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Abstract

This paper describes parallel implementation of Prim’s algorithm for finding a minimum
spanning tree of a dense graph using MPI. Our algorithm uses a novel extension of adding mul-
tiple vertices per iteration to achieve significant performance improvements on large problems
(up to 200,000 vertices). We describe several experimental results on large graphs illustrating
the advantages of our approach on over a thousand processors.1

1 Introduction
The problem of finding a minimum spanning tree of a graph is an important building block for
many graph algorithms, and has been extensively studied by many scientists and mathematicians.
The problem has applications in the design of distributed computer and communication networks,
wiring connections, transportation networks among cities, and designing pipe capacities in flow
networks [1]. It also has indirect applications in problems of image processing, speech recognition,
network reliability, and surface homogeneity [1]. The problem of finding a minimum spanning
tree is as follows: given a weighted undirected graph G, with N vertices and E edges, we define a
minimum spanning tree (MST) as a connected subgraph of G for which the sum of the weights of
its edges is minimized. One of the pioneers in solving the problem of MST was R.C. Prim. Prim’s
algorithm is a greedy algorithm; it starts by selecting an arbitrary vertex as the root of the tree. It
then grows the tree by adding a vertex that is closest (has the shortest edge to) the current tree,
and adding the shortest edge from any vertex already in the tree to the new vertex. The algorithm
terminates once all vertices have been added to the tree. The sum of all added edges is the cost of
the MST [2]. The serial computational complexity of the algorithm is Θ(N2). This algorithm is best

1The above research was facilitated through an allocation of advanced computing resources on the BigBen system
at the Pittsburgh Supercomputing Center.
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suited for dense graphs. Several parallel versions of MST algorithms appear in literature, however
only a few of them describe an implementation of parallel Prim’s algorithm [2, 3, 4]. Among the
most common parallel algorithms for the MST problem is Boruvka’s algorithm: [5, 6, 7, 8, 9].
Many suggest new parallel algorithms for finding minimum spanning trees [10, 11, 12, 13, 14, 15].
However, we could find only one experimental documentation on the problem, Barr’s experiments
in [3]. His investigation shows results for parallel Sollin’s, Kruskal’s, and Prim’s algorithms on
sparse and dense graphs on up to 10 processors. His experiments confirm that Prim’s algorithm
performed best on 100% dense graphs, as expected [3, page 50]. In this paper we describe our
implementation of Prim’s algorithm for dense graphs and experimental results we obtained by
running the algorithm on 1 to 1024 processors. The machine we used to test the performance of
our algorithm was the Cray XT3 in the Pittsburgh Supercomputing Center. We present a discussion
of issues involved in large-scale parallelization of Prim’s algorithm, along with a novel extension
to the basic parallelization of Prim’s algorithm that increases its efficiency significantly. We also
describe the parallel implementation of our algorithm, and we illustrate the experimental results
we obtained by running Prim’s algorithm on graph sizes ranging from 5,000 vertices to as many as
200,000 using up to 1024 processors.

2 Baseline Algorithm
We implemented a parallel Prim’s algorithm adapted from its sequential version, distributing the
matrix across processors. This implementation was also described by Deo and Yoo in [4] and
Kumar in [2].

The graph is represented by an N by N adjacency matrix. Each cell (i, j) contains the weight
of the edge from vertex i to vertex j. Since the graph is undirected, the matrix is symmetric. The
matrix is split up by columns, each processor having N by N/P of the matrix (P = number of
processors). Thus, each processor is “responsible” for N/P vertices.

To generate the symmetric matrix we use the following scheme: each processor generates
edge weights for its elements below the diagonal using a pseudo-random function and sends a
copy of each below-diagonal submatrix to the other processor that requires the submatrix. The
edge weights are generated using a pseudo-random function that generates floating point numbers
between 0 and 1 in a uniform distribution. This way the graph data stays consistent on any number
of processors, since the edge weight depends on the (global) index of the vertices it connects.

The algorithm starts off by splitting up the graph adjacency matrix into N by N/P submatrices
among P processors. Processor at index 0 (P0) controls the flow of the algorithm. Vertex 0 is added
as the root of the minimum spanning tree. The procedure of the algorithm then is as follows:

1. Each processor locally determines the closest vertex to the current MST in its data partition.

2. The closest vertex in the global context is then determined by a single processor accumula-
tion operation - a MIN reduction on the edge weights of the closest vertices to the current
tree in each processor’s local matrix partition.
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3. After obtaining the result of the reduction, each processor updates its data structures accord-
ingly to now include the “winner” vertex v that had the shortest edge e to the current MST
across all processors. Tree cost is updated to include the weight of e.

