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Abstract

The scalability of performance tools in high performance computing has been lagging behind the growth in the sizes of

supercomputers and the applications that run on them. It is recognized that performance event traces still provide the best

and most useful source of information for analysis. However, the volume of performance trace data generated easily becomes

unmanagable without appropriate controls as we scale upwards. At the same time, the amount of information that has to be

presented to a human analyst can also become overwhelming.

We present techniques used to address the above problems and enhance the scalability of Projections, a performance

instrumentation and visualization framework for the migratable object programming modelCHARM++. Projections provides

multiple resolutions of performance data. We couple this feature with the use of heuristics and clustering algorithms at

application runtime to provide powerful mechanisms to reduce performance data volume and analysis time while preserving

data relevance. We employ similar heuristics and algorithms for enhanced interactive post-mortem visualization and analysis

assistance to a human expert.

To demonstrate the continued effectiveness of the analysis process using the above techniques while showing that the data

volume is significantly reduced, we present experimental results on simulation benchmarks based onNAMD , a popular

molecular dynamics application.

1 Introduction

A large amount of trace data may be generated each time an instrumented application is run for the purpose of studying its

parallel performance. As an application scales in size (e.g. running larger scientific simulations) and runs on more processors,
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performance tools must scale accordingly to handle increases in the amount of performance data that can be generated.

Although aggregated or sampled profile data can be useful, the use of detailed event traces from instrumented parallel

applications is considered the best and most useful source of information for studying their performance [25, 15]. At the

same time, a performance tool must also be scalable as well as effective in presenting information to a human analyst. In

today’s scientific codes running on existing high performance systems, event trace logs will typically run into the gigabyte

range. Dealing with data from large simulations running on thousands of processors has already become a reality in our

collaborations and research and has strained the abilities of our performance analysis tools. We believe that for performance

studies to be scalable and productive, the volume of data generated as well as the information presented to a human analyst

must be kept low, relevant and concise.

Our approach is centered on the use of heuristics for the identification of extrema data and the identification of the rep-

resentative and outliers of equivalence classes of processors through clustering algorithms. We will show in this paper that

anonlineapplication of the approach during an application’s execution, coupled with different performance data resolutions,

can allow us to generate less data and yet capture its core performance characteristics in high detail. At the same time, similar

offlineapproaches can be interactively used by an analyst to visually identify bad behavior over more specific performance

space domains and quickly switch to more detailed representations of the performance domain.

We have implemented our approach to enhance the scalability of Projections, a performance tracing, visualization and

analysis tool used for analyzing the performance of CHARM++ and our ADAPTIVE MPI applications, most notably the

popular molecular dynamics application NAMD. Projections instrumentation is automatic by default, tracking task execution

and communication events in the CHARM++ runtime. Event traces are generated and visualized/analyzed post-mortem

through a visualization component.

Our experiments are conducted on the Cray XT3 supercomputer installed at Pittsburgh Supercomputing Center with

NAMD simulation benchmarks instrumented for over 200 simulation timesteps.

2 CHARM ++ and its Applications

CHARM++ [10] is a portable C++ based parallel programming language based on themigratable object programming

modeland resultantvirtualization of processors. In this approach [11], a programmer decomposes a problem intoN mi-

gratable objects(MO) that will execute onP processors, where ideallyN>>P . The application programmer’s view of the

program is of MOs and their interactions; the underlying runtime system keeps track of the mapping of MOs to processors

and performs any remapping that might be necessary at run-time. In CHARM++, MOs are known aschares. Chares are

C++ objects with specialentry methodsthat are invoked asynchronously from other chares through messages. CHARM++

uses message-driven execution to determine which chare gets control of a processor. An advantage of this approach is that

no chare can hold a processor idle while it is waiting for a message. SinceN>>P , there may be other chares on the same
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processor that can overlap their computation with the communicating chare.

CHARM++ is actively used in a number of major real-world scientific applications. NAMD [17] is a well-known and

widely used parallel classical molecular dynamics application for biomolecular systems which has won a Gordon Bell

Award [18], and scaled to at least16, 000 processors. LEANCP [22] is a collaborative effort using CHARM++ to gain

unprecedented scalability for the Car-Parrinello ab initio molecular dynamics method. CHANGA (CHARM N-BODY GRAV-

ITY SOLVER) [7] is a scalable code performing collisionless N-body simulations. It can perform cosmological simulations

with periodic boundary conditions in comoving coordinates or simulations of isolated stellar systems.

3 Projections Performance Analysis Framework

The Projections Analysis Framework[13] consists of an instrumentation component and a visualization/analysis tool.

Projections instrumentation is fully automated by default since CHARM++ is a message driven system. Specifically, the

runtime system (RTS) knows when it is about to schedule the execution of a particular method of a particular object (in

response to a message being picked up from the scheduler’s queue).

Unlike MPI, in CHARM++ we can retrieve the idle time from the RTS. In MPI when a processor waits at a barrier or

a receive call, the time spent is considered a part of the communication overhead. However, this often includes idle time,

because another processor has not arrived at the barrier (or has not sent the message). CHARM++ RTS can cleanly separate

communication overhead from such idle time. This prevents users from making erroneous conclusions that the performance

is poor due to “the slow barrier operations”, when it may be due to load imbalances.

The log data (see section 3.1) is typically written out at the end of the run. However, if it uses all the memory space

allocated to it, or if the user desires (e.g. at known global synchronization points), the data can be flushed to disk.

TheProjections visualization componentsupports multiple views:

1. aSummary Graph view is quickly loaded at Projections startup which shows a sketch of average processor utilization

over the entire run. Time interval granularity is limited to whatever is provided by the summary module. This fast

automatic loading is performed if the user provides the location of the log files to Projections at startup;

2. anOverview graph shows slightly more detail, displaying utilization as a color-intensity value in a plot of processors

against time intervals;

3. theProfile view shows a stacked column bar for each selected processor, for a selected time interval. The time spent by

each processor in various activities is shown within each bar. This view clearly separates idle time and communication

overhead;

4. ourHistogram views are very useful for revealing grainsize issues for computation units as well as communication.
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One such view shows the frequency of entry method calls binned according to that particular call’s execution time. It

also shows the frequency of messages sent binned according to the size of the message;

5. theTime Profile view allows a user to divide an execution time range into a number of time-interval bins. It shows

the time spent by each CHARM++ entry method within each time-interval bin aggregated across all processors of

interest. This information is displayed against time on the x-axis. Figure 2(b) shows how this view used to visualize

the overlapping activities in a NAMD execution;

6. theTimeline view displays a chronological sequence of entry methods for each processor of interest and is similar to

other timeline tools such as Jumpshot [27], and Paragraph [8]. However, it is a highly sophisticated view which presents

additional detailed information about events not normally available in other MPI-based tools via simple mouse clicks.

This is shown in Figure 1 where each row corresponds to a specific processor with colored bars representing the entry

method that was executed;

Figure 1. Timeline events showing entry method activities in NAMD . Mouse-overs give detailed
information about events and users may right-click on events to show white communication lines
that may reveal critical path issues.

Performance analysis is human-centric. As illustrated in Figure 2, starting from visual distillations of overall application

performance characteristics, the analyst employs a mixture of application domain knowledge and experience with visual

cues expressed through Projections in order to identify general areas (e.g. over a set of processors and time intervals) of

potential performance problems. The analyst then zooms in for more detail and/or seeks additional perspectives through the

aggregation of information across data dimensions (e.g. processors). The same process is repeated, usually with higher levels
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of detail, as the analyst homes in on a problem or zooms into another area to correlate problems. The richness of information

coupled with the tool’s ability to provide relevant visual cues contribute greatly to the effectiveness of this analysis process.

(a) Overview of 512-processor run of
NAMD over several seconds.

(b) A time profile of 512 processors over
a 70ms range of interest.

(c) Detailed timeline of events on sample
processors of the same 70ms range.

Figure 2. Projections performance analysis, zooming to different levels of detail and viewing different
data perspectives.

A use-case from our tuning of NAMD on ASCI RED [12] illustrates the above discussion. The benchmark took 57

seconds on a sequential processor, but performance was unexpectedly poor on 2000 processors. Atime profileview (like

that of Figure 2(b)) showed a characteristic load imbalance pattern. This was verified through aprofile view from which

heavily loaded processors were manually identified. The type of objects revealed to have dominant activities on those heavily

loaded processors were analyzed via a grainsize histogram. This showed that the largest object of this type had activities

with a duration of 40 ms! That clearly precluded speedups near 2000, even under ideal conditions. The same histogram

view illustrated a bi-modal distribution of activity duration for these objects. This helped NAMD developers identify which

objects to decompose further, leading to a better grainsize distribution. This was a significant step in the scaling of NAMD

to 8192 processors on BlueGene/L [14].

3.1 Multiple Levels of Log Resolution

Projections supports three different levels of resolution for performance data. All three are ASCII formats and store each

processor’s generated data into a different file.

Our summaryformat is the most compact data format. It records processor utilization for each processor overk time

intervals wherek is fixed. The duration,d, of these time intervals is adjusted dynamically, doubling each time the application’s

execution goes pastk × d. The size of each file is dependent only on the desired number of time-intervalsk. Therefore, the

total size summed across all files grows inO(P ) whereP is the number of processors. We use runlength encoding as an

additional measure to reduce the size of each file. We observe typical file sizes to be about 3 kB given default settings for the
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number of intervals.

Projections also supports an intermediatesummary detailformat. It employs the same dynamically adjusted time interval

scheme for recording data as described above for thesummaryformat. However, we record attribute information for each

time interval such as the time spent or number of messages received separatedly for each CHARM++ entry method. Such a

format is reasonably rich and useful for analysis, allowing a quick way to zoom in on a potential problem area. The size of

each file is of the order ofk × E, whereE is the number of CHARM++ entry methods in the application. However,E is

relatively small, around 220 for NAMD, and depends on the static design of the application. As a result,E can be considered

in practice to be a constant factor for all applications. So, the total data size grows inO(P ) similar tosummaryfiles. Like

thesummaryformat, runlength encoding is used to reduce the size of the file. The size of each file for NAMD is typically

between 30–50 kB.

For our event log format, we record events like the start and end of each CHARM++ entry method, every time a message

was sent and each time the runtime scheduler goes idle or returns from being idle. For each event, different types of attributes

may be recorded. This includes the timestamp, size of a message, the CHARM++ object id, and any performance counter

information (e.g. PAPI [1]) associated with the event. Recording performance counter information is optional and the default

instrumentation policy has small overhead, involving a low-cost timestamp request and access to the instrumentation log

buffers. Any perturbation effects depend on the granularity of CHARM++ entry method work. Table 1 shows the effects of

Projections instrumentation on the simulation time-step time of two NAMD benchmarks.

nCPUs apoa1 apoa1 % diff
projections no projections
s/timestep s/timestep

512 0.00655327 0.00677664 +3.29
1024 0.00447543 0.00430876 -3.86
2048 0.00375795 0.00358866 -4.71

nCPUs f1atpase f1atpase % diff
projections no projections
s/timestep s/timestep

512 0.01807300 0.01791210 -0.89
1024 0.00972048 0.00980697 +0.88
2048 0.00651015 0.00634311 -2.60

Table 1. Overhead of Projections instrumentation on NAMD execution time per simulation timestep.
apoa1 simulates a system with 92k atoms while f1atpase simulates a system with 327k atoms.

The numbers show in Table 1 are based on results from a single data point because of time constraints. We believe the

data instances where instrumented code runs faster than uninstrumented code are the result of noise. The important thing to

note is that the differences in time are within 5% of each other despite the fact that in the worst scenario shown in the table,

all of NAMD work in a single simulation timestep have to be instrumented within about 3.5 ms.
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It is clear that instrumenting an application for the entire run duration is unscalable and counter-productive. Projections has

an interface for turning instrumentation on and off, allowing iterative applications like NAMD to instrument, for example, a

sample of 200 simulation steps to capture performance data that represent a meaningful subset of the entire execution.

This mechanism for controlling the volume of performance data generally helps to contain the total data volume to the

order ofO(P × C) whereC is the overhead due to additional communication events. However, this will not address the

scalability of data generation due to the application. For instance, simulating a system of 327,000 atoms generates a larger

total number of events over 200 simulation timesteps than for a system of 92,000 atoms. Table 2 shows how the volume of

event data grows as the number of processor increases for two different NAMD simulations.

nCPUs apoa1 apoa1
max filesize total data size
kilobytes megabytes

512 3,500 827
1024 3,400 938
2048 3,360 1,200

nCPUs f1atpase f1atpase
max filesize total size
kilobytes megabytes

512 6,910 1,800
1024 5,580 2,200
2048 5,440 2,800

Table 2. The maximum sizes of each generated event log files as well as the total volume of data
summed across all files are tabulated here. apoa1 simulates a system with 92k atoms while f1atpase
simulates a system with 327k atoms.

4 Scalability Enhancements to Projections

Our approach enhances the scalability of Projections in two ways, data reduction; and visualization techniques that do not

require a human analyst to have to unnecessarily browse through large portions of performance space in detail. The approach

employs two key techniques, clustering algorithms to identify representatives; and heuristics to identify outliers and extrema

either globally or locally. We will describe how we can achieve good data reduction through the use of these techniques

at the end of a CHARM++ application execution and also how we have enhanced a visualization tool that employs similar

techniques at analysis time to achieve the other scalability goal.

4.1 Locating Extrema/Outlier Processors

Extrema processors can be identified by methods as simple as sorting. For example, in CHARM++, processors with the

least idle time are candidates for being overloaded and hence very helpful for identifying possible load imbalance.
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More sophisticated heuristics can be used. For example, we can acquireE×P data points forE CHARM++ entry methods

andP processors whereTep is the execution time spent by the entry methode on a processorp. A global operation computes

the average execution time and standard deviation of each entry method across allP processors. Each processor can now

take these standard deviations summed across allE entry methods as a reasonable heuristic measure to rank the processor,

and hence determine if a processor is an extrema. As an additional measure to avoid bias, we have implemented a version of

this heuristic which takes the sum of standard deviations weighted by the average significance of each entry method (e.g. an

entry method that, on average, takes up 50% of all computation has its standard deviation measure multiplied by a factor of

0.5).

These heuristics can be applied globally to all processors, or to individual equivalence classes identified through the

clustering algorithms described in Section 4.2. In other words,P can be the total number of processors in that execution

instance, orP can be the number of sample-points associated with one of the clusters. In the case when clustering is

employed, the distance measure used to determine clusters may also be used as a heuristic for locating extrema values.

4.2 Identifying Representative Processors

A natural division of performance space data is that of processr association. With the exception of cross-processor com-

munication, it is reasonably self-contained. As a result, our approach makes use of thek-Means clustering [9] algorithm to

generate equivalence classes of processors and from these classes, select representative processors.

The clustering is performed overE dimensions, whereE is the number of CHARM++ entry methods. We define a

processors sample-point to be a vector ofE dimensions, where the coordinate along each dimension is given by the execution

time spent by each CHARM++ entry method on that processor. The distance metric between any two processors is then

computed as an unweighted Euclidean distance given the two processors’ sample-point vectors. The initialk cluster starting

points for the algorithm are placed by uniformly spreading them across theE-dimensional bounding-box. The bounding-box

is formed by the minimum and maximum values of each of theE entry method execution times over allP sample points

whereP is the number of processors. Figure 3 shows an example of the final result from usingk-Means clustering with 3

clusters (equivalence classes), over 2 dimensions (labelled entry methodX and entry methodY ) with an arbitrary number of

processor sample-points.

4.3 Data Reduction

k-means clustering and our heuristics are applied at the end of a CHARM++ application’s execution to identify a set of

representative and extrema processors. We have implemented these to take advantage of the parallel machine on which the

application is run, using the same process space in order to perform this task, ensuring its own scalability. Unlike prior

work [19], the instrumentation of the application is not dynamically affected by the application of these techniques. Since we
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Figure 3. An example of clustering of processor sample points over 2 entry methods X and Y .

are capturing the full trace logs, we feel that a human analyst can better apply them offline to arbitrary phases of the execution

as described in section 4.4.

After identifying the representatives and extrema, each processor is then instructed to either write out its full event trace

log, or performance data at lower resolution or no data at all. Since the number of processor equivalence classes is relatively

constant across runs, and given an upper bound on the number of extrema processors, the total amount of data due to full event

trace logs generated can be significantly reduced while ensuring the data is relevant for the subsequent study of performance

problems.

4.4 Effective Analysis and Visualization

The techniques of clustering and extrema discovery heuristics are extremely useful when applied offline at analysis time.

We employ a simple modification of theProfile view described in section 3. Figure 4(a) shows the x-axis representing pro-

cessors, each with processor-bars that displays the total time spent by entry methods. Different entry methods are marked

with a different color. Starting from the left side of the screen, the processor-bar representing the global average; the average

over all non-extrema processors; the average over all extrema processors; and the individual extrema processors sorted by

significance. Each extrema processor-bar can be selected by the user to load a detailedTimelineview. This is a massive

improvement over a manual hunt for mis-behaving processors and allows analysts to quickly load detailed performance in-

formation, over the appropriate time-range, to seek out sources of performance bottlenecks. Figure 4(b) shows aProfileview

of the equivalent time range over all 512 processors. Analysts would have had to manually eyeball through the information,

seeking processor bars that stood out as “unusual”. This process, of course, becomes impossible for runs involving thousands
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of processors.

(a) ModifiedProfileview presenting extrema perfor-
mance data of the 10 most significant outliers out of
512 processors.

(b) Profile view showing all 512 processors. Note
that the clarity of the individual processor-bars may
be degraded in print due to aliasing.

Figure 4. Visualization enhancements contrasted against using the older profile view

It is important to note that this view can be employed interactively by the analyst. The information is generated on-the-fly

by Projections using available data, given the analyst’s preferences of execution time-range, partial processor selection and

the number of extrema processors to display. This is done independently of any data reduction techniques described in section

4.3.

5 Validation

We have performed a preliminary test of our approach on a 256-processor execution of the NAMD apoa1 benchmark,

instructing the system to restrict full event log generation to just the top 10% of processors identified as outliers. As expected,

the total volume of data generated was around 83 MB down from 740 MB which is typical of instrumented logs for that

execution configuration. The logs were fed into the visualization component of Projections and analyzed as usual with the

only difference in experience being the inability of thetimelineview to load any processor’s data that were not full event

traces. From our experience, there was no need to since those logs were categorized as non-outliers anyways.

6 Related Work

The Projections performance analysis framework is unique in that it is aimed at studying applications based on the migrat-

able object model where CHARM++ objects (and ADAPTIVE MPI threads) are first class entities. Other tools and frameworks

like Vampir [16] and Vampir NG [2], Cray Apprentice2 [4], TAU [21], svPablo [5], jumpshot [27, 26] and Kojak [24] are re-

plete with MPI-specific or architecture-neutral features but lack support for the performance semantics suitable for migratable
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objects.

An increasing body of work [3, 6, 23, 20, 15, 19] has recognized the scalability of performance analysis tools as a serious

problem, especially recently. Many take the approach of automating the analysis process, either for dynamically adjusting

the rate of instrumentation in some scalable fashion; or making the automatic tools parallel in order to scalably handle

the increased volume of performance information. The use of clustering algorithms for performance bottleneck detection,

visualized using scatterplots, have been explored in TAU [21] but not for data reduction. Pablo [19] demonstrated an old

prototype very similar to our approach for data reduction and goals. However, it attempts to apply clustering dynamically

over multiple phases of an application’s execution, adding additional dimensions to the difficulties of using clustering such

as clustering frequency and the computation costs of clustering. Our approach avoids those problems and added techniques

for outlier/extrema discovery on top of clustering.

7 Conclusion and Future Work

To conclude, this paper’s contribution to the body of research on scalability centered on the adaptation of clustering

algorithms and the use of heuristics for extrema identification for data reduction and to provide quick assistance for bottleneck

discovery during analysis. We have studied the nature of event trace data growth in NAMD and identified the processor-data

association as a natural division for data reduction purposes. We showed a way of visualizing information gained through

these techniques that allowed a human-analyst to quickly focus attention on details with potential performance bottlenecks.

Finally, we have performed a simple validation through our implementation of the techniques in Projections.

Future work will focus on better use of thek-Means clustering algorithm the behavior of which is dependent on the value

of k as well as the initial seeding of thek clusters. A natural option is to try several values ofk and using the result that shows

the best fit. Similarly, using several random starting points and choosing the best fit may prove a better option than uniformly

distributed starting points. We also intend to show tangible improvements to the performance analysis process through these

techniques. This can be measured in the form of time-to-bottleneck discovery by the users of Projections. Another interesting

measure would be the number of times a user needs to usetimelineto locate a bottleneck on a processor which did not have

its detailed event log generated because it was considered “uninteresting”.
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