress.

From the perspective of software engineering, the implementation of the out-of-

core schemes should be modular so that this component can be easily decoupled

from the existing BigSim framework, and further enhancements to BigSim, such as

adding a new functionality, will not need to be mixed with the implementation of

the out-of-core component. According to this, we made our best to mix as few code

fragments of the out-of-core implementation as possible with the current code of

BigSim, and gathered all out-of-core related implementation into a separate module.

In addition, bringing the target processor in-core and taking it out-of-core resembles

the functionality of checkpointing or chare object migration which has already been

implemented in the Charm++ system. Therefore, we try to implement the out-

of-core emulation by maximizing the usage of existing software framework. The

packing/unpacking framework described later (in section 4.2) is such an example
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which is the fundamental software module in the Charm++ system to help implement

object-migration related functionalities.

Figure 4.1: The implementation skeleton of the first basic out-of-core scheme

The initial implementation is straightforward with the design schemes described

in chapter 3. The implementation skeleton of the first design is shown in figure 4.1.

Inside each worker thread’s scheduler code, the message processing function “bgPro-

cessMessage(msg)” is now embraced with a pair of functions that are respectively

responsible for bringing a worker thread in-core by “broughtIntoMem()” and taking

a worker thread out-of-core by “takenOutofMem()”. The two functions have almost

the same work flow. They both utilize the packing/unpacking framework in the

Charm++ system implemented by the use of “PUP::toDisk” and “PUP::fromDisk”

classes. “CkPupArrayElementsData” means packing/unpacking all chare array ele-

ments on a target processor. The difference as shaded in figure 4.1 lies in the pupper

instance having an additional state of “deleting” when the target processor is evicted.

The cause will be mentioned in section 4.3.2 where AMPI related implementation is-

sues are described.

The implementation skeletons of the last two designs are shown in figure 4.2. In

this case, the only change to the scheduler code is adding one function call “bgOut-

OfCoreSchedule(this)”, inside which two different schemes are implemented. Both

contain almost the same work flow but differ at three points (the first two are illus-
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trated by shaded area in figure 4.2). Firstly, they differ at the part of selecting and

evicting a worker thread when a certain condition is encountered. For the multiple

target processors based scheme (the second one), this refers to the condition that

the limit of the number of worker threads allowed in-core has been reached while

in the memory based scheme (the third one), this refers to the condition that the

maximum amount of memory allowed to use has been reached. Secondly, the third

scheme may require evicting multiple target processors to spare enough empty mem-

ory while the second does not need to. Lastly, they differ at the organization of

multiple worker threads. In the second scheme, the multiple worker threads are orga-

nized as a table since the number of worker threads is fixed while in the third scheme,

the worker threads are organized as a list because the number of worker threads is dy-

namically changing. Regarding the common points shared by both schemes in terms

of implementation, we can see inside function “bgOutOfCoreSchedule()”, functions

“broughtIntoMem()” and “takenOutofMem()” are reused as shown by the skeleton

Figure 4.2: The implementation skeleton of the last two basic out-of-core schemes
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codes. This demonstrates that the implementation of the first scheme is a founda-

tion for the implementation of other relatively complex design schemes. The other

common point worth mentioning is that when taking a worker thread out of memory

inside the current context of worker thread, we have to switch to the context of that

worker thread by calling “CmiSwitchToPE(int)” in order to pack data correctly, and

afterwards switch back to the current context.

4.2 Packing/Unpacking Framework

As mentioned before, the packing/unpacking framework facilitates the implementa-

tion of migration-related functionalities. This framework, a.k.a “pup” framework[15]

is a collection of efficient and elegant classes that enable the chare arrays of Charm++

to be migrated from one processor to another processor or to the disk (as in the case of

checkpointing or the out-of-core execution). It is designed to describe the in-memory

layout of an object. The framework can be extended to provide services to any oper-

ation that requires a traversal of the object state (typically a traversal over the object

data members).