4. The process repeats until all the vertices have been added to the minimum spanning tree.

In order to eliminate the need of obtaining the reduction result on one (main) processor and
then having it broadcast it to all other processors, we used MPI Allreduce function that stores the
result of the reduction on each processor. This eliminates the need for extra communication of the
broadcast operation.

2.1 Analysis of naive implementation of Prim’s algorithm
Since the algorithm’s structure involves a significant amount of communication (N reductions) and
the computation is very fine-grained, there is a limited range of values of N where it is possible to
achieve a speedup.

The following derivations use the following parameters:
Let N = problem size (vertices in the graph)
P = number of processors we use to run the algorithm
Pmin = minimum number of processors that fit the N by N matrix in their memory
M = the amount of memory/processor
a = proportionality constant of a reduction operation (about 50 us)
b = computation proportionality constant (a few nanoseconds)

The algorithm consists of N computation phases (finding the closest vertex), each followed by
a single reduction (checking which vertex is closest across all processors). We maintain an array
of size N/P on each processor that contains the shortest edge to the current tree of each vertex for
this processor’s partition. The array is updated during each iteration and then the shortest edge
is found by looping over its N/P entries. Thus the cost of finding the smallest edge to the tree is
N/P (to update the array with a new vertex added) + N/P (to find the minimum edge) = 2N/P. The
proportionality constant b encompasses this factor. The total execution time is given by:

T = total number o f iterations ∗ (cost o f each iteration) = N ∗ (reduction time +
b ∗ N

P
) (1)

When we increase the number of processors P, for a fixed problem size N, the second (compu-
tation) term decreases, but the reduction term increases (or at best, stays the same). In order for our
algorithm to achieve speedup, the computation time has to dominate communication time. Thus
we have:

Communication time < Computation time (2)

N ∗ reduction time <
b ∗ N2

P
(3)

reduction time = a ∗ log(P) (4)
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Combining equations 3 and 4 we get

a ∗ N ∗ log(P) <
b ∗ N2

P
(5)

a ∗ P ∗ log(P) < b ∗ N (6)

We will simplify the equation by assuming a ≈ 1000 ∗ b since in most modern supercomputers
the reduction time is on the order of several 10s of microseconds and the computation step is
usually on the order of a few nanoseconds. Thus, combining this simplification with equation 6 we
obtain:

1000 ∗ P ∗ log(P) < N (7)

The second condition is that the graph adjacency matrix must fit into the processors’ memory.
Each cell(i, j) in the matrix contains the weight of the edge connecting vertices i and j represented
as a double, and thus taking up 8 bytes of memory. Therefore, in order for the graph to fit in the
memory the following must be true:

N2 <
M ∗ Pmin

8
(8)

N <

√
M ∗ Pmin

8
(9)

If we assume that M = 1GB (as in Cray XT3 machine that we used for our experiments), we obtain:

N < 11585 ∗
√

Pmin (10)

Combining equations 7 and 10 yields the following constraints for N:

1000 ∗ P ∗ log(P) < N < 11585 ∗
√

Pmin (11)

Thus, using equation 11 we obtain: for P = 1 the constraint on N is 0 < N < 11, 585, for
P = 2 it is 2, 000 < N < 16, 383, for P = 4 it is 8, 000 < N < 23, 170. It is therefore
possible to obtain some speedup from running the algorithm on a problem of size N falling into
those constraints. However, when the number of processors goes up to 16, the constraints become
64, 000 < N < 46, 340 which is not possible. Thus, it is impossible to obtain speedup from
running the algorithm on large problems on 16 or more processors. Our theory is indeed confirmed
in our experiments, we are able to obtain small speedup on a graph of size 11,000, yet larger
problems do not scale.

When a problem gets large, the communication time dominates, and thus, one can not attain
any speedup. However, as the problems size gets large, the matrix cannot fit on one processor, so
in order to solve the problem we need parallel execution. We will now explore this fact.

