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Abstract

Grid computing offers a model for solving large-scale
scientific problems by uniting computational resources
owned by multiple organizations to form a single cohesive
resource for the duration of individual jobs. Despite the ap-
peal of using Grid computing to solve large problems, its
use has been hindered by the challenges involved in devel-
oping applications that can run efficiently in Grid environ-
ments. One substantial obstacle to deploying Grid applica-
tions across geographically distributed resources is cross-
site latency. While certain classes of applications, such as
master-slave style or functional decomposition type appli-
cations, lend themselves well to running in Grid environ-
ments due to inherent latency tolerance, other classes of
applications, such as tightly-coupled applications in which
each processor regularly communicates with its neighbor-
ing processors, represent a significant challenge to deploy-
ment on Grids.

In this paper, we present a dynamic load balancing tech-
nique for Grid applications based on graph partitioning.
This technique exploits knowledge of the topology of the
Grid environment to partition the computation’s commu-
nication graph in such a way as to reduce the volume of
cross-site communication, thus improving the performance
of tightly-coupled applications that are co-allocated across
distributed resources. Our technique is particularly well
suited to codes from disciplines like molecular dynamics or
cosmology due to the non-uniform structure of communica-
tion in these types of applications. We evaluate the effective-
ness of our technique when used to optimize the execution of
a tightly-coupled classical molecular dynamics code called
LeanMD deployed in a Grid environment.
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1. Introduction

One of the attractive features of Grid computing [8, 9] is
that resources in geographically distant places can be mobi-
lized to meet computational needs as they arise. Software
such as Globus [7] allows the creation of so-called “virtual
organizations” in which computational resources owned by
multiple physical organizations are united to form a single
cohesive resource for the duration of a single computational
job.

A particularly challenging issue when deploying Grid
applications across geographically distributed computa-
tional resources is overcoming the effects of the latency be-
tween sites. While the interconnects used within today’s
clusters can typically deliver application-to-application la-
tencies of a few microseconds, wide-area network laten-
cies are usually measured in tens or hundreds of millisec-
onds. Certain classes of applications can achieve good per-
formance in environments such as this. For example, ap-
plications that employ functional decomposition, such as
climate models in which an atmosphere computation runs
on one cluster and an ocean computation runs on another
cluster, are very good candidates for deployment in Grid
environments because the volume of communication trav-
eling across cluster boundaries is much less than the vol-
ume of communication internal to each cluster. In contrast,
some classes of applications present serious challenges to
deployment in Grid computing environments. For example,
tightly-coupled applications where each processor commu-
nicates with its neighboring processors during every iter-
ation present a significant challenge. Coping with the ef-
fects of wide-area latency is critical for achieving good per-
formance with these types of applications when deploying
them in a Grid computing environment.

In previous work we have shown that it is possible to
achieve good performance with tightly-coupled applica-
tions in Grid computing environments by leveraging latency
tolerance features in an adaptive middleware layer [19]. By
decomposing applications into a large number of message-



driven objects, runtime systems such as Charm++ and
Adaptive MPI allow time that would otherwise be wasted
waiting for communication with neighbors across a cluster
boundary to be overlapped with useful work driven by ob-
jects within the local cluster.

The contribution of this paper is the demonstration that
the dynamic load balancing capabilities of the Charm++ and
Adaptive MPI systems can be used to further improve per-
formance for tightly-coupled applications running in Grid
computing environments. The technique developed for this
work exploits knowledge of the communication topology of
the Grid environment to partition the computation’s com-
munication graph in such a way as to reduce the volume of
cross-site communication, thus improving the performance
of tightly-coupled applications that are co-allocated across
distributed resources. In this paper, we focus our exami-
nation of the effectiveness of this technique on codes from
disciplines like molecular dynamics or cosmology. In these
types of problems, elements in the problem domain (e.g.,
atoms, planets, etc.) interact with other elements within a
specified cutoff distance; elements outside this cutoff dis-
tance represent little or no influence on a given element.
This characteristic presents unique opportunities for load
balancing by mapping work to the processors in a Grid com-
putation such that the amount of wide-area communication
needed can be reduced.

