## Performance Evaluation of Adaptive MPI

### <u>Chao Huang</u><sup>1</sup>, Gengbin Zheng<sup>1</sup>, Sameer Kumar<sup>2</sup>, Laxmikant Kale<sup>1</sup>

<sup>1</sup> University of Illinois at Urbana-Champaign <sup>2</sup> IBM T. J. Watson Research Center

## Motivation

### Challenges

- Applications with dynamic nature
  - Shifting workload, adaptive refinement, etc
- Traditional MPI implementations
  - Limited support for such dynamic applications

### Adaptive MPI

- Virtual processes (VPs) via migratable objects
- Powerful run-time system that offers various novel features and performance benefits

# Outline

### Motivation

### Design and Implementation

### Features and Benefits

- Adaptive Overlapping
- Automatic Load Balancing
- Communication Optimizations
- Flexibility and Overhead

### Conclusion

## **Processor Virtualization**

Basic idea of processor virtualization

- <u>User</u> specifies interaction between objects (VPs)
- <u>RTS</u> maps VPs onto physical processors
- Typically, number of VPs >> P, to allow for various optimizations





## AMPI: MPI with Virtualization

Each AMPI virtual process is implemented by a user-level thread embedded in a migratable object



5

# Outline

### Motivation

Design and Implementation

### Features and Benefits

- Adaptive Overlapping
- Automatic Load Balancing
- Communication Optimizations
- Flexibility and Overhead

### Conclusion

## Adaptive Overlap

- Problem: Gap between completion time and CPU overhead
- Solution: Overlap between communication and computation



Completion time and CPU overhead of 2-way ping-pong program on Turing (Apple G5) Cluster

## Adaptive Overlap



Timeline of 3D stencil calculation with different VP/P

## Automatic Load Balancing

#### Challenge

- Dynamically varying applications
- Load imbalance impacts overall performance

#### Solution

- Measurement-based load balancing
  - Scientific applications are typically iteration-based
  - The *principle of persistence*
  - RTS collects CPU and network usage of VPs
- Load balancing by migrating threads (VPs)
  - Threads can be packed and shipped as needed
- Different variations of load balancing strategies

# Automatic Load Balancing

### Application: Fractography3D

#### Models fracture propagation in material



## Automatic Load Balancing



CPU utilization of Fractography3D without vs. with load balancing

## **Communication Optimizations**

- AMPI run-time has capability of
  - Observing communication patterns
  - Applying communication optimizations accordingly
  - Switching between communication algorithms automatically

### Examples

- Streaming strategy for point-to-point communication
- Collectives optimizations

# Streaming Strategy

Combining short messages to reduce per-message overhead



Streaming strategy for point-to-point communication on NCSA IA-64 Cluster

## **Optimizing Collectives**

- A number of optimization are developed to improve collective communication performance
- Asynchronous collective interface allows higher CPU utilization for collectives
  - Computation is only a small proportion of the elapsed time



Time breakdown of an all-to-all operation using Mesh library

## Virtualization Overhead

- Compared with performance benefits, overhead is very small
  - Usually offset by caching effect alone
- Better performance when features are applied



## Flexibility

- Running on arbitrary number of processors
  - Runs with a specific number of MPI processes
  - Big runs on a few processors



3D stencil calculation of size 240<sup>3</sup> run on Lemieux.

PPoPP 06

# Outline

### Motivation

### Design and Implementation

### Features and Benefits

- Adaptive Overlapping
- Automatic Load Balancing
- Communication Optimizations
- Flexibility and Overhead

### Conclusion

## Conclusion

#### Adaptive MPI supports the following benefits

- Adaptive overlap
- Automatic load balancing
- Communication optimizations
- Flexibility
- Automatic checkpoint/restart mechanism
- Shrink/expand
- AMPI is being used in real-world parallel applications and frameworks
  - Rocket simulation at CSAR
  - FEM Framework
- Portable to a variety of HPC platforms

## Future Work

### Performance Improvement

- Reducing overhead
- Intelligent communication strategy substitution
- Machine-topology specific load balancing
- Performance Analysis
  - More direct support for AMPI programs

# Thank You!

### Download of AMPI is available at: <u>http://charm.cs.uiuc.edