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Abstract

In this paper, we present a novel parallel implementation of ex-
trinsic initially rigid cohesive elements in an explicit finite element
solver designed for the simulation of dynamic fracture events. The
implementation is based on activiating instead of inserting the co-
hesive elements and uses ParFUM, a parallel framework specifically
developed for simulations involving unstructured meshes. Issues as-
sociated with the spatial and temporal convergence of the resulting
scheme are discussed, together with aspects of the parallel imple-
mentation. We present scalability results obtained with the paral-
lel cohesive finite element code which is validated by simulating the
trapping of a crack along an inclined material interface. Keywords:
Cohesive Finite Elements, Parallel Programming, Dynamic Fracture

1 Introduction

Due to its flexibility in capturing complex geometries, loading conditions,
and material models, the cohesive finite element (CFE) scheme has been
the method of choice for simulating a wide range of dynamic fracture events
over the last decade [?, ?, ?, ?]. In this finite element formulation, con-
ventional (volumetric) elements are used to capture the bulk mechanical
response of the material while interfacial (cohesive) elements are used to
model the progressive failure of the material and the associated propagation
of cracks in the discretized domain. Cohesive elements basically act as dis-
tributed non-linear springs, resisting the separation of volumetric elements,
i.e., the introduction of displacement jumps in the domain, according to a
prescribed traction-separation cohesive law. In two-dimensional (2D) prob-
lems, triangular volumetric elements are usually adopted to maximize the
number of potential crack paths, while the cohesive elements are collapsed
quadrilateral elements introduced at the interface between two adjacent
volumetric elements, as shown in Figure 1(a). In that schematic, ∆ de-
notes the displacement jump across the cohesive element and ∆n and ∆t

are the corresponding normal and tangential components.
Two types of cohesive constitutive laws have been used in the cohe-

sive finite element modeling of dynamic fracture events. The first cohe-
sive model, usually referred to as intrinsic, relates the cohesive traction to
the displacement jump through a phenomenological relation that typically
starts from the origin, reaches a maximum (corresponding to the failure
strength) and then decays back to zero, at which point the failure process
is completed (Figure 1(b)). The second model, referred to as extrinsic, typ-
ically assumes that the cohesive response is initially rigid and therefore only
models the failure process through a monotonically decreasing relation be-
tween the failure strength and the displacement jump (Figure 1(c)). These
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Figure 1: (a) Cohesive finite element concept, showing two 6-node trian-
gular volumetric elements tied by a 6-node cohesive element shown in its
deformed configuration. In its initial form, the cohesive element has no
area and the adjacent nodes are superposed. (b) Schematic of an intrinsic
cohesive failure law for the tensile failure case, for which the tangential
displacement jump ∆t is zero. (c) Generic extrinsic cohesive law.
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two approaches thus differ in the way they capture the initial response of
the cohesive element. In the intrinsic scheme, the cohesive elements are
present in the finite element mesh from the start and, due to their finite
initial stiffness, contribute to the deformation of the medium even in the
absence of damage. In the extrinsic scheme, the cohesive elements are ini-
tially rigid and are only introduced in the finite element mesh based on an
external traction-based criterion.

The key characteristics of the failure process are, however, identical
for both models: in both cases, the failure process is captured with the
aid of a phenomenological traction-separation law defined primarily by the
failure strength (denoted by σmax for the tensile failure case depicted in
Figures 1(b) and (c)) and the critical value of the displacement jump (∆nc)
beyond which complete failure is assumed. The area under the cohesive
failure curve defines the fracture toughness (usually denoted by GIc in the
tensile (mode I) case). Although various cohesive laws have been used
in the past (linear, bilinear, exponential, polynomial, trapezoidal, etc.),
the actual shape of the cohesive failure curve is considered to play only a
secondary role on the failure process in many situations, especially in brittle
materials for which the cohesive failure zone is very small. A discussion of
the similarities and differences between the two cohesive failure models can
be found in [?].

Due to its relative simplicity of implementation, the intrinsic cohesive
finite element scheme has been more widely adopted than its extrinsic coun-
terpart. However, as shown in [?, ?], intrinsic elements suffer from conver-
gence issues associated with the impact of the initial cohesive stiffness on
the computed strain and stress fields, and thereby, on the fracture process.
To achieve convergence, intrinsic cohesive elements should be used only to
simulate dynamic fracture problems for which the crack path is prescribed
(such as in interfacial fracture events). In the case of arbitrary crack mo-
tion and branching, a finite distance should be introduced between cohesive
failure surfaces. The issues of spatial and temporal convergence for intrin-
sic and extrinsic cohesive elements are discussed in [?, ?] and are revisited
in Section 4.1 for the case of both straight and arbitrary crack paths.

Dynamic fracture simulations need a very fine mesh near the failure
zone to accurately capture the stress concentrations and the failure process,
especially for brittle systems. Also, there is a need for a large domain to
capture the loading accurately and avoid premature wave reflections from
the boundary. Very large domain combined with fine mesh requirements
make the problem computationally very challenging. Parallel simulations,
where the problem domain can be partitioned into smaller domains and
solved for on different processors, provide a powerful tool to solve these
problems. Parallel computing can be used in conjunction with adaptive
mesh refinement and coarsening [?].
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The objective of this paper is to develop and implement a parallel CFE
scheme based on activated extrinsic cohesive elements. As mentioned ear-
lier, extrinsic cohesive elements are chosen over intrinsic elements to pre-
vent the effects of artificial compliance due to the initially elastic part of
intrinsic cohesive elements. The parallel implementation of this scheme
poses a set of challenges pertaining to the partitioning of the finite element
mesh and to inter-processor communication due to the presence of cohesive
elements at the interfaces. The complexities of communication are further
increased with extrinsic cohesive elements because there are multiple types
of elements in the discretization, each containing different fields.