2. Enabling Technologies

In this section, we describe the enabling technologies
upon which our work is based. These technologies include
the Charm++ and Adaptive MPI runtime systems as well as
the Virtual Machine Interface message layer.

2.1. Charm++ and Adaptive MPI

Charm++ [14] is a message-driven parallel programming
language based on C++ and designed with the goal of en-
hancing programmer productivity by providing a high-level
abstraction of a parallel computation while at the same
time delivering good performance. Programs written in
Charm++ are decomposed into a number of cooperating
objects calledchares. Execution within chares is message-
driven in a style similar to Charm++ contemporaries such as
Active Messages [26], Fast Messages [22], and Nexus [10].
When a chare receives a message, the message triggers the
execution of a corresponding method within the chare to
handle the message asynchronously. Chares may be orga-
nized into indexed collections calledchare arrays, and mes-
sages may be sent to individual chares within a chare array
or to the entire chare array simultaneously.

The chares in a Charm++ program are mapped to pro-
cessors by an adaptive runtime system. The mapping

of chares to processors is transparent to the programmer,
and this transparency permits the runtime system to dy-
namically change the assignment of chares to processors
during program execution to support capabilities such as
measurement-based load balancing, fault tolerance, auto-
matic checkpointing, and the ability to shrink and expand
the set of processors used by a parallel job. This idea is
illustrated in Figure 1.

Adaptive MPI (AMPI) [13] provides the capabilities of
Charm++ in a more traditional MPI programming model.
AMPI implements the MPI standard by encapsulating each
MPI process within a user-level migratable thread imple-
mented as a Charm++ object. By embedding each thread
within a chare, AMPI programs can automatically take ad-
vantage of the features of the Charm++ runtime system with
little or no changes to the underlying MPI program.

One of the central enabling ideas in Charm++ and AMPI
is that the use of message-driven objects provides a high de-
gree of latency tolerance to parallel applications. Because
there are typically a large number of objects mapped to each
physical processor in a Charm++ computation, time that
would otherwise be wasted waiting for communication to
take place can be spent performing useful work in ready
objects. Our continued research into the efficient execution
of tightly-coupled applications in Grid computing environ-
ments exploits this concept to a great degree by attempting
to establish a favorable ratio of “border objects” (objects
that communicate with neighbors across a cluster boundary)
to “local objects” (objects that communicate with neigh-
bors that are located entirely within the local cluster) on
each processor in a Grid computation. By placing a small
number of border objects relative to a large number of local
objects on each processor, tightly-coupled parallel applica-
tions can be deployed successfully on a Grid with little or
no impact to the application’s performance.

A second enabling idea in Charm++ and AMPI that we
directly leverage for the work described in this paper is
the dynamic load balancing capabilities that result from the
transparent mapping of objects to processors. The funda-
mental technique here follows from the observation that ap-
plications that employ a functional decomposition model
(e.g., a global climate model consisting of discrete pieces
such as an atmosphere model and an ocean model) usu-
ally exhibit good performance in Grid environments due
to the fact that individual pieces communicate much less
frequently with each other than they do internally. That
is, the amount of wide-area communication is much less
than the amount of local-area communication. By creating a
Charm++ load balancer that has knowledge of the topology
of a Grid environment in which an application is running, it
may be possible to find a mapping of objects to processors
in the computation in which the amount of wide-area com-
munication is reduced. Applications that simulate physical



Figure 1. A depiction of the user’s view of a Charm++ application and the system’s view after mapping
objects to processors

systems (e.g., classical molecular dynamics or cosmology)
often present good opportunities for finding such mappings
due to the non-uniform structure of communications that
often is present in these types of problems.

2.2. Virtual Machine Interface

The proliferation of high-performance clusters built from
commodity off the shelf components has resulted in the
widespread deployment of several high-bandwidth low-
latency networks such as Myrinet [5] and InfiniBand [25].
The Virtual Machine Interface (VMI) message layer [24,
23] was designed to be a low-cost abstraction layer provid-
ing compatibility across multiple interconnects. Using soft-
ware modules that are dynamically loaded at runtime, VMI
allows applications to be switched from one interconnect to
another without requiring the application to be recompiled
or re-linked. Further, by organizing these dynamically-
loaded software modules into send and receivechainsof
modules, novel capabilities can be developed at the messag-
ing layer level. For example, by loading multiple modules
simultaneously, data may be striped across multiple inter-
connects. Also, an application can run in a Grid computing
environment using high-performance networks to commu-
nicate with local neighbors within a computation and wide-
area networks to communicate with neighbors located on
remote nodes. Finally, because modules can intercept and
manipulate message data as it is passed from module to
module, capabilities such as encrypting or compressing the
data are possible.