The object migration is usually handled in a way that requires each class to

implement “pack” and “unpack” methods. The “pack” method serializes the object’s

data into a buffer before migration while “unpack” method de-serializes the object’s

data from the buffer upon the completion of migration. The functionality of both

methods is similar in nature, i.e., the object data is packed in a particular order and

unpacked in the same order as it is packed. Therefore, code duplication is resulted

from a common code skeleton shared by both methods, while differing only in the

actual operation that the method performs on the data members. The pup library

is designed for the purpose of preventing such code duplication. The developer of a

particular class only needs to implement a single “pup” method which takes a single
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parameter of class “pupper”. The role of this method is to perform a traversal of the

data members inside an object, i.e., to describe the memory layout of data members.

The actual operations that need to be performed on the data members are executed

by the pupper.

The following describes the classes contained in the pup library that are used in

this work:

• class PUP::er: this class is the abstract superclass of all the other classes in

the library. The “pup” method of a particular class takes a reference to an

instance of this class as parameter. This class has methods for handling all the

basic C++ data types. Additionally, this class provides function to query its

operation mode such as in packing or unpacking mode.

• class PUP::toDisk: the role of this class is to save the data members of the object

it operates on into a disk file. It is usually initialized with a file pointer.

• class PUP::fromDisk: the role of this class is just the opposite of the previous

class PUP::toDisk.

Sometimes it is quite tedious to write the “pup” method for a class, hence a

tool to automatically implement this method for each class is a convenient feature.

Recently, this has been realized by one of the Charm++ developers who utilized a

source-to-source translator to provide an initial support[16].

4.3 Implementation Issues

4.3.1 Charm++ Runtime Related Changes

Although the out-of-core emulation is viewed as a similar case of object migration

in the Charm++ system, it is different from the real migration in that the object
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taken out of the memory is still on the same processor, opposed to migrating to

other processors. This difference requires changes to the Charm++ runtime system

described as follows:

• Changes to chare array manager : In the real migration case, if one chare ar-

ray element migrates from one processor to another processor, the chare array

manager will regard this element dies on the first processor, thereby deleting its

related information in the array location manager, i.e., claiming this processor

now no longer owns this array element. This is not true for the out-of-core emu-

lation since the array element is just out-of-core, not actually dying. Therefore,

in the implementation of out-of-core emulation, we make changes to bypass this

part of code. The reason that we do not recover this state when the element is

brought into memory is because of the overhead incurred by the recovery.

The array manager’s listener scheme for real migration suffers from this differ-

ence as well. The listener scheme is invoked through the function “CkPupAr-

rayElementsData” which implies the semantic meaning that the object migra-

tion just happens. Therefore, in the real migration case, the listener is notified

some array element is migrating, and keeps waiting for the arrival, which will

never happen in the out-of-core emulation. If not disabling this listener scheme

in the out-of-core emulation case, we would see a hang of the program.

There are other places in the chare array management code sharing a similar

problem because of not differentiating the real migration from the out-of-core

emulation. A simple solution we used in our initial implementation is to add a

new state (i.e., the out-of-core state) for the chare array element to represent

this difference.

• Reduction problem: This difference also affects the correctness of reduction

implementation in the Charm++ runtime system. The reduction on a chare
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array is performed through a spanning tree. Each processor acts as a tree node

in this spanning tree. The processor uses a counter to record the number of

reduction messages it needs to receive. When that number equals the number of

elements of this array that stay on this processor, the processor will immediately

perform the operation associated with the reduction and pass the result to the

upper tree node. In the real migration case, the counter is modified to reflect the

fact that some array element has migrated to other processor, thus there is no

need in waiting for its reduction message. However, in the out-of-core emulation

case where the array element still stays in the original place, this counter should

not be modified. Otherwise, the processor will perform the reduction operation

earlier, thinking that itself has already collected all the reduction messages. But

the fact is that it will miss one reduction message, hence obviously invalidating

the whole global reduction operation. The new state added to the chare array

element is again used here to differentiate the case.

4.3.2 AMPI Runtime Related Changes

Regarding the out-of-core emulation of MPI programs, the AMPI thread which rep-

resents a MPI process will also be taken out of and brought into memory as it is a

chare array element on the target processor. With this pair of operations, the starting

virtual address of this AMPI thread is changed. In other words, if we use a pointer

variable in C++ to point to this thread, the value of this pointer variable is changed

when this thread is brought into memory again. More broadly speaking, all objects

that go through the pup operation (i.e., going through the out-of-core and in-core op-

erations) usually have their memory location changed. Such memory location change

is the root cause of various modification to the current implementation of the AMPI

system.

31



1. Scheduling problem of AMPI threads : In the original implementation of emula-

tion component of BigSim, the worker threads and the AMPI threads are both

scheduled by the Converse. This scheme works correctly for normal emulation.

But when it uses the out-of-core technique, this scheme fails because of the fol-

lowing reason. When the worker thread (the target processor) is evicted from

memory, the AMPI threads staying on this processor are simultaneously evicted

out. However, assuming one of these AMPI threads has been queued in the

Converse scheduler as a general message, and it is going to be the immediate

message to be processed, the execution of this thread will be incorrect since

this thread’s context information is not in-core. What is worse, this message is

consumed, i.e., the message to drive the execution of this AMPI thread is lost

when it is brought into memory next time. Therefore, the program will make

no progress at all!

The solution to this problem is to utilize the scheduling hooks as mentioned

in the introduction of Converse system in chapter 2. Through this scheduler

hooks, the AMPI thread is scheduled by the scheduler of the target processor it

belongs to. In other words, the invocation of an AMPI thread is now triggered

by the function “bgProcessMessage(msg)” inside the worker thread’s scheduler.

This ensures the context of the AMPI thread must be in-core, either if it is just

brought into memory before processing the message or if the worker thread is

already in-core. Remember that the thread invocation is done through a token

object (described in section 2.1.1), therefore, the pointer inside this token which

points to the to-be-invoked AMPI thread has to be updated when the thread

is brought into memory. With these changes, the emulation component is now

correctly executing AMPI threads even when the out-of-core technique is used.

Another benefit of this scheduling mechanism change for AMPI threads in the

emulation component of BigSim is that now it sounds more logically correct in
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terms of scheduling for AMPI threads as they are now scheduled by the worker

thread (i.e., the target processor) they belong to rather than the Converse layer

which is shared by all worker threads on the emulating processor.

2. MPI Init problem: The “MPI Init” call in the AMPI system is designed to create

the required AMPI threads (its number is usually equal to the number of target

processors in the emulation) and other related chare array objects. The creation

of these entities (including threads and chare array objects) is asynchronous as

it is invoked by Charm++ entry methods. Since the creation of some chare

array objects depends on the creation of AMPI threads, i.e., only after AMPI

threads have been created and initialized, the chare array object can be created,

a semaphore is used to guarantee this order. This semaphore contains pointers

to every other AMPI thread. Therefore, the problem of memory location change

of AMPI mentioned in the beginning of this section invalidates the semaphore

because the thread pointers in the semaphore are not updated in the original

implementation.

To solve this problem, one approach is to add a new data structure in the AMPI

thread to record which semaphore this AMPI thread participates in. Once

this AMPI thread gets pupped, we update the corresponding pointer in the

semaphore obtained through this new data structure. Additionally, when the

semaphore gets pupped, the new data structure in the AMPI thread should

also be updated to ensure the thread can obtain the correct semaphore. This

approach is quite complicated in terms of implementation.

The solution we adopted in the current implementation is not to use out-of-

core technique until the “MPI Init” call is finished. This method is simple

to implement and also very reasonable based on the fact that “MPI Init” is

frequently the first function call in MPI programs and at that time, the real
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application work has not started yet, hence there is very little consumption of

memory.

3. Isomalloc-related problem: Isomalloc is used in AMPI system to help migration

related functions[3]. It ensures that even after the AMPI thread migrates to

another processor, the thread’s stack will stay at the same virtual address in

memory that it had on the old processor so that the pointers embedded in the

stack will still work properly. As out-of-core is viewed as a special migration,

its implementation has to deal with this memory management module where

we identified two related problems.

First of all, in the case of emulating hundreds of AMPI threads on a single

physical processor, the virtual address space will be used up on 32-bit machines

for isomalloc. As a result, we naturally shift to use 64-bit machines to perform

the emulation as it is expected that a much larger virtual address space is

supported. However, the emulation still reported the virtual address space

was used up. It turns out the original isomalloc implementation used a 32-

bit variable to track the size of virtual address space that had been allocated.

Therefore, no matter it is on a 32-bit machine or a 64-bit machine, it will

definitely overflow when the size becomes very large, which signals the error that

the virtual address space is used up. By changing the variable to a machine-

dependent integer type (i.e., the size of the type is 32-bit (64-bit) when it is on

a 32-bit (64-bit) machine, the problem is resolved.