To implement the CFE code in parallel, we use the Parallel Framework
for Unstructured Meshing (ParFUM) [?], a portable library for building
parallel applications involving unstructured finite difference, finite element,
or finite volume discretizations. The parallel framework is used in this work
to partition the unstructured mesh, to distribute the partitions to proces-
sors and to setup the inter-processor communication lists. ParFUM is built
on the Charm++/AMPI Adaptive Runtime System and thereby provides
additional features such as dynamic load balancing between processors and
adaptive overlapping of communication and computation [?].

This paper describes the use of the parallel framework ParFUM to im-
plement our CFE scheme. Only a small number of libraries for handling
parallel unstructured meshes exist. Other large parallel frameworks could
have been used in place of ParFUM. Unfortunately some of the most fully
featured production level frameworks are not available to the public and
thus would not be suitable candidates for our application. Sandia Na-
tional Laboratories’ SIERRA[SE04] is one such unreleased framework. The
University of Heidelberg’s UG [?] is a large publicly available framework.
Both SIERRA and UG support fully unstructured meshes on distributed
memory supercomputers with a variety of compatible solvers. The AOMD
framework[?] also provides a parallel mesh abstraction which works on dis-
tributed memory machines. deal.ii is a common finite element framework,
which unfortunately works in parallel only on shared memory machines.
Although deal.ii cannot utilize a distributed memory computer system, it
does interface with solver libraries such as PETSc which are parallelized
for clusters[?]. libMesh can similarly use parallel solvers in these regards
to deal.ii [?]. The extrinsic scheme proposed in this paper uses explicit
timestepping and therefore does not require support for a solver library.
The scheme requires just support for partitioning, distributing, and access-
ing an unstructured mesh on a distributed memory computer cluster.

The emphasis of this work is on the inter-process communication in par-
allel simulations performed with the extrinsic CFE scheme. Though mesh
adaptivity would further improve the efficiency of the proposed parallel
implementation, only the parallel implementation of extrinsic cohesive ele-
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ments is discussed here. This paper provides in Section 2 the extrinsic con-
stitutive law and the associated CFE formulations along with the stability
conditions. Section 3 describes our parallel methodology and implemen-
tation for the extrinsic cohesive elements that overcomes various issues of
partitioning and inter-processor communications. Section 4 presents a se-
ries of test simulations to verify and validate the developed parallel extrinsic
CFE scheme. The validation study involves the numerical simulation of dy-
namic fracture experiments performed on brittle specimens bonded along
an inclined interface [?]. Finally, in Section 5, we present scaling results
for the interface problems using the current parallel implementation.

2 Cohesive constitutive law and cohesive fi-
nite element formulations

The cohesive failure law adopted in this work is the linear extrinsic relation
used by [?], in which the cohesive traction T during the failure process is
described by

T =
T

∆
(β2∆t + ∆nn), (1)

where T denotes the effective cohesive traction defined by

T =
√

β−2|Tt|2 + T 2
n (2)

and Tn and Tt are the normal and tangential tractions, respectively. In
(1), ∆, ∆n and ∆t are defined by

∆ =
√

β2∆2
n + ∆2

t ∆n = ∆ · n∆t = |∆t| = |∆ − ∆nn| (3)

where n is the normal vector defining the undeformed orientation of the
cohesive element. The parameter β in (1)-(3) assigns different weights to
the sliding and normal opening displacements.

The traction vector T before the activation of cohesive element is com-
puted from the stress fields of the neighboring volumetric elements as

T = σavern, (4)

where σaver is the average stress tensor of the two adajacent volumetric
elements.

The failure process is initiated when either the normal traction Tn across
the cohesive interface reaches the critical tensile failure strength σmax or
the tangential component Tt, while Tn > 0 (i.e, failure is initated only
for tensile loading), reaches the corresponding shear failure strength τmax.
A cohesive element completely fails when either of the displacement jump
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Figure 2: One root is chosen as a representative for the multiple node
copies. When surrounding cohesive elements are inactive the node copies
have identical displacements and velocities as the root node.

components ∆n or ∆t reaches the corresponding critical opening displace-
ments ∆nc or ∆tc. The critical energy release rate of failure in mode I
(GIc) and mode II (GIIc) are related to the corresponding components of
strength and critical displacement jump as follows:

GIc =
σmax∆nc

2
, GIIc =

τmax∆tc

2
. (5)

When a cohesive element is not active, each pair of nodes across its
width effectively represent a single regular finite element (FE) node thus
introducing a discontinuity in the mesh representation. As every internal
edge in the mesh is a cohesive element, inactive cohesive elements result
in a situation where a single node of a regular FE mesh has multiple node
copies in the CFE implementation as shown in Figure 2. To overcome this
problem, a random node is chosen amongst the multiple node copies as the
representative root node and it represents all nodes at the location for all
computational purposes. The masses and internal forces of all the nodes
represented by this node are added together and the cumulative values are
assigned to this representative node. Thus continuity of the mesh across
inactive cohesive elements is ensured.

The basis of the finite element formulation is the following principle of
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virtual work defined over the deformable solid Ω:∫
Ω

(S : δE− ρoü.δu) d Ω −
∫

Γex

Tex.δu d Γ −
∫

Γin

T.δ∆ d Γ = 0

where Tex denotes the external tractions on the external boundary Γex and
T corresponds to the cohesive tractions acting along the internal boundary
Γin across which the displacement jumps ∆ exist. In (6), ρo is the material
density, u is the displacement field, a superposed dot denotes differentia-
tion with time, S and E are the second Piola-Kirchoff stress tensor and
the Lagrangian strain tensor, respectively. The principle of virtual work
described by (6) is of standard form except for the presence of the last
term, which is the contribution from cohesive tractions. The semi-discrete
finite element formulation can be expressed in the following matrix form:

M a = Rin + Rex (6)

where M is the lumped mass matrix, a is the nodal acceleration vector and
Rin, Rex respectively denote the internal and external force vectors [?].