VMI is not typically intended to be a software layer
exposed to application developers, but rather as a layer
upon which higher level message layers or runtime systems
can be built. To this end, an efficient implementation of

Charm++ that uses VMI as its underlying message passing
layer has been developed [18]. This version of Charm++ is
used for all work described in this paper.

3. Related Work

Our goal of efficiently executing tightly-coupled paral-
lel applications in Grid computing environments is increas-
ingly shared by other researchers as the capabilities and ease
of access to Grid resources improve. Indeed, Grid-enabled
applications for solving non-trivial scientific problems, such
as Cactus-G [3], have been used for several years in envi-
ronments such as the national TeraGrid [1]. Furthermore,
Grid metacomputing systems like Legion [12] even share
the use of Object Oriented Programming techniques to man-
age complexity in Grid applications with our work. Unlike
systems such as Cactus-G that exploit application-specific
characteristics to achieve good performance on a Grid, how-
ever, our work seeks to develop solutions at the runtime sys-
tem level that can be applied to a wide variety of problem
domains. And, unlike more general systems such as Le-
gion which seem to focus on problems that can implicitly
tolerate latency, such as parameter sweep applications [21],
our work focuses directly on the problem of delivering good
performance to tightly-coupled codes with a per-step time
of tens or hundreds of milliseconds.

Efficient low-level message-passing capabilities that
leverage the best network path connecting any pair of pro-
cesses in a computation are extremely important for achiev-
ing good application performance in Grid computations.
Our use of the Virtual Machine Interface provides simi-
lar capabilities as those found in systems such as MPICH-
G2 [15] and MPICH/MADIII [4]. These projects, like ours,
view the communication infrastructure of a distributed Grid



job as a hierarchy of interconnects. MPICH/MADIII is par-
ticularly interesting because it uses an efficient user-level
thread library, called Marcel, that provides task decomposi-
tion capabilities similar to what is available with Charm++
chares or AMPI threads, although MPICH/MADIII seems
to typically use a much smaller number of threads per
processor than is common with Charm++. Further, the
Charm++ and AMPI runtime systems include the ability to
dynamically load-balance objects within a distributed com-
putation while MPICH/MADIII does not seem to offer this
functionality. We believe that this capability is critical to
achieving good performance on fine-grained Grid computa-
tions that span multiple clusters. Indeed, the work presented
in this paper would not be possible without this functional-
ity.

Load balancing of parallel applications is a well-known
concept with a history dating back more than twenty years.
For example, Fox’s book [11] describes load balancing
through the use of randomized placement of sub-blocks
within a problem. Interest in load balancing has increased in
recent years in the field of Grid computing because the per-
formance of Grid applications can be significantly improved
through the use of good load balancing. Two primary ways
of doing Grid load balancing exist: static techniques and
dynamic techniques. When using static techniques, de-
composed pieces of an overall problem are assigned to the
most suitable (least loaded) processor in the computation.
However, once a unit of work is placed on a processor, it
remains on that processor until the work is completed; it
cannot migrate to a new processor as in our system. We
believe that static load balancing techniques cannot fully
address the unique needs of Grid environments due to the
constantly-changing nature of Grids. To that end, our work
focuses on dynamic load balancing techniques provided by
the Charm++ runtime system [27].

The dynamic load balancing capabilities of our work are
similar to systems such as OptimalGrid [17] which moni-
tor the runtime performance of each node in a computation
with respect to the portion of a problem that it is handling
and reapportion successive iterations of the computation to
address load imbalances. A particularly in-depth analysis
of this type of technique was carried out using a Succes-
sive Over-Relaxation (SOR) mesh problem running in the
PlanetLab Grid environment [6]. The biggest difference
between the dynamic load balancing research in Optimal-
Grid and in the PlanetLab experiments and our own work
is that our work balances a computation primarily in terms
of the object-to-object communication graph of the compu-
tation in relation to the structure of the Grid resources used
by the computation and only secondarily on measured CPU
utilization. In some ways, our work to efficiently balance
Grid applications resembles other work within our research
group for doing topology-aware load balancing within a sin-

gle cluster [2], however our work generally focuses on find-
ing ways to mask the effects of very high latencies found in
Grid computations while the topology-aware task mapping
work seeks to reduce contention for the high-performance
low-latency networks within a single cluster.