In scientific computations, large problems need to be processed fast. If the problem is too
large to fit on one processor we require parallel execution. Our algorithm provides the means of
finding minimum spanning trees of very large dense graphs. By splitting up the matrix among the
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memories of 100s or 1000s of processors we are able to process graphs with as many as 500,000
vertices. Being able to process large graphs is the major advantage of using a parallel algorithm
to compute an MST. However, due to communication time domination, we do not observe any
speedup from using more processors. Thus, we focus on the efficiency of the algorithm. We
will now describe a novel enhancement that we added to our parallel implementation of Prim’s
algorithm to significantly improve its efficiency.

3 Novel enhancement to the Algorithm
As the analysis in section 2.1 indicates, the best performance for a dense graph of size N is obtained
by using the minimum number of processors Pmin(N) on which the problem will fit. Given this,
is there a way to improve the efficiency of the algorithm on Pmin(N) processors? Note that the
execution time is determined mostly by the number of reductions one needs to perform. Observing
that the cost of reducing one number is about the same as reducing a small collection of numbers
(say 16), we want to explore if we can reduce the total number of reductions, by adding multiple
vertices in each iteration. The textbook description of this problem states that one can only add
one vertex at a time [2] page 263. But as we show below, it is possible to add multiple vertices
per iteration, on average, if we are willing to do some extra computation (an extra reduction in
each iteration) and accept that in a small number of cases we may fail to add multiple vertices to
the spanning tree. We will denote the number of vertices added each step as K for the rest of this
paper. Several difficulties arise with this enhancement:

1. What vertices are we going to attempt to add in the current iteration and how are we going
to find them in the distributed matrix?

2. It is difficult to add more than one vertex per iteration due to edge insertion order dependen-
cies imposed by Prim’s algorithm, so how are we going to go about doing it and still obtain
a minimum spanning tree as a result?

We start by generating an array of K closest vertices to the tree in the current iteration. Because
of the distribution of the matrix among the processor memories, we need to perform a global
reduction to obtain an array of K globally closest vertices to the current MST. Since we need to
keep track of edge-vertex pairs, none of MPI’s simple built-in reductions will suffice, thus we
implemented a user defined reduction that generates an array of K objects each containing a vertex
index and associated edge weight for the K closest vertices to the current partial MST. Thus,
after the reduction is complete, we have an array of K globally closest vertices to the current
growing MST. In our implementation of the reduction, the elements in the resulting array are in
non-decreasing order by their edge weights.

After obtaining a list of the K nearest vertices to the current partial MST, it is now time to
determine which of those vertices and their associated edges can be safely added to the tree. We
must choose edges to add while guaranteeing that we will eventually produce a minimum spanning
tree of the whole graph. In order to find how many of the K vertices can be added to the MST
during this iteration we perform a series of “checks” on each vertex. For each vertex we perform
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the “checks” on we assume that the vertices preceding it in the K array have already been added to
the tree. We iterate through the array and perform checks one vertex at a time, either admitting it
to a “valid” list or rejecting it. We describe the “checks” as follows:

1. Check if any of the vertices added during this iteration have a shorter distance to the current
vertex in question, if so the current vertex is invalid.

2. Check if any of the vertices added during this iteration have a shorter distance to a vertex not
in the tree than the current vertex’s distance. If so the current vertex is invalid.

If both of the checks pass, the vertex is considered “valid” and we proceed to iterate through
the rest of the array. As soon as one invalid vertex is found, we stop the process. Each processor
performs the checks on its local matrix partition. Thus, after each processor determines the number
of valid vertices for its local partition, we need to perform another global reduction to determine
the minimum number of vertices across all processors that passed all the checks and can be added
to the tree. This time it is a built-in MIN INT reduction. After determining the number of vertices
that globally passed all the checks, each processor updates its data structures with the new vertices
in the MST and then generates a new array of K closest vertices. Similar to the original algorithm,
this process repeats untill all the vertices are in the tree and the MST is constructed. The pseudo-
code for the algorithm is as follows:

function primsMST(graph G){

countOfverticesInTree = 0

add vertex 0 to VerticesInTree

while(verticesInTree<vertices in G){

// on each processor

array[K] = findKclosestVertices(VerticesInTree)

globalArray[K] = AllReduce(array[K])

// globalArray now contains K globally closest vertices to the tree

K1 = determineValidVertices(globalArray)

// K1=number of vertices valid for this processor

K2 = Allreduce(K1)

// K2 = number of globally valid vertices

add globalArray[1..K2] to VerticesInTree, and update data structures

increment the countOfVerticesInTree by K2

}

}

We now present the proof of correctness of this enhancement to the algorithm.