With the aid of the second-order central difference time stepping scheme
[?], the nodal displacements, velocities and accelerations at every time step
are computed as

dn+1 = dn + ∆tvn +
1
2
∆t2an, (7)

an+1 = M−1(Rin
n+1 + Rex

n+1), (8)

vn+1 = vn +
1
2
∆t(an + an+1), (9)

where a subscript n denotes a quantity computed at time t = n∆t. The
time step size ∆t is chosen such that it satisfies the CFL stability condition
[?]

∆t = χ
se

Cd
χ < 1, (10)

where se is the smallest edge in the mesh and χ is Courant number. Cd is
the dilatational wave speed, given in the plane strain isotropic case by

Cd =

√
E(1 − ν)

(1 + ν)(1 − 2ν)ρo
, (11)

where E is the stiffness of the material and ν is the Poisson’s ratio.
To reduce the numerical oscillations inherent in the explicit scheme,

artificial viscosity is also incorporated in the finite element formulation [?].
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3 Parallel implementation

The main goal for the implementation of the CFE scheme was to guarantee
excellent parallel performance on hundreds of processors while quickly par-
allelizing the initial serial Fortran code. This section describes the parallel
implementation and some of the design considerations. The implementa-
tion uses the ParFUM framework because it is one of the best free, scalable,
and portable frameworks that provides support for unstructured meshes.

The ParFUM (Parallel Framework for Unstructured Meshing) frame-
work is a flexible framework for building unstructured mesh based Finite
Difference, Finite Volume, or Finite Element applications [?]. It can also
simplify porting of serial codes that utilize unstructured discretizations to
parallel computing platforms. This section summarizes the steps used to
parallelize the extrinsic cohesive element scheme. Section 5 describes the
efficiency and scalability of the resulting parallel implementation, which
is highly portable across most major types of high performance systems
including clusters, shared memory machines, and custom parallel machines
such as IBM BlueGene/L.

ParFUM is a framework is built upon Charm++ and AMPI[?, ?].
Charm++ is a parallel language and adaptive runtime system that pro-
vides a robust, efficient, and portable system for writing parallel programs.
The model of parallel programming used in Charm++ is that of migratable
objects. A program written in Charm++ is a collection of C++ objects
with remote asynchronous method invocations for communication between
objects. The Charm++ runtime system determines the mapping of objects
to processors and provides dynamic load balancing by migrating objects be-
tween processors. AMPI is an adaptive MPI implementation built upon
Charm++ that supports multiple MPI processes on each physical proces-
sor. Charm++ and AMPI support a variety of dynamic instrumented load
balancing schemes [?, ?, ?, ?, ?, ?] as well as a number of advanced fault
tolerance schemes [?, ?, ?]. ParFUM therefore provides a number of useful
productivity enhancing features without requiring a user to be an expert
parallel programmer.

To port the serial CFE application to the parallel ParFUM framework,
a key modification is to split the code into two parts as shown in Figure 3.
The first part of the application is an init function that loads a serial mesh
on a single processor. The second part is a driver function that performs
the majority of the computation across multiple processors. After init
has finished, ParFUM partitions the mesh and builds communication lists.
Then the user’s driver function runs in parallel, with an instance asso-
ciated with each partition of the mesh. The driver routine creates some
auxiliary data structures and then performs the explicit integrations for
the associated mesh partition in a timestep loop. The driver routine also
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Driver
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Figure 3: Task decomposition for a ParFUM application. init runs once,
and driver runs once for each partition of the mesh. Each driver is
associated with an MPI process, with potentially large and varying numbers
of driver routines on each physical processor.

synchronizes values along the partition boundaries during each timestep.
This synchronization is described later in more detail.

3.1 Parallelization issues

Parallelizing the serial CFE solver is complex because it uses an unstruc-
tured heterogeneous mesh containing both triangular volumetric elements
and quadrilateral cohesive elements. Although the parallelization is rela-
tively straightforward, planning is required to best use ParFUM’s features
with such a mesh. The implementer must determine how to form ghost
layers which are used to synchronize values from elements on the boundary
of one partition to the neighboring partitions. The ghost layer synchroniza-
tion is closely tied to the topology of the mesh. ParFUM supports ghost
layers for heterogeneous meshes, so the first implementation design used a
heterogeneous mesh containing triangles and quadrilaterals. A number of
difficulties were discovered with this seemingly intuitive design. The im-
pediments were initially non-obvious, so this section describes them. The
final implementation registers only the homogeneous triangular mesh with
ParFUM, while maintaining its own auxiliary data structures and connec-
tivity tables for the cohesive elements. This section discusses the use of
ghost layers in ParFUM as well as some design decisions for our implemen-
tation.
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In most parallel FE applications written for distributed memory ma-
chines, the mesh is partitioned and distributed across the nodes in the
machine with one or more partitions belonging to each processor. In addi-
tion to each partition, a set of ghost elements and nodes is required. These
ghost elements are essentially read-only copies of elements from a neigh-
boring partition. Values, such as displacements and forces, associated with
the elements in the ghost layer are updated from the original elements. In
ParFUM there are shared nodes, which are nodes that belong to multiple
partitions, as well as ghost elements and ghost nodes, which are read-only
copies of elements and nodes from a neighboring partition. Collectively,
the set of ghost nodes, ghost elements, and shared nodes for a partition is
considered the partition’s ghost layer.

Different types of ghost layers are supported by ParFUM because FE
applications have differing requirements depending upon the order of the
integration scheme. Often a layer of depth one or two elements is required.
ParFUM supports a generic specification of what type of ghost layers to
generate when it partitions the initial mesh. In a triangular mesh, two
common types of ghost layers are used. Figure 4(a) displays the first type
which specifies that an element should be included in the ghost layer if it
shares an edge with a local element. Figure 4(b) displays the second type
of ghost layer which includes any element in the ghost layer if it has at least
one node in common with a local element. ParFUM applications specify
the desired type of ghost layer using an abstract set of tuples that defines
a neighboring relation. This relation is used to determine if an element
is a neighbor of a local element and thus should be included in the ghost
layer. One relation would be the set of 3 pairs representing each of the
three edges in a triangle as in the case of {(0, 1), (1, 2), (2, 0)}. The pair
(1, 2) means that an edge of the element is defined by nodes 1 and 2 of the
element. Alternatively three values could specify the nodes of a triangle
as in the case {(0), (1), (2)}. When ParFUM partitions the mesh, it uses
the relation specified by the sets of tuples provided by the user in init
to determine which elements should be included in the ghost layer for a
particular partition. The determination of whether to include an element
uses a simple criterion. The tuples are a template applied to each element to
produce sets of nodes for each element. If any of the resulting sets of nodes
for a remote element intersects the set of nodes from some local element
in a given partition, the former element is included in the partition’s ghost
layer. The same tuple relations can also be used in ParFUM to build
topological adjacency tables.

The problem with the extrinsic CFE application is that after cohesive
elements are added to the mesh, the heterogeneous mesh contains topo-
logical holes at vertices of the original triangular mesh, as illustrated in
Figure 5. The presence of a hole causes problems when trying to create
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Figure 4: Two types of ghost layers supported by ParFUM. a) shows three
elements included in the ghost layer for Partition 1 because they share
at least one node with an element in Partition 1. b) shows two elements
included in the ghost layer for Partition 1 because these two share edges
with triangles in Partition 1.
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Figure 5: A topological hole is present in the heterogeneous mesh wherever
a single node is present in the original triangular mesh.

ghost layers. In order to use ParFUM’s automatic ghost layer creation, the
user registers a simple triangular mesh with ParFUM in the initialization
routine. We specify the ghost layers to be node-based as in Figure 4(a), so
that any remote element sharing a node with a local element is included
in the ghost layer. In the driver routine, we then create auxiliary data
structures to represent the cohesive elements in the mesh. Thus the ap-
plication code maintains a heterogeneous mesh while the framework only
knows about a simple homogeneous triangular mesh. This allows the code
to take advantage of the mesh refinement features of the framework in the
future, since the framework can dynamically refine triangular meshes. The
creation of the application’s secondary heterogeneous mesh on each proces-
sor in the driver routine is identical to the initial mesh creation code used
in the original serial version.

After ghost layers are created, the element and nodal data associated
with the ghost elements and nodes must be synchronized each step. The
ParFUM framework provides a simple mechanism for performing this syn-
chronization. The application synchronizes only nodal data, such as dis-
placements, velocities, and accelerations. The synchronization copies the
data from the nodes where the data is computed to any corresponding ghost
copies on adjacent partitions. We do this by treating the nodal data as el-
ement data because of the unusual topology of the CFE mesh as shown
in Figure 5. There are multiple copies of a node for each original node,
each with slightly different nodal data. Each of these copies of a node is
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Figure 6: Nodal data is copied to the elements, The elements sync with
ghost copies, and the updated data is copied from ghost elements to the
nodes.

14



associated with one triangular element. The data is copied to the elements
prior to synchronization and then copied back to the nodes after synchro-
nization. This process is shown schematically in Figure 6. In total, only a
small number of lines of code is required for the whole ghost value synchro-
nization process because the ParFUM framework handles the significant
work involved in building all required send and receive lists as well as the
data packing and sending.

The ParFUM framework disallows global variables in any applications
built upon it. Global variables in FORTRAN programs are those declared
with COMMON or SAVE.Therefore the parallel implementaiton of the CFE
scheme wraps all COMMON or SAVE variables in a module. Using a module
to wrap these variables is sufficient to meet this requirement of ParFUM.

3.2 Floating-point stability

Dynamic fracture problems are unstable physically. This inherent instabil-
ity translates into a numerical instability as the limitations of floating-point
arithmetic can cause the solution to be affected by the number of partitions
into which the mesh is partitioned. This numerical instability is caused by
differing orders in which floating point operations are applied when sum-
ming nodal force vectors. Since the parallel code adds values from local
elements to a node before adding on the ghost element values, the order of
these additions for a single logical shared node differs between the different
processors sharing that node. This difference in the order of the additions
affects the solution because addition is neither associative nor commutative
in floating point arithmetic, i.e., a + b + c 6= c + a + b, especially if the val-
ues have widely differing exponents in their binary representation. Due to
the inherently unstable nature of dynamic fracture simulations, these small
errors tend to accumulate over time and can affect the numerical results,
including the predicted crack path.