The common thread that differentiates our work from
others is our pervasive use of message-driven execution, in
the form of Charm++ chares or AMPI threads, coupled with
Grid topology-aware dynamic load balancing as a means of
tolerating latency in Grid computing environments without
requiring modification of application software. To this end,
we examine this concept in greater detail in Section 4.

4. Load Balancing of a Molecular Dynamics
Application

In light of the enabling technologies described above, we
now describe our design for a Grid topology-aware load bal-
ancer.

4.1. Grid Topology-Aware Load Balancer
Design

A Grid computation can be thought of as representing a
hierarchy of communication latencies. At the lowest level
of this hierarchy is lightweight intra-processor communica-
tion, such as when two neighboring objects are co-located
on the same processor. The next level of the hierarchy is
represented by slightly heavier weight intra-cluster com-
munication, such as when two neighboring objects are co-
located within the same cluster. Finally, at the highest level
of the hierarchy, heavy-weight cross-cluster communication
is used when two neighboring objects must communicate
with each other over high-latency wide-area communica-
tion channels. Latencies within this hierarchy can vary from
sub-microsecond intra-processor latencies, to intra-cluster
latencies measured in tens of microseconds, and finally to
cross-cluster latencies measured in tens or hundreds of mil-
liseconds. Efficiently mapping work to computational re-
sources is a challenging problem even in traditional paral-
lel applications running entirely within a single cluster that
use only one interconnect. Performing such a mapping ef-
fectively in a Grid computation with multiple interconnects
represents a significant challenge. This is further compli-
cated by the fact that latencies in a Grid computation, partic-
ularly those for wide-area connections, may actually change
as an application executes.

Dynamic load balancing like that used by systems such
as Charm++ and Adaptive MPI presents several intriguing
possibilities for efficiently executing applications in Grid
environments. The system can observe the runtime behav-
ior of the application, as well as the dynamic characteristics
of the Grid environment itself, and make optimizations that



may be non-obvious or difficult for humans to discover. An
important point is that, in order to be most effective, this
load balancing must take into consideration the communi-
cation hierarchy of the Grid environment itself. That is, the
load balancing framework must be aware of the topology of
the Grid environment in which an application is running.

The first step in creating a Grid topology-aware load bal-
ancer is actually discovering where the discrete breaks in
the communication hierarchy are located. In the case of
intra-processor latencies, this is trivial — the actual proces-
sors allocated to the computation define these boundaries.
In the case of cross-cluster latencies, we need some way
of identifying which processors belong to each cluster. We
provide two solution to this problem. The simplest solution
is to have the user specify this information at job submis-
sion time. We have implemented the capability for a user
to launch the independent pieces of a single Grid job sepa-
rately on their respective clusters. By augmenting this ca-
pability, Charm++ considers each sub-job launched as be-
longing to a unique cluster. A more complex solution is
also available, and this solution has the advantage of au-
tomatically detecting the cluster to which each processor
belongs. To do this, each processor measures the latency
to every other processor in the computation when it opens
connections during program startup and initialization. By
collecting these latency vectors onto a single processor (by
default, Rank 0 is used), it is possible to deduce the over-
all structure of the processors allocated to a computation.
This information is then used to make topology-aware load
balancing decisions.

After the topology of a Grid computation is discovered,
the next step is to load balance the running application to
reflect this topology. During an application’s execution,
the Charm++ load balancing framework collects statistics
about the runtime characteristics of the objects in the appli-
cation. Such statistics include the measured CPU load of
each object as well as statistics about the number of mes-
sages and number of bytes sent between every pair of ob-
jects. Based on these statistics, an updated mapping of ob-
jects to processors can be computed by using graph par-
titioning techniques on the computation’s object commu-
nication graph. This updated mapping hopefully reduces
the volume of communication that crosses cluster bound-
aries, thus allowing the overall performance of the appli-
cation to be improved. Graph partitioning is NP-complete.
Fortunately, several software packages exist that can pro-
duce fast approximations to this problem. One such pack-
age is Metis [16], and we leverage this piece of software for
our load balancing work. Our choice of Metis is based en-
tirely on our familiarity with this software; any contempo-
rary graph partitioning software could be used with similar
results.