3.1 Proof of correctness of the new method
Since Prim’s algorithm produces a valid MST, we show that our algorithm performs its vertex in-
sertions in the same order as the original Prim’s algorithm does, and thus, produces the same valid
MST. First we will consider one iteration of the algorithm.
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We will formally define the problem as follows:
Let G = the dense graph we are processing with V = set of all vertices and E = set of all edges
V∗ = set of vertices to be added in the current iteration,

sorted in increasing order of edge weights connecting the vertices to the current MST
V ′ = set of vertices in the current MST
V ′′ = V\V ′ i.e. set of all vertices not in the MST
vi = vertex at index i
eviv j = edge between vertices vi and v j

sevi = shortest edge between vi ∈ V∗ and any v ∈ V ′′

evi = edge of vi ∈ V∗ at the time of generation of V∗

Our algorithm adds vertex vi iff

1. ∀vi, v j ∈ V∗ | j < i, eviv j > evi (assumed v j ∈ V ′ at the check time of vi) (check 1)

2. ∀vi, v j ∈ V∗ | j < i, sev j > evi (assumed v j ∈ V ′ at the check time of vi) (check 2)

Assume both our algorithm and original Prim’s algorithm start at the same point. We show that
our algorithm added v0, v1, ..., vK−1 to V ′ iff the original Prim’s algorithm also added v0, v1, ..., vK−1

to V ′ connected to the MST by ev0 , ev1 ...evK−1 in its consecutive iterations.
Proof by strong induction: Assume that ∀vi ∈ V∗ | i < K − 1 our algorithm added vi (connected

by evi) to the MST in the same order as the original Prim’s algorithm. Consider vK−1. Show that
our algorithm adds vK−1 connected by evK−1 to the MST iff the original Prim’s algorithm does as
well.

• If our algorithm added vK−1 connected by evK−1 to V ′ then by (1) and (2) evK−1 is the shortest
edge to the current MST, since V∗ is sorted and there is no edge in the current MST (with
already v0, v1, ..., vK−2 ∈ V ′) that is shorter than evK−1 . Thus, the original Prim’s algorithm
would pick vK−1 connected by evK−1 for its next addition to the MST.

• If Prim’s algorithm added vK−1 connected by evK−1 to the MST, then evK−1 is the shortest edge
among all edges “coming out” of the MST (with already v0, v1, ..., vK−2 ∈ V ′). Thus, check
1 and check 2 of our algorithm will pass on vertex vK−1, since all sev j and evK−1v j will be
greater than evK−1 ( j < K − 1) since evK−1 is the globally shortest edge from the current MST
(containing v0, v1, ..., vK−2), and thus the checks will pass and our algorithm would add vK−1

to the MST.

By the strong induction argument our algorithm adds vertices in the same order connected by
the same edges to the growing MST as the original Prim’s algorithm in one iteration. Since the
process repeats for each iteration until all vertices in G are in the MST, in each step the shortest
edges are added to MST. Thus the algorithm constructs a minimum spanning tree of G.

An illustration of one iteration for K=5 of the new method is shown in Figure 1. The table on
the right at each step represents V∗ for this iteration. E denotes evi , SE denotes sevi - (the shortest
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edge from a vertex in the tree to a vertex not in the tree), and the circled vertex is the one being
considered (checked) in the current step. The MST contains vertex F, and we wish to add the 5
vertices at once to the MST. (Assume that there are other vertices in the graph, but are not shown).
In step 1 the MST contains vertex F and the spanning tree cost is 0.0. Vertex C is added in this
step since it has the shortest edge to F in the whole graph. In step 2 the MST now contains vertices
F and C and vertex B is under consideration. B is added since (eBC = 5.7) > (eB = 1.5) and (seC =

2.9) > (eB = 1.5). Similarly in step 3 vertex A is added since eA = 1.7 is less than eAC, eAB, seC,
and seB. In step 4, however, vertex E does not pass the checks since (seA = 0.3) < (eE = 2.6)
(the edge from A to D is 0.3) and, thus it not is added to the tree in this iteration. These vertices
are actually added to the tree if the program is run on 1 processor. On multiple processors, the
valid number of vertices in V∗ is first locally determined on each processor’s local matrix partition
and then, via a global MIN INT reduction, the minimum number of vertices that globally passed
the checks on all processors is determined, and those vertices are added to the MST with their
corresponding edges.
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Figure 1: Example of one check iteration

3.2 Analysis of the new method
We now show a brief analysis of our new technique. We will use the same naming convention
as with the analysis of the original implementation, we only add variable K = number of vertices
added per iteration of the algorithm.