The classic solution to numerical problems caused by non-commutativity
or non-associativity of floating-point additions is to sort all the values then
sum them from smallest to largest. Sorting however is expensive and sig-
nificantly complicates an application’s source code. Additionally, in FE
codes, the common practice is to simply iterate over all elements adjacent
to a given node, accumulating the sum. The code chooses this standard
practice. Unfortunately, this method of iterating over elements without
regard to the values being summed is inherently flawed when maximal ac-
curacy is required. We have not yet implemented the more complicated
method for summing the nodal force values using sorted lists. It should be
noted that this problem does not just occur in parallel. The order in which
the forces are added at each node produces slightly different results for the
activation time (and ultimately the failure time) of extrinsic cohesive ele-

15



ments. Since the specific order in which the elements are added matters,
even in the serial case, attention should be paid to correctly add the forces
in a sorted order, whether in parallel or serial.

3.3 Load Balancing

Maintaining a uniform load balance across processors is critical to obtain-
ing good performance and scalability to large numbers of processors. In
the parallel implementation, a good load balance is achieved without any
explicit load balancing. Section 5 shows that the parallel efficiency of the
implementation exceeded 99% in many cases without applying any dynamic
load balancing. Since the parallel efficiency is high, the load is necessarily
well distributed among almost all processors. For this reason the support
for load balancing provided by ParFUM is not used. However, other dy-
namic fracture applications may require load balancing to achieve optimal
performance [?].

3.4 Implementation Summary

The main parallelization steps are as follows:

• Restructure the serial code into two main subroutines driver and
init

• Load an unpartitioned mesh in init

• Add ghost layer synchronization calls in driver

• Modify the output subroutine to create filenames based on processor
id

• Eliminate global variables (COMMON or SAVE) by wrapping them in a
module

4 Verification and validation study

4.1 Convergence study

As indicated in the introduction, the spatial and temporal convergence of
the CFE scheme needs to be addressed. To that effect, we investigate in
this section two fracture problems involving the dynamic mode I failure
of a thick pre-notched PMMA specimen of length L = 0.05m and width
W = 0.03m, with an initial crack length a0 = 0.005m. The bulk material
properties are defined by the Young’s modulus E = 3.45GPa, Poisson’s
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Figure 7: Mesh and boundary conditions used for crack propagation along
a pre-defined straight line problem. Only the elements along this line are
allowed to be activated in this simulation. A larger view of the notch tip
is in figure 8.

ratio ν = 0.35 and material density ρ0 = 1190kg/m3. The cohesive failure
properties adopted in this work are defined by the tensile and shear strength
values σmax = τmax = 20MPa and by the mode I and mode II fracture
toughness values GIc = GIIc = 352J/m2, which corresponds to a mode
mixity parameter β = 1.

In both fracture problems, the loading is symmetric with respect to
the initial crack plane, so the crack is expected to travel straight, unless it
reaches a sufficiently high speed at which crack branching might occur. Two
discretizations are considered here. In the first one (Figure 7), the crack
is confined to propagate along its original plane, which acts like a straight
material interface. In the second one, the crack path is not pre-defined and
a random mesh is used in the region ahead of the notch tip (Figure 12). As
alluded to in the introduction, convergence issues are expected to arise only
in the second case. However, the first problem is studied for completeness
and to compare the intrinsic and extrinsic CFE schemes. In both cases,
the analysis is performed in plane strain, and the applied loading consists
of an applied vertical velocity V ∗(t) that increases linearly from 0 to peak
value V0 for 0 < t ≤ tramp and remains constant afterwards.

The introduction of a cohesive model introduces a new length scale in
the problem, the length of the cohesive failure zone, the small region in
the vicinity of the advancing crack front where the cohesive failure process
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Notch Tip

Figure 8: Zoomed view of notch tip of mesh in figure 7. The mesh contains
a pre-defined horizontal straight line path that the crack can follow.

takes place. A static estimate of the mode I cohesive zone size is

R =
π

8
E

1 − ν2

GIc

σ2
max

. (12)

Although R is expected to decrease as the crack speed increases, (12) is
used to compare various levels of mesh refinement. As illustrated in Figures
7 and 12, since the crack motion is expected to remain in the vicinity of
the mid-plane, only a limited region around the mid-plane is meshed with
a fine mesh, while the remainder of the domain is meshed more coarsely to
reduce the computational cost. At all times, the time step size ∆t is kept
below the CFL stability conditions.

In the first problem, for which a straight crack path is prescribed (Fig-
ure 7), the imposed vertical velocity is applied along the left edge of the
domain, while the remaining boundary is left traction-free. The peak value
of velocity is V0 = 2.5m/s and the ramp time is tramp = 0.058L/Cd. Fig-
ure 9 present the time evolution of the crack length obtained with various
meshes, with the time step size kept at a constant value of the Courant
number χ = 0.05. The mesh density is characterized by the average num-
ber of elements in the static cohesive zone size R. As apparent there, the
CFE scheme is spatially convergent and about five cohesive elements are
needed in the active cohesive zone.

Figure 10 addresses the issue of temporal convergence of the CFE sim-
ulation, showing the time evolution of the straight crack length for four
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Figure 9: Spatial convergence of the crack motion for the case of a pre-
scribed straight crack path, for four mesh densities defined as the ratio
of the static cohesive zone size R given by equation (12) and the average
cohesive element size.
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Figure 10: Temporal convergence of evolution of the total crack length, for
the straight line crack propagation problem for 4 different Courant numbers
χ. The mesh density is fixed at about 4 cohesive elements in the cohesive
zone.
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Figure 11: Extrinsic vs. intrinsic CFE predictions of the straight crack
propagation history for a constant mesh density of about 4 elements in the
cohesive zone and a constant time step size χ = 0.05.

values of the time step size (described through the corresponding value of
the Courant number χ defined in (10). It should be noted that the use of
extrinsic cohesive modeling allows us to use time steps much larger than
those commonly adopted in the intrinsic case, at least for problems involv-
ing prescribed crack paths. In intrinsic CFE simulations, values of χ are
typically an order of magnitude smaller.

The evolution of the crack length is also used to compare the intrinsic
and extrinsic FE solutions. In the intrinsic case, a bilinear cohesive failure
law is adopted [?] that uses the same values of failure strength σmax and
fracture toughness GIc. The initial cohesive stiffness Kc0, i.e., the slope of
the rising part of the cohesive traction-separation curve, is defined by the
parameter Sinit as in

Kc0 =
σmax

(1 − Sinit)∆nc
. (13)

The closer Sinit is to unity, the stiffer the cohesive element is, with the case
Sinit = 1 corresponding to the limiting case of an initially rigid cohesive
element. A direct comparison between extrinsic and intrinsic CFE predic-
tions of the evolution of the crack length is presented in Figure 11. In the
intrinsic case, three values of the non-dimensional parameter Sinit are used.
As expected, as the initial stiffness of the intrinsic cohesive elements tends
to infinity, the extrinsic CFE solution is recovered, verifying the extrinsic
implementation of the cohesive finite element solver.
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Figure 12: Mesh and boundary conditions used for the crack propagation
problem with arbitrary crack path, for which a random discretization is
used in the central refined zone. The notch tip is enlarged in figure 13

Notch Tip

Figure 13: Zoomed view of notch tip of mesh in figure 12. The mesh does
not contain a horizontal straight path for a crack to follow.
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Figure 14: Spatial convergence of the crack path for crack propagation
problem shown in Figure 12, obtained for 5 different mesh densities. In all
cases, the time step size is determined by χ = 0.05.

We now turn our attention to the second fracture problem shown in
Figure 12, for which the crack path is not prescribed and the transient
vertical velocity is applied along the top and bottom edges, with a maxi-
mum amplitude of V0 = 0.5m/s and a ramp duration tramp = 0.058L/Cd.
This loading results in two stress waves (σ0 = ρoCdV0) traveling at the
dilatational wave speed Cd, downward and upward from the top and bot-
tom edges, respectively. Upon reaching the crack tip, these waves create
a highly transient stress concentration, which leads to the initiation and
subsequent propagation of the crack.

To assess the spatial convergence for this case, the crack path (x−y plot
of the failed cohesive elements) and the evolution of the total crack length
are computed for various central zone mesh densities. The time step size ∆t
is chosen such that χ = 0.05 for each mesh. Figure 14 shows the crack path
for five different mesh densities. As apparent there, although the overall
predictions of the crack path are relatively similar for these four meshes,
no clear convergence is achieved. This is especially true for the later part
of the crack motion, for which larger deviations are observed as the crack
approaches the right edge of the domain. This might be due to the very high
crack speed achieved in that region, which decreases the active cohesive
zone size and tends to lead to an increased level of physical instability,
i.e., of crack branching. This onset of branching is apparent for the finest
resolution (square symbols). This lack of apparent convergence in the crack
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Figure 15: Spatial convergence of the evolution of the crack length for the
five simulations shown in Figure 14.

path prediction obtained with unstructured meshes has been alluded to
elsewhere [?]. This apparent lack of spatial convergence translates, but to
a smaller degree, to the evolution of the total crack length (i.e., the sum
of the length of all failed cohesive elements), as shown in Figure 15. This
type of simulation provides an indication of the scatter of the numerical
predictions of the macroscopic crack path.

The issue of temporal convergence is addressed in Figures 16 and 17,
which respectively present the crack path and crack length evolution results
obtained for a fixed mesh (with an average of 4.12 cohesive elements in the
cohesive zone) and for four values of the time step size. Although the
temporal convergence for the arbitrary crack path is less conclusive than
for the prescribed path case, the results obtained for the four values of χ are
very similar especially during the initial stage of the crack motion. After a
while, however, the numerical results start to deviate from each other, first
slightly, then in a more pronounced fashion. Note once again, however,
that a stable numerical solution is obtained with the extrinsic CFE scheme
for values of χ larger than 0.2, while a value as small as χ = 0.033 has to
be used in the intrinsic case to achieved stability [?].

As the final step of this convergence study, we compare the results for
the serial and parallel implementations of the extrinsic CFE scheme. The
parallel results are obtained on a four-processor platform. The mesh and
time step sizes are kept constant, an average of 4.12 elements in the cohesive
zone and a Courant number χ = 0.05. It can be inferred from the Figure
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Figure 16: Temporal convergence of the extrinsic CFE simulations for ar-
bitrary crack path, for a fixed mesh density of about 4 elements in the
cohesive zone size.
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Figure 17: Temporal convergence of the crack length vs. time curves for
the simulations shown in Figure 16.
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Figure 18: Serial vs. parallel simulations of the extrinsic CFE dynamic
fracture modeling showing the crack propagating across the four partitions
and the slight deviations obtained towards the end of the simulation.

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

x 10
−4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

time (s)

to
ta

l c
ra

ck
 le

ng
th

 (
m

) Serial

Parallel

Figure 19: Crack length vs. time curves obtained for the serial and parallel
runs shown in Figure 18.
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Figure 20: Schematic of the inclined interface fracture problem (not to
scale). The initial crack length is a0 = 29.58mm and the inclined interface
is located 46.82mm ahead of the initial crack tip.

18 that the crack paths derived from the serial and parallel simulations
do not match exactly, especially during the later stage of the dynamic
failure process. This difference between serial and parallel solutions is also
apparent in Figure 19, which presents the evolution of the total crack path.
This difference is related to the numerical inaccuracies induced by finite
arithmetic, as alluded to in Section 3.