Secondly, regarding the pupper instance used in taking a target processor out

of memory, we found we need to set its state to be “deleting” which is shown

in the implementation of “takenOutofMem()” function (refer to figure 4.1).

This was identified through a segmentation fault we encountered when we were

emulating a MPI program with the out-of-core support. After many efforts

34



of debugging, this error was narrowed down to the memory allocation of a

variable. It was very strange that the virtual address of this variable returned

by the isomalloc module was only a few bytes away from the starting virtual

address of this AMPI thread’s stack. The root cause of this strange behavior

is that we forgot to set the state of the pupper instance to “deleting” when

swapping out an AMPI thread. The isomalloc manages both AMPI thread’s

heap and stack. From the point view of isomalloc, these two structures have

no semantic differences. Both heap and stack are part of the list of memory

blocks the isomalloc maintains. If the state of the pupper instance is not set to

“deleting”, when taking a thread out of memory, the thread’s stack is not freed

at all. When it comes to the pupping procedure of isomalloced memory blocks

associated with the thread, the blocks belonging to the stack are treated as part

of the heap. Considering the thread is back to memory again, the stack space

is treated as the free memory space as indicated by the pupping procedure.

Therefore, the allocation of a variable (should be a heap data) afterwards will

be very likely created on the stack space, thus corrupting the stack of the thread,

and encountering a segmentation fault.

4. Problems of data structure sharing by multiple pointers : This kind of problems

may be possibly quite specific to our implementation of the AMPI system. The

root cause of this kind of problems is mentioned at the beginning of this section.

One real example of this kind is the implementation of “MPI Irecv”.

Abstractly, this kind of problem is generalized as follows: assume we have two

pointers A and B, both pointing to a data structure C. The program progress

relies on checking the state changes inside C, which is performed through pointer

B. But changing the state of C is done through pointer A. During the out-of-

core emulation, C is pupped through pointer B. Therefore, B is always updated
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with the latest memory address of C, but A is not. When the state change of C

is triggered by pointer A, the state change of C is lost as it operates on a fake C

as shown by the figure 4.3. As a result, the program will never make progress

through the reference of B as it sees no state change in C. The basic approach

to solving this problem is to have only one pointer to C. Assume B is the

only pointer to C, and the access to C through pointer A is replaced by either

directly or indirectly through pointer B. “directly” refers to the change in the

codes that A is directly replaced by B, while “indirectly” refers to the method

of obtaining B through operating on A. We have to be cautious if we have to use

the indirect method. In this case, the value of A should not record the memory

address of B. Otherwise, when B gets updated through the pupping routine,

how does A knows the new memory address of B? Considering the example of

resolving such problem in the implementation of “MPI Irecv”, we have to use

the indirect approach. In that scenario, B is one element of an array which is

globally accessible, and its index is fixed during execution. Therefore we choose

A to record the array index of B, leading to an indirect access to C.

4.3.3 Modifications to Load Balancing Framework

Automatic load balancing is a very important feature of the Charm++ runtime sys-

tem. To enable this feature in the case of out-of-core emulation, there are some

Figure 4.3: The issue of one data structure shared by multiple pointers

36



subtle issues to be resolved. Firstly, each chare array element is associated with a

“Loc rec” instance in the Charm++ runtime. The load balancing framework on each

processor maintains an array with each element representing the load of a “Loc rec”

object. We refer to the array as “load array”. Since the “Loc rec” is associated with

a chare array element, the load balancing framework can automatically access the

chare array element through the reference of “Loc rec” and perform the migration

operation on it. Once a new “Loc rec” instance is created, the load balancing frame-

work will automatically assign the first free slot in the “load array” to represent the

load information of this new “Loc rec” object.

Figure 4.4: The issue of recording load information incorrectly for a chare object

Considering one scenario of out-of-core emulation as shown by figure 4.4, the

new “Loc rec” object B2 will be created upon the back to memory from disk of a

chare array element A. The load balancing system regards “Loc rec” object B2 as a

new one although it represents an old chare array element A whose load information

has been recorded through the old “Loc rec” object B1. As mentioned before, the

“Loc rec” object B2 now occupies a new slot in the “load array”. The following load

information of chare array element A will be recorded in the new slot rather than

in the old slot that “Loc rec” object B1 holds. Therefore, the load information of a

chare array element is not correctly collected, thereby leading to a wrong automatic

load balancing strategy. The fix to this issue is to insert the “Loc rec” object B2 to

the old slot as the object B1 holds in the “load array”.
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The second issue is related with the periodic built-in load balancing in the Charm++

runtime system. Once it is periodically triggerred, if it identifies that there is no chare

objects, hence no workload, on its processor, a round of load balancing is performed.