With the technique of adding multiple vertices per iteration the computation time increases as
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follows:

Computation time = Time to f ind K closest vertices + check time (12)

The time to find K closest vertices for the whole algorithm is N2

P∗K since we need to process all
vertices in the graph, but we are doing N/K iterations instead of N. The time to perform checks
consists of finding shortest distance to K vertices for each processor’s N/P vertices N/K times.
Thus, we obtain:

N2

P ∗ K
+ K ∗

N
P
∗

N
K

(13)

N2

P ∗ K
+

N2

P
=

N2 + K ∗ N2

K ∗ P
=

(K + 1) ∗ N2

K ∗ P
(14)

The communication time, decreases by a factor of 2
K , since we need to perform 2 reductions

per iteration and there are a total of N/K iterations.

Communication time =
2N
K
∗ log(P) (15)

Thus, the computation time increases by a factor of K+1
K and the communication time decreases

by a factor of 2
K . Thus, the total number of iterations decreases substantially by a factor of K

and the computation time increases by a small factor of K+1
K . This allows us to obtain significant

performance improvement for running the algorithm on large graphs with varying values of K. We
present our experimental results in the next section.

4 Experimental Results
In this section we describe the experimental results we obtained by running our proposed algo-
rithm on graphs of various sizes on the Cray XT3 Supercomputer. The only publication we found
that contained experimental results on parallel Prim’s algorithm was Barr et. al ([3]). In their
experiments, Barr et. al. investigated the performance of parallel Kruskal’s, Sollin’s and Prim’s
algorithms on graphs of various densities on 1 to 10 processors. They confirmed that Prim’s algo-
rithm performs best on dense graphs. In our research we only focus on dense graphs, thus using
the best algorithm for the problem. In Barr’s experiments, Prim’s algorithm obtained speedup of
4.4 on 10 processors. Our best speedup obtained for small graphs is 2.91, however, the comparison
to Barr’s results is not very relevant since the XT3 Supercomputer is much faster than the parallel
machines Barr used in his experiments in 1989.

Figure 2 and Table 1 show a decrease in the execution times and thus resulting speedups for our
algorithm on up to 16 processors. The graph sizes are given in number of vertices. The speedup
was obtained by dividing the best sequential time by the parallel time.

When the algorithm is run on graphs of size larger than 11,000, the matrix does not fit on
one processor (Cray XT3 1GB of memory/node) and thus we need parallel execution. We do
not observe any significant speedup from increasing the number of processors our algorithm is
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Figure 2: Parallel Prim’s performance on small graph sizes on Cray XT3. Execution time (left)
and obtained speedup (right)

# processors 5,000 vert 6,000 vert 8,000 vert 10,000 vert 11,000 vert
1 0.385(1) 0.385(1) 1.056(1) 1.563(1) 1.887(1)
2 0.259(1.48) 0.363(1.56) 0.630(1.68) 0.977(1.60) 1.174(1.61)
4 0.209(1.84) 0.278(2.04) 0.439(2.40) 0.632(2.47) 0.749(2.52)
8 0.231(1.67) 0.288(1.96) 0.422(2.50) 0.565(2.76) 0.648(2.91)

16 0.293(1.31) 0.354(1.60) 0.479(2.20) 0.613(2.55) 0.684(2.76)

Table 1: Execution time in seconds and speedup in parentheses of Prim’s algorithm on small graph
sizes (data from Cray XT3)

run on. Figure 3 illustrates an example of it for N=25,000, 50,000 and 100,000. Thus, the best
performance on large graphs is obtained by running the original parallel Prim’s algorithm (adding
1 vertex per iteration) on the smallest number of processors that fit the graph matrix. Once we
attempt to increase the number of processors, the communication overhead dominates over the
computation on each processor and, thus, no speedup is observed.

However, we observe significant performance improvement by running our algorithm with the
new enhancement of adding multiple vertices per iteration. We show data for graphs of sizes
25,000, 50,000, 100,000, and 200,000 on 32-1024 processors. Our experimental results are sum-
marized in Figure 4. Each problem size is run on the smallest number of processors that fits it, and
the corresponding values are given in the legend.

We show the results for running the algorithm with K=2 and increasing it up to 32. For 25,000
vertex graph the performance improvement is pretty insignificant: the K=4 case is only 1.05 times
faster than K=2 case on 32 processors (2.64 vs 2.77 seconds). However, when we increase the
graph size to 50,000 we observe a significant performance improvement: for 50,000 graph the
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Figure 3: Parallel Prim’s execution time (seconds) on large graphs with increasing number of
processors

Figure 4: Parallel Prim’s execution time (seconds) on large graphs with increasing K value
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K=8 case runs 3.1 times faster than K=2 algorithm on 128 processors (2.06 seconds vs. 6.45
seconds). Similarly for problem of 100,000 vertices we get a 6.37 fold improvement with K=16
case over K=2 case on 512 processors (2.61 seconds compared to 16.6 seconds). Finally, for graph
of size 200,000 vertices the performance improves by 8.7 for running the algorithm with K=32
(48.0 seconds vs. 5.5 seconds). This significant improvement is due to our novel enhancement
reducing the number of reductions/iterations that needs to be preformed. Instead of performing N
iterations, we perform N/K iterations in the best case. However, our experiments show there is a
limit to the optimal K value, after which we observe execution time increase (see Figure 5). Thus,
for each graph size we can successfully add up to that optimal K number of vertices per iteration,
once we attempt to add more vertices, the checks tend to fail, and thus work is wasted generating
the K array.

Our experiments show that we can obtain small speedups on graphs of small size, yet when
we attempt to process large graphs, no speedup is attainable because of communication overhead.
However, our new technique of adding multiple vertices per iteration yields significant perfor-
mance improvement on large graphs. Thus, we are able to process large graph problems efficiently.

Figure 5: Optimal value of K for each graph size that yields most significant performance improve-
ment

4.1 Future Work
In our experiments, we observed that the communication overhead dominates computation time
when running the algorithm on large graphs. It is due to the idle time during each reduction
operation between each phase of the algorithm. We illustrate one iteration of the algorithm in
Figure 6.

The iteration starts with each processor determining K closest vertices in its local matrix par-
tition. Reduction 1 determines K globally closest vertices to the current tree. This is followed
by the checks function to determine valid vertices that can be added. Reduction 2 determines the
minimum number of valid vertices across all processors, that number of vertices is added to the
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Figure 6: Timeline of one iteration of Prim’s algorithm (adding K vertices/iteration version).

tree and the process repeats. It is easy to notice that a large portion of each CPU time is idle, while
the reduction result is being computed. To gain some improvement we could overlap the idle time
during the reduction with some useful work. To accomplish this we would need asynchronous
message passing. We have experimented with this idea using Charm++ programming language
that offers asynchronous message passing among parallel objects. Charm++ is a portable parallel
programming language based on the migratable object programming model and resultant virtual-
ization of processors. Using the asynchronous messages to our advantage we overlapped some
useful work with the communication idle time: while the processors are waiting for the Reduction
2 result (number of vertices that are valid and can be added in the current iteration) we update the
data structures as if all K vertices passed the checks. In case of a success, all K vertices are added,
we can skip the data structure update in the next function thus saving computation time. We have
not observed significant improvement with this technique, however we plan to experiment more
with this idea and get more promising results taking advantage of Charm’s asynchronous message
passing.

5 Summary and Conclusion
We analyzed effective parallelization of Prim’s algorithm for dense graphs. A simple analysis
showed that it is not possible to attain strong speedups for graphs beyond a small size. Further,
for a given graph with N vertices, the best performance is attained on the minimum number of
processors, Pmin(N), on which the graph will fit. Since we still wish to effectively parallelize
this computation, we looked for opportunities for improving the efficiency of the algorithm on
Pmin(N) processors. A novel technique we identified attempts to add multiple vertices to the tree
in each iteration. A checking step with an additional reduction is then necessary. Although it may
fail in some iterations, we showed, empirically, that this strategy leads to significantly improved
performance. In one case, the performance improvement was almost ten-fold.

We presented performance data of our implementation on PSC’s BigBen, a Cray XT3 machine.
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Emprical data upto 1024 processors and for N up to 200,000, validates the benefits of our strategy.
We think further improvements can be obtained on machines and programming systems that sup-
port asynchronous reductions, by off-loading some portion of the computation during one of the
reduction phases in each iteration. In any case, we believe that we have presented one of the most
efficient parallel Prim’s algorithm and its implementation to date.
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