4.2 Validation study

The apparent lack of convergence and the inherent instability of dynamic
fracture processes tend to cast some doubts on the ability of the extrinsic
CFE scheme to provide accurate predictions of actual fracture events in
which the crack path is not prescribed a priori. To address this issue, we
now turn our attention to a validation exercise in which we use the paral-
lel extrinsic CFE code to solve the dynamic fracture problem depicted in
Figure 20. This problem, investigated experimentally by [?], consists of a
pre-notched compact tension specimen made of Homalite 100, with length
L = 0.457m, width W = 0.254m, initial crack length a0 = 0.02958m.
Dividing the domain almost diagonally, an inclined bonded interface has
been introduced in the specimen at an angle θ = 60 degrees, creating
a straight material interface that interferes with the propagation of the
rapidly propagating crack. The bonded interface has failure properties
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that are different from those of the bulk material. The bulk material prop-
erties of Homalite-100 are defined by the Young’s modulus E = 3.45GPa,
Poisson’s ratio ν = 0.35 and material density ρ0 = 1230kg/m3 [?]. Two in-
terface strengths have been investigated: a strong interface obtained with a
Weldon-10 adhesive, and a weaker one for which Loctite-384 was used. The
failure properties of the various constituents (bulk material and interface)
have been extracted experimentally and are listed in Table 1.

Table 1: Failure properties of the bulk material and of the weak and strong
interfaces used in the dynamic failure study of the inclined interface.

Homalite-100 Locite-384 Weldon-10
(weak) (strong)

[?] [?] [?]
σmax (MPa) 11.0 6.75 7.74
τmax (MPa) 25.0 7.45 22.0
GIc (J/m2) 250.0 41.9 46.4
GIIc (J/m2) 568.0 199.7 568.0

To model the wedge-induced loading used in the experimental study,
we adopt in this work a time-dependent vertical velocity V ∗(t) applied
upward (downward) along the upper (lower) left edge of the domain, as
illustrated in Figure 20. As earlier, the applied velocity follows a linear
ramp from 0 at t = 0 to V0 = 0.8m/s at t = tramp = 0.0093L/Cd and
then remains constant. Due to the tensile nature of the applied load, the
crack propagates primarily in mode I, and hence travels along a straight
line before meeting the interface. Then, depending on the strength of the
interface, the crack either deflects into the interface and propagates under
mixed mode condition, or penetrates through the interface. It should be
noted at this point that this problem constitutes an excellent testbed for
the extrinsic CFE scheme since all the quantities entering the description
of the geometry, loading and material properties have been determined
experimentally, leaving absolutely no fitting parameters.

Due the relatively large size of the fracture specimen (and in the ab-
sence of mesh refinement), the domain is discretized into 1, 200, 414 3-node
triangular constant strain elements with 1, 801, 909 interfacial 4-noded co-
hesive elements. A detail of the mesh in the vicinity of the initial crack
tip is shown in Figure 21. The average number of elements in the cohesive
zone for this discretization are 6.5 for Homalite-100, 3 for Weldon-10 and
10.5 for Loctite-384. The simulations are performed on 16-processors with
about 75, 000 elements per processor. A Courant number χ = 0.05 is used.
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Figure 21: Details of the deformed mesh in the vicinity of the initial crack
tip and the inclined interface for the domain in Figure 20.

Figure 22: σ22 stress contour plot at time t = 1.857L/Cd for (a) weak
interface strength, showing the trajectory of the crack trapped momentarily
along the inclined interface and (b) for the strong interface case.
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Figure 23: Close-up view of the two cases from Figure 22, showing details
of crack path near the vicinity of the inclined interface. (a) is the weak
interface case while (b) is the strong interface case.
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Figure 24: Comparison between the crack trajectory obtained for the strong
and weak interfaces.

Figure 22 presents snapshot of the S22 stress contours at time t =
1.857L/Cd for the weak and strong interface cases, clearly illustrating the
existence of a sharp stress concentration in the vicinity of the propagating
crack tip. Figure 23 shows the close-up view of Figure 22 showing the
details of crack trajectory near the inclined interface. At that moment in
the simulation, the crack has completed its motion along the interface and
has resumed its propagation in the right half of the Homalite specimen.
The difference in the resulting crack path, already apparent in Figure 22 is
further visualized in Figure 24, which presents a direct comparison between
the two crack trajectories. As anticipated, the weaker interface traps the
crack for a much longer time than its stronger counterpart, as its lower
fracture toughness makes it energetically more favorable for the crack to
propagate under mixed-mode conditions. In both cases, the mode I crack
propagation eventually prevails and the crack kinks out of the interface.
This predicted behavior is in good qualitative and quantitative agreement
with the observations by [?], especially for the strong interface case for
which the predicted crack length along the interface (5.0mm) compares
very favorably with the observed value (4.3mm).

The interaction of the crack with the interface is further illustrated in
Figure 25, which shows the evolution of the total crack length vs time
obtained for the strong and weak interfaces. As expected, the initial stage
of the crack motion is identical for the two cases. As the crack reaches the
interface, however, the curve corresponding to the weak interface shows a
marked change in its slope, indicating a sudden acceleration of the crack.
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Figure 25: Total crack length vs. time for the strong and weak interface
cases.
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Figure 26: Evolution of crack tip velocity for the weak interface. The
dashed vertical line shows the instant the crack hits the interface.
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This transient crack motion is also illustrated in Figure 26, which shows the
evolution of the crack speed for the weak interface case. After an incubation
period associated with the creation of the transient stress concentration
in the vicinity of the initial crack tip, the initially mode I crack quickly
accelerates to reach the experimentally observed speed of about 400m/s.
As it reaches the interface (at the time indicated by the dashed line), the
crack accelerates rapidly before decelerating to the observed value of about
650 to 700m/s. After kinking out of the interface, the crack velocity drops
back to its initial value of about 400m/s. It should be noted, however,
that the peak in the crack tip speed obtained during the initial stages of
the interfacial failure (about 1200m/s) exceeds substantially that observed
by [?]. This might be due to the inaccuracy in the description of the
loading conditions, and, in particular, with the absence of compressive
(lateral) component of the applied velocity. This error in peak velocity
also explains the discrepency of the calculated crack length along the weak
interface from the experimental value.

