Support for Adaptivity in ARMCI Using Migratable Objects

<u>Chao Huang</u>, Chee Wai Lee, Laxmikant Kale Parallel Programming Laboratory University of Illinois at Urbana-Champaign

Motivation

Different programming paradigms fit different algorithms and applications

Adaptive Run-Time System (ARTS) offers performance benefits

Goal: to support ARMCI and global address space languages on ARTS

Common RTS

Motivations for common run-time system

- Support concurrent composibility
- Support common functions: load-balancing, checkpoint

Outline

Motivation

- □ Adaptive Run-Time System
- Adaptive ARMCI Implementation
- Preliminary Results
 - Microbenchmarks
 - Checkpoint/Restart
 - Application Performance: LU
- □ Future Work

ARTS with Migratable Objects

Programming model

- <u>User</u> decomposes work to parallel objects (VPs)
- <u>RTS</u> maps VPs onto physical processors
- Typically, number of VPs >> P, to allow for various optimizations

Features and Benefits of ARTS

- Adaptive overlap
- Automatic load balancing
- Automatic checkpoint/restart
- Communication optimizations

□ Software engineering benefits

Adaptive Overlap

Challenge: Gap between completion time and CPU overhead
Solution: Overlap between communication and computation

Completion time and CPU overhead of 2-way ping-pong communication on Apple G5 Cluster

Automatic Load Balancing

Challenge

- Dynamically varying applications
- Load imbalance impacts overall performance

Solution

- Measurement-based load balancing
 - Scientific applications are typically iteration-based
 - □ The *Principle of Persistence*
 - RTS collects CPU and network usage of VPs
- Load balancing by migrating threads (VPs)
 - Threads can be packed and shipped as needed
- Different variations of load balancing strategies

Eg. communication-aware, topology-based

Features and Benefits of ARTS

- Adaptive overlap
- Automatic load balancing
- Automatic checkpoint/restart
- Communication optimizations

□ Software engineering benefits

Outline

- Motivation
- □ Adaptive Run-Time System
- Adaptive ARMCI Implementation
- Preliminary Results
 - Microbenchmarks
 - Checkpoint/Restart
 - Application Performance: LU
- □ Future Work

ARMCI

Aggregate Remote Memory Copy Interface (ARMCI)

Remote memory access (RMA) operations (one-sided communication)

Contiguous and noncontiguous (strided, vector); blocking and non-blocking

Supporting various global-address space models
Global Array, Co-Array Fortran compiler, Adlib

Built on top of MPI or PVM

Now on Charm++

Virtualizing ARMCI Processes

Each ARMCI virtual process is implemented by a light-weight, user-level thread embedded in a migratable object

Isomalloc Memory

- Isomalloc approach for migratable threads
 - Same iso-address area in all nodes' virtual address space
 - Separate regions globally reserved for each VP
 - Memory allocated locally
 - Thread data moved, without pointer or address update

Microbenchmarks

Performance of contiguous operation on IA64 Cluster

Microbenchmarks

Performance of strided operation on IA64 Cluster

Checkpoint Time

Checkpoint/restart automated at run-time level

- User inserts simple function calls
- Possible NFS bottleneck for on-disk scheme

Alternative: in-memory scheme

Р	Total Data (MB)	Time (ms)	Bandwidth (MB/s)
2	20.05	221	90.8
4	22.29	249	89.7
8	26.5	303	87.6
16	35.43	366	96.9
32	53.27	533	100

On-disk checkpoint time of LU, on 2 to 32 PEs on IA64 Cluster

Application Performance

Performance of LU application on IA64 Cluster

Application Performance

Performance of LU-Block application on IA64 Cluster

Performance Optimization

Reduce overheads

Performance Tuning

Visualization and analysis tools

Port other GAS languages

GA and CAF compiler