The identification is done through a variable named “client count” in the “LocalBar-

rier” class. When this variable reaches 0, meaning there is no chare objects on the

processor, the “LocalBarrier” object will send a message to the converse scheduler

to trigger a round of load balancing across the whole system. During the out-of-core

emulation, this periodic load balancing may happen if the emulation runs at least as

long as a period of this built-in load balancing. Considering the follow scenario, after

taking all the chare objects on a target processor from memory, the “client count”

variable is reduced to 0. The built-in load balancing happens to occur immediately

after this, before the target processor is back to memory. Therefore, a round of false

built-in load balancing takes place as the chare objects on that target processor do

not really disappear. To prevent this from happening, we simply avoid decreasing the

value of variable “client count” when the chare object is in the state of being taken

out of memory.
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Chapter 5

Experimental Results

We first present the results of verifying the correctness of using the out-of-core scheme

in the emulation, and then the performance evaluation of the initial implementation

of our out-of-core scheme on a kernel benchmark written with MPI.

Charm++ and MPI programs are the targets for our emulation, therefore, both

types of applications are chosen for the correctness verification part. But as for the

performance evaluation part, the MPI program is the focus because firstly, MPI is the

de-facto standard of programming model for writing large scale parallel programs, and

is expected to be still used on petascale platforms. In addition, MPI programs are

enabled by the AMPI system which is built-on Charm++ and has its own complexity of

implementation to be in accordance with the MPI specification. Therefore, we believe

MPI programs are good examples for evaluating out-of-core schemes comprehensively

for the emulation part of BigSim.

The testing environment is a dual quad-core Intel Xeon machine installed with a

64-bit version of Linux and 4GB memory in total. Although the performance eval-

uation is not done on the existing supercomputers, the specification of this machine

is very similar to a single node on those supercomputers. So we believe it is reason-

able to use this machine as the evaluation platform for our initial implementation of

out-of-core schemes.
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5.1 Correctness Verification

The main method of verifying the correctness of the out-of-core emulation is through

comparing the output of two emulation runs of the same application, one running

with out-of-core technique enabled and the other running without. As there are three

schemes as described in chapter 3, we have verified each of them in detail. But once

we ensure the correctness of the first scheme “per message based scheme”, since it lays

the foundation for the other two schemes, we could regard the out-of-core emulation

to be correct.

5.1.1 Verification by Charm++ Programs

First of all, we tested the so-called “hello world!” program in the Charm++ system.

This program first creates a chare array and then invokes a “sayHi” function on

each array element one by one. This program covers the test of the basic chare

array management inside the Charm++ runtime system in the case of out-of-core

emulation. By resolving the chare array manager related issues mentioned in section

4.3, we successfully passed this entry-level test.

Afterwards, we tested a reduction Charm++ program. This program again first

creates a chare array, each element of which has an integer variable member and is

initialized with a value equal to the array index of this element. Then, the program

does a global reduction on this chare array by summing up the values of each element’s

integer variable member and output the final result. Therefore, if there are k elements,

the reduction result will be
∑k−1

i=0 i. In the real test, we specified the array size to be

101 and emulated the reduction program on 8 target processors. The reduction result

output by the out-of-core emulation is correct since it is equal to 5050 as it should

be.
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5.1.2 Verification by a MPI 3D-Jacobi Program

The MPI 3D-Jacobi program is a kernel benchmark program which performs a 7-

point stencil computation with 3D decomposition. In the program, every chunk of

data communicates with its six neighbors in three dimensions via the “MPI Irecv”

and “MPI Send” pair. After the Jacobi relaxation computation, the maximum error

is calculated via “MPI Allreduce” among all local errors. Even more, after a ceratin

number of iterations, “MPI Migrate”(a MPI API extension on AMPI for explicitly

performing load balancing by migrating AMPI threads across the whole system) is

called to trigger the load balancing. In spite of the simplicity, this kernel benchmark

could be viewed as a relatively comprehensive test for the correctness of out-of-core

emulation in the context of AMPI system. The journey of passing this kernel bench-

mark excercised almost all the implementation issues we have described in the section

4.3. At first, we deliberately disabled the call to “MPI Migrate” to test the standard

MPI functionalities, by comparing the output which shows the relaxation error of each

iteration. We verified the correctness of the out-of-core emulation for this purpose.

Secondly, to verify the load balancing strategy is handled correctly, we explicitly spec-

ify the strategy as “RotateLB” meaning the AMPI threads migrate in a round-robin

manner after each call of “MPI Migrate” so that we know statically where each AMPI

thread will migrate to. To facilitate the checking, the program does “MPI Migrate”

in each iteration, and each AMPI thread output its position at the beginning of each

iteration. With such output information, we verified the load balancing system func-

tioned correctly.

5.2 Performance Results

The performance evaluation is focused on the kernel benchmark–MPI 3D-Jacobi pro-

gram. We have performed two different tests with different purposes in mind. One is
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intended to obtain the performance of the initial implementation of out-of-core com-

pared with the normal emulation case even the emulation totally fits into physical

memory. The other is a stress test where the normal emulation will use up all the

physical memory available on the emulating processor. This is the technically real

test for out-of-core implementation.

5.2.1 Results and Analysis of Normal Tests

We begin with the description of the result of the first test. The configuration is

as follows: 1 emulating processor, 8 target processors and only 1 AMPI thread (i.e.,

one MPI process) on each target processor. We selected the second one (described in

section 3.1.2 as the out-of-core scheme, and specified that only two target processors

are allowed in memory. Table 5.1 shows the performance comparison between the

emulation with and without out-of-core support.

problem size image size of emulation time s/step slowdown
per MPI process target proc (MB) w/o out-of-core with out-of-core ratio

103 1.03 0.024 0.755 31.46
503 2.31 0.146 1.716 11.75
1003 10.01 1.826 25.110 13.75
2003 67.55 15.728 184.816 18.11

Table 5.1: Performance comparison between emulation with and without out-of-core
support

The problem size in the first column of the table refers to the total number of

elements (of type “double”) the target processor will work on. An analysis of the

source code shows that the asymptotic execution time of one computation chunk is

about linear with the problem size for this benchmark. The second column shows

the corresponding image size of a target processor. The target processor will be

stored as a disk file when it is out-of-core, thus the image size is obtained through

monitoring when the size of this disk file becomes stable during emulation. Remember
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that the granularity of this out-of-core support in emulation is performed at a level

of per target processor, so the image size is an indicator of the cost of one out-of-

core operation (i.e., bringing one target processor into memory or taking it out of

memory). The slowdown ratio presented in the last column is quite expected as the

normal emulation (without out-of-core) has far fewer disk I/O operations than the

one with out-of-core has.

The trend of slowdown ratio with regard to the problem size is interesting but

explainable based on our theoretical analysis in section 3.2. The slowdown ratio in

this test could be approximately modelled by equation 3.4 (Pr = 1 + (fo ∗ To)/Tc).

Since the application computation and communication pattern is fixed in all four

cases of problem size and the out-of-core scheme used is identical, fo should remain

unchanged. Therefore, the change of slowdown ratio depends on the ∆To/∆Tc. Tc

is changed linearly with regard to the problem size, but To is not with regard to

the image size of one target processor. To not only includes the time spent on disk

I/O which could be viewed asymptotically linear with the image size of the target

processor, but also includes the time spent on re-laying out the memory for the target

processor upon its back into memory (i.e., the pupping routines of chare objects). We

think To should change asymptotically more dramatically than linear with regard to

the image size. From problem size 103 to 503, the Tc will change by 125 times, far

outweighing the To change as the image size of the target processor is changed by

about twice. Therefore, we have ∆To/∆Tc < 1, hence a drop in the slowdown ration.

Now considering the change of problem size from 503 to 1003, the Tc will change

by 8 times, and the image size of the target processor changes by around 5 times.

Considering that To will change more dramatically than linear as mentioned above,

we have ∆To/∆Tc > 1 but not much, resulting in a slight increase in the slowdown

ratio. The same applies to the increase of slowdown ration from problem size 1003 to

2003.
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5.2.2 Results and Analysis of Stress Tests

Finally, we present the result of the stress test. In this case, the configuration is

as follows: 1 emulating processor, 512 target processors and still 1 AMPI thread on

each target processor; the problem size per MPI process is chosen as 2003. Based on

the image size of target processor in table 5.1, although the total emulation memory

footprint calculated by 512 ∗ 67.55MB≈ 3.5GB is less than 4GB, the actual memory

footprint monitored through “top” command actually shows the emulation uses up

all the 4GB memory available. This is understandable because extra memory usage

such as by the OS, communication buffer and memory padding is not considered at

all in the calculation above. The second out-of-core scheme is also used. The number

of target processors allowed in memory is 2 in one case and 128 in another case. Both

cases showed the very close slowdown ration of 1.77 which is much smaller compared

with that in the first test. In this test, the slowdown ratio agrees with the equation

3.3, and the difference in ratio change from the first test also aligns with the previous

explanation of the first test results.
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Chapter 6

Summary and Future Work

Due to the various challenges brought by the petascale machines, the application de-

velopment for such ultra-scale machines becomes a daunting task for developers. In

particular, the traditional gap between the software deployment and the machine de-

ployment should be bridged so that the computation power of the petascale machines

could be fully utilized. Therefore, it is very important to have a software system to

predict the performance and identify the potential bottlenecks of applications that

will run on petascale machines before the actual machine is deployed. The BigSim

system is designed with the intent to provide such support. One specific challenge

in developing this system is the emulation of petabytes of memory that an applica-

tion will use on petascale machines. This thesis presents a preliminary investigation

of addressing this challenge by taking advantage of the out-of-core technique. We

have presented the design space for the out-of-core technique and described three

basic schemes in the context of the emulation component of the current BigSim sys-

tem. We also explored the possible optimizations for the basic schemes such as a

lookahead based eviction policy to precisely know which should be the next target

processor to be brought into memory, and a prefetch technique to allow the over-

lapping between the message processing and the I/O operation of bringing a target

processor into memory. The theoretical analysis afterwards points out not only the

importance but the complexity of the prefetch optimization in order to achieve good

performance. Besides the exploration of design space and the theoretical analysis of

the design schemes and optimizations, we showed our initial implementation of the
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three basic schemes and the issues we have encountered during the implementation

regarding the Charm++ programs and MPI programs enabled by the AMPI system.

The experimental evaluation of this initial implementation is presented as well, to

show the correctness in functionality of the out-of-core technique and the initial per-

formance results. Currently, considering the emulation for a MPI 3D-Jacobi kernel

benchmark, there is about 13 times slowdown on average, which is understandable,

by using the initial implementation of out-of-core support compared with the normal

emulation case where the whole emulation fits into memory.

Regarding the future work, we continue working on testing the basic out-of-core

schemes on real world applications such as a Turbulence program which is a candi-

date petascale application. This will make new features in BigSim more mature for

production mode usage.

The current performance gap leaves a lot of space for future work from the per-

spective of performance tuning. First of all, we could finish the implementation of

the prefetch optimization mentioned in the thesis. Secondly, we could investigate the

ways of doing out-of-core emulation at a finer granularity level so that the disk I/O

cost is reduced as much as possible. The current implementation is done at the level

of swapping one target processor at a time partially due to the constraints of existing

software infrastructure. For example, we could design a clean interface between the

Charm++ runtime system and the emulation component of BigSim in order to expose

finer-granularity information, such as the chare object level, to the emulation. With

this information, we may do the out-of-core emulation at a finer granularity level.

The future work also includes exploring other approaches to the emulation of

petabytes of memory such as modelling the memory footprint implicitly. It is observed

that many parallel applications produce instances which contain large data segments

which are either replicated, or differ only in content (say, different floating point

values). Furthermore, variations in this data generally do not influence the flow of
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control. The execution time to compute using that data is solely governed by its

size, thereby resulting in the observation that if the object of study is execution

time, rather than obtaining the actual numerical result, the difference in content is

irrelevant. Thus, the same data segment may be shared across target processors.

Furthermore, the replicated read-only data segments can be shared as well across

target processors without incurring any correctness penalty.
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