5 Parallel performance analysis

The parallel implementation of the CFE scheme exhibits excellent scaling to
hundreds of processors. This section describes the measured performance
and its dependence upon an interesting parameter called virtualization.
All parallel runs described in this section were performed on the Turing
cluster at the University of Illinois Urbana-Champaign. Each node in the
cluster is an Apple Xserve with dual 2.0 GHz G5 processors. The nodes are
connected via a Myrinet network. The performance results were obtained
by using both processors on a node for computation. For example, the
256 processor timings were performed on 128 dual-processor nodes. The
implementation uses no hand-optimized code tailored to any particular
platform or machine; It only uses some standard compiler optimization
flags.

The performance analysis presented in this section was performed on
the same cohesive finite element problem described in Section 4.2 with a
mesh containing 1.2 million elements. Since the implementation uses the
ParFUM framework to implement the CFE method, the user can configure
a runtime parameter called virtualization. Virtualization in ParFUM is de-
fined to be the average number of mesh partitions per physical processor.
Increasing the number of mesh partitions per processor can improve perfor-
mance by overlapping communication and computation and by improving
cache performance. The cache effects in ParFUM applications occur be-
cause smaller partitions contain fewer elements and thus may fit inside a
smaller faster level of cache[?]. The term virtualization comes from AMPI
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[?] where multiple MPI processes, or virtual processors, are run inside a
single processor. ParFUM is built partially upon AMPI, and thus it in-
herits this terminology. When multiple mesh partitions reside on a single
processor, computation for one partition can overlap the latency of com-
munication for a different partition.

Using multiple mesh partitions per processor benefits performance for
our implementation. On 8 physical processors, we found the execution time
of 1000 timestep loop iterations to be 145 seconds when using 1 partition
per processor. The time decreases by 20% to 116 seconds when using
32 partitions per processor. Beyond 32 partitions per processor, the time
increases due to extra overhead. Figure 27 shows that 256 to 1024 partitions
gives the best runtimes when using 8 to 32 processors. This range or sweet
spot was determined experimentally, but approximate rules of thumb can
also be used for a particular application. To maximize the performance of
this implementation on each partition should contain between one thousand
and four thousand elements.

Scalability to a large number of processors is crucial for large FE codes.
One common measure of the performance and scalability of a parallel ap-
plication is speedup which is defined to be the ratio of the parallel runtime
divided by the sequential runtime. When the speedup is close to the number
of processors, an application is scaling well. The CFE application scales
well to a large number of processors. Figure 28 displays the speedup of
the application for up to 512 processors while using 512 partitions in all
cases. For the baseline serial version, we run the same application, but just
run it with one partition on one processor, thus there is no communication
overhead. Table 2 shows the same speedup data along with execution times
and parallel efficiency. The parallel efficiency is a ratio of the speedup to
the number of processors used. A parallel efficiency of 1.0 on 128 processors
means that the parallel version was 128 times faster than the serial version.
Parallel efficiencies of greater than 1.0 are rarely seen, but can occur for a
number of reasons including cache effects, suboptimal serial performance,
or poor algorithm choices. The application scales almost perfectly to 256
processors. At 512 physical processors there is no benefit from virtualiza-
tion because the 512 partitions are mapped one-to-one onto the physical
processors. Thus there is one virtual processor on each physical processor
and hence no opportunity for overlapping communication and computation
from different partitions on a single processor.

6 Conclusion

Initially rigid (extrinsic) cohesive elements are better suited for simula-
tion of dynamic fracture events when the crack path is not pre-defined in
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Figure 27: Execution time (in seconds) with varying numbers of partitions
(Virtual Processors).

Figure 28: Speedup results for up to 512 processors for a fixed number of
512 partitions (Virtual Processors). The same input mesh is used in all
cases.
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Table 2: Speedup and parallel efficiency with a 1.2M element mesh, 512
Virtual Processors.

Processors Execution time (s) Speedup Efficiency
1 946.3
2 581.7 1.63 0.81
3 366.4 2.58 0.86
4 255.6 3.7 0.93
5 209.8 4.51 0.9
6 171.5 5.52 0.92
7 145.7 6.49 0.93
8 125.9 7.52 0.94

12 81.3 11.64 0.97
16 60.2 15.72 0.98
20 49.2 19.23 0.96
28 34.9 27.11 0.97
32 29.8 31.76 0.99
64 14.9 63.51 0.99

128 7.4 127.88 1.00
256 3.9 242.64 0.95
512 2.18 434.08 0.85
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comparison to their intrinsic counterparts. A novel methodology for par-
allel implementation of extrinsic cohesive elements based on activation of
elements, and implemented with the aid of the Parallel framework for Un-
structured Meshes (ParFUM). The implementation was tested for spatial
and temporal convergence, and though the crack behavior was captured
well, spatial convergence was not clearly observed. The developed parallel
CFE scheme was validated against the experimental studies performed on
the dynamic crack deflection-penetration behavior in inhomogeneous spec-
imens by [?]. Simulated results are in very good agreement with experi-
mental observations. A detailed scalability study performed on up to 512
processors shows excellent speedup for the parallel cohesive finite element
solver.
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