Simply partitioning the object communication graph into

a number of partitions equal to the number of processors
in the computation would not result in an optimal map-
ping, because this mapping would not reflect the fact that
the inter-processor latency between some pairs of proces-
sors is much greater than the latency between other pairs
in the Grid environment. Instead, we use a two-phase al-
gorithm to partition objects to processors such that the cut
of the object communication graph reduces the volume of
communication across cluster boundaries. This algorithm
is described as follows.

• Phase 1:In the first phase, objects are partitioned into
the clusters in the Grid computation. At this stage, no
consideration is given to balancing the computation on
the measured CPU load of each object. Rather, the
sole criteria for balancing is the measured number of
object-to-object messages. This is to ensure that the
partitioning of objects produced in this phase results
in a cut in the communication graph that reduces the
volume of communication crossing cluster boundaries.

To carry out this phase, a graph is constructed for input
to Metis that includes every object in the computation.
Weights on the edges of the graph represent the num-
ber of messages passed between any pair of objects.
Vertex weights are ignored. Metis is then instructed
to partition the communication graph into a number of
partitions related to the number of clusters in the com-
putation. In some cases, the number of partitions used
may not necessarily be exactly equal to the number of
clusters in the computation, and this discrepancy is de-
scribed below.

• Phase 2: In the second phase, objects within each
cluster are partitioned onto the processors within their
assigned clusters. This partitioning considers both
the measured CPU load of each object as well as the
object-to-object communication graph internal to each
cluster, ensuring that the objects within each cluster
are placed so as to produce both the most optimal CPU
utilization on each processor as well as the most op-
timal intra-cluster communication graph. Inter-object
communication that crosses cluster boundaries is ig-
nored at this phase due to the fact that Phase 1 above
has already partitioned the objects into clusters in such
a way as to reduce the volume of communication on
the edge cuts across cluster boundaries as long as each
border object appears anywhere within the cluster to
which it was assigned in Phase 1.

To carry out this phase, graphs are constructed for in-
put to Metis that includes every object in each clus-
ter. Weights on the edges of these graphs represent the
number of messages passed between objects. Vertex
weights represent the measured CPU load of each ob-
ject. Metis is then instructed to partition the graph into



a number of partitions related to the number of proces-
sors in the associated cluster. Again, in some cases,
the number of partitions used may not necessarily be
exactly equal to the number of processors in a given
cluster, and this discrepancy is described below.

After completing this two-phase process, the resulting
object mapping ensures that all objects in the computa-
tion have been balanced in such a way as to produce a re-
duced volume of communication in the object communica-
tion graph across cluster boundaries as well as in a way that
balances CPU load and intra-cluster object communication
within each cluster.

As mentioned previously, the number of partitions re-
quested from Metis in the phases of the algorithm described
above may not necessarily exactly match the number of
clusters in the computation (Phase 1) or the number of pro-
cessors in a given cluster (Phase 2). This discrepancy is
due to the possibility of a heterogeneous allocation of re-
sources used in a Grid computation. For example, the pro-
cessors within a single cluster may be of varying speeds.
In such a case, it is desirable to allocate more work to the
faster processors and less work to the slower processors.
In order to get Metis to do this, the measured CPU speed
of each processor, collected automatically by the Charm++
load balancing framework during program startup and ini-
tialization, is normalized against the slowest processor in
each cluster. This produces a multiplier for each processor;
the sum of these multipliers is used as the number of par-
titions for Metis. The resulting object map from Metis is
then related to the physical processors in terms of this mul-
tiplier. That is, a processor that is twice as fast as the slowest
processor in its cluster receives a multiplier of 2, and is ac-
cordingly assigned objects from two partitions of the object
map produced by Metis. Similarly, and more likely in a real
Grid computation, clusters may be of unequal power, due
either to an unequal number of processors (e.g., Cluster A
has twice as many processors as Cluster B) or to heteroge-
neous processor speeds between clusters. The solution here
is to compute a multiplier for each cluster, based on the sum
of the multipliers for the processors that make up each clus-
ter, and to use the sum of these as the number of partitions
for Metis.

4.2. LeanMD

To evaluate the effectiveness of our load balancing
technique to the problem of efficiently executing tightly-
coupled codes in Grid computing environments, we eval-
uate its use on a classical molecular dynamics code called
LeanMD [20]. LeanMD is representative of scientific codes
of reasonable complexity. Molecular dynamics codes typ-
ically employ a spatial decomposition style in which the
atoms of a biomolecular system, composed of proteins, cell

membranes, SNA, and waters, interact with the other atoms
that are within a certain cutoff distance. Each timestep in-
volves calculating the forces acting on all atoms and then
using these forces to update the positions and velocities of
each atom.

Within LeanMD, all computation takes place within a
simulation box, a bounding box for all atoms involved in
the simulation. The space within a simulation box is divided
into regular cubic regions of simulation space calledcells.
Each cell is responsible for all the atoms that fall within
its boundary, their coordinates, and the forces exerted on
them. As described above, molecular dynamics simulations
involve the interaction of atoms with other atoms within a
certain cutoff distance. In a simulation with a k-away cutoff
distance, a cubic region of simulation space formed byk ×
k×k cells is considered. This cubic region of space is called
apatch.

Electrostatic and van der Waal’s interactions between ev-
ery pair of neighboring cells are computed by a separate
cell-pair object. These interactions constitute the bulk of
processor time used by the application, although there are
other force computations involving bonds between atoms.
In each timestep, each cell “integrates” all forces on its
atoms and changes their positions based on new accelera-
tion and velocities calculated. It then multicasts its atoms’
coordinates to the 26 cell-pairs (3×3×3 cube) that depend
on it.

The molecular system considered here consists of ap-
proximately 30,000 atoms and 3,000 cell-pair-objects.
Thus, each processor in the computation contains several
tens of cell-pair objects. In a multi-cluster context, some
subset of these objects (“subset A”) require messages from
cells within their own cluster, while a different subset (“sub-
set B”) may require interaction with cell-pair objects from
outside the cluster. As a result of the message-driven model
of execution employed by Charm++, a processor is able to
execute objects in subset A while waiting for high-latency
messages for objects in subset B from another cluster. This
renders the application latency tolerant to some extent as
shown in our previous work. The technique used in this pa-
per further optimizes the application by attempting to iden-
tify objects in subset B in which the number of interactions
with remote objects exceeds the number of interactions with
local objects, and migrating (load balancing) these objects
so that they are nearer to their neighbors with which they
communicate most, thus reducing the overall volume of
cross-cluster communication necessary in each timestep.

5. Experimental Results

In this section, we describe a set of experiments based
on the LeanMD molecular dynamics application described
in Section 4. Results of these experiments demonstrate that



our load balancing technique can be used to significantly
improve the performance of applications in Grid computing
environments.

5.1. Experimental Environment

All experiments described in this paper are carried out
in a simulated Grid computing environment consisting of
a pair of clusters. All cluster nodes in this environment
are dual-processor Itanium 2 machines running at 1.5 GHz
and containing 4 GB of main memory each. For each
experiment conducted, the number of physical processors
used for the experiment is varied in increasing powers of 2
(i.e., 16, 32, 64, and 128 processors) and these processors
are evenly distributed between the two clusters (i.e., 8+8,
16+16, 32+32, and 64+64 processors). Nothing about the
underlying problem requires a power of two processors. In
fact, a fundamental characteristic of Charm++ and Adap-
tive MPI is that the number of objects used to decompose
the problem is independent of the number of processors.
However, choosing a power of two processors for our ex-
periments allows us to ensure an even division of proces-
sors between cluster boundaries. That is, half of the pro-
cessors allocated to the application are physically located
on one cluster and the other half on the second cluster, with
messages sent between co-allocated processors going over
a high-latency interconnect.

In practice, Grid computations that span multiple clus-
ters generally run on environments consisting of two to four
independent clusters. We believe that conducting the ex-
periments described in this paper on two clusters is reason-
ably representative of what might be experienced in a real
Grid computation. More importantly, our decision to use
two clusters allows us to reason better about the impacts of
latency on the application due to the fact that the communi-
cation hierarchy consists of only two levels, a low-latency
level within the two clusters and a high-latency level be-
tween the two clusters. A Grid environment consisting of
three or more independent clusters would make the task
of understanding our results more difficult and we do not
believe would greatly enhance the conclusions that can be
drawn.

A simulated Grid environment is constructed using
nodes that physically exist within a single real cluster. In
this simulated Grid environment, arbitrary latencies can be
inserted between any pair of nodes, allowing us to sweep
cross-cluster latencies across a range to study the impact
of varying wide-area latencies on the underlying applica-
tion. Recall from Section 2.2 that the Virtual Machine In-
terface messaging layer is used for all communication op-
erations described in this paper, and that a novel feature
of VMI is the ability to organize the device drivers used
for these communication operations into send and receive

chains of drivers. As message data travels along a chain,
each driver on the chain examines the message to determine
whether that driver should deliver the message or whether
it should simply send the message to the next device in the
chain for eventual delivery by some lower-level device. Fur-
thermore, a device driver may manipulate the message in
arbitrary ways. We leverage this capability to inject pre-
defined latencies between arbitrary pairs of nodes by con-
structing send and receive chains that consist of two net-
work drivers with a “delay device driver” in between. By
affiliating a subset of the cluster’s nodes with the first driver
in the chain, message data are immediately sent between
the nodes within that subset without passing through the
delay device. For nodes not in this affiliation (i.e., those
that exist on the “remote cluster”), messages are intercepted
by the delay device which delays the message by a pre-
defined amount of time before passing it to the network de-
vice driver used to communicate over the “wide area.” Our
previous work [19] has shown that the performance of jobs
running in this simulated Grid environment closely matches
the performance of jobs running in real Grid environments.

5.2. Load Balancing Results

We evaluated the effectiveness of our load balancing
technique when applied to LeanMD by conducting a series
of experiments that show the effects of increasing latency
on the application’s per-step performance. Four main ex-
periments were run, each with a fixed number of proces-
sors. For each of these experimental runs, 12 data points
were generated corresponding to increasing values of artifi-
cial latency. For each fixed processor size and latency 2,000
iterations of LeanMD were run with a single load balancing
operation performed after 1,000 iterations. Our choice of
2,000 iterations with load balancing after 1,000 iterations
was somewhat arbitrary. LeanMD allows the user to con-
figure the simulation to run for a fixed number of iterations
with load balancing taking place at user-specified intervals.
It is expected that for real computational science conducted
with LeanMD, the user will select these values based on
their experience with the molecular system being studied.
For our purposes, running 2,000 iterations with load bal-
ancing after 1,000 iterations allows LeanMD enough time
to reach a stable state in terms of the per-iteration time after
startup and after load balancing, thus allowing us to discard
several iterations at the beginning of the run that include
startup costs and several iterations at the middle of the run
that include load balancing costs.

The median per-step time of the application in the first
1,000 iterations (i.e., without load balancing) was compared
to the median per-step time of the application in the sec-
ond 1,000 iterations (i.e., after load balancing) to determine
the effectiveness of load balancing on the application’s per-



formance. Figure 2 shows the per-step execution time of
LeanMD as a function of cross-site latency on different
numbers of processors. Each graph shows results without
load balancing and with our graph partitioning load bal-
ancer (denoted “GridMetisLB”). As a point of reference, re-
sults for a second load balancer (denoted “GreedyLB”) are
also presented. This load balancer uses a greedy algorithm
that adjusts the object mapping based only on the measured
CPU load of each object, ensuring that each processor in
the computation has roughly an equal CPU load. GreedyLB
does not consider the communication characteristics of the
computation in any way. Thus, comparisons with these re-
sults provide a reasonable idea of the effectiveness of our
Grid topology-aware load balancing technique.

In the graphs, horizontal lines are desirable because they
show that the per-step execution time of the application
does not increase with increasing latency. For 16 processors
(Figure 2(a)), for example, the natural parallelism of the ap-
plication along with the relatively large per-step time (1,000
milliseconds for the unbalanced case) completely mask the
effects of latency due to the ability of Charm++ to overlap
wide-area communication with locally-driven work as de-
scribed in our previous paper [19]. Both GridMetisLB and
GreedyLB produce similar improvements in performance,
and these improvements are due entirely to both balancers
adjusting the object mapping in terms of each object’s mea-
sured CPU load.

The results for 32 processors (Figure 2(b)) show simi-
lar trends. Doubling the number of processors gives good
scaling of the application even in the unbalanced case. The
results for both load balancers improve the per-step execu-
tion time from approximately 550 milliseconds per step to
approximately 450 milliseconds per step. The results for
GridMetisLB, however, are slightly better than those for
GreedyLB through 80 milliseconds of cross-site latency.
These results suggest that the graph partitioning technique
employed by GridMetisLB produces a more optimal object
mapping compared to GreedyLB which balances the com-
putation only in terms of each object’s measured CPU load.
More interestingly, the results for the load balanced cases
between 80 and 128 milliseconds show an increase in the
per-step execution time for the GreedyLB case while the
GridMetisLB case remains flat. This further underscores
the effectiveness of our graph partitioning load balancing
technique.

For 64 processors (Figure 2(c)), the unbalanced case
shows poor scalability with the doubling of processors, and
this result is known to be due to CPU load imbalance [20].
The results for both load balancers significantly improve ap-
plication performance, although again the results for Grid-
MetisLB for low cross-site latencies are slightly better than
those for GreedyLB. As the cross-site latency increases, the
results for both load balancers show an increase in the per-

step execution time, indicating that the effects of latency
cannot be masked entirely. However, the results for Grid-
MetisLB remain horizontal through a longer range of cross-
site latency, through the neighborhood of 48 to 64 millisec-
onds, compared to the results for GreedyLB. Further, in the
region of the graph when the results for GridMetisLB show
an increase in execution time as latency increases, from 64
to 128 milliseconds of latency, the results for our graph par-
titioning load balancer are better than the results for CPU
load balancing alone.

In the 128 processor graph (Figure 2(d)), the results for
all three cases show an increase in the per-step execution
time as cross-site latency increases. Again, not only do
the results for GridMetisLB remain horizontal longer than
the results for GreedyLB (through 24 milliseconds latency),
the results for GridMetisLB are consistently better than
those for GreedyLB through 128 milliseconds latency. This
strongly suggests that the object mapping produced by our
graph partitioning load balancing technique is more favor-
able for optimizing performance of the application in Grid
computing environments than the object mapping produced
by considering measured CPU load alone.

Load balancing itself incurs some amount of overhead.
The cost of instrumenting the Charm++ runtime system it-
self is measured to be minimal [27]. We further measured
the cost of GridMetisLB as approximately 500 milliseconds
for each invocation and believe this is reasonable when con-
sidering that load balancing in real-world applications is
likely to be carried out only once every several minutes of
execution.

6. Conclusion

In this paper, we have demonstrated that the use of Grid
topology-aware dynamic load balancing in Charm++ can
be used to optimize tightly-coupled distributed applications
running in Grid computing environments. The performance
benefits gained by using our load balancing technique on
these codes improve upon the performance benefits related
to the use of message-driven objects for masking wide-area
latencies, as reported in our earlier work.

In addition to the results described in this paper, we
have developed Grid load balancing techniques that can be
applied to applications in other problem domains such as
regular and irregular mesh decomposition. These types of
applications present challenges that are distinct from the
challenges of “particles in boxes” applications because the
communication patterns in mesh applications are frequently
very uniform. That is, it is generally not possible to partition
the application in any way that significantly reduces the vol-
ume of wide-area communication. For these cases, we em-
ploy a strategy of simply distributing the objects that com-
municate across high-latency wide-area connections evenly
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Figure 2. Performance of LeanMD with artificial latencies 1-128 milliseconds



among the processors within a cluster. In this scheme, no
objects are migrated to remote clusters; rather they are sim-
ply migrated among the processors within the cluster in
which they were originally placed. In this way, a favorable
ratio of border objects to local objects can be established
on each processor, providing the the most possibilities for
overlapping the wide-area communication in border objects
with locally-driven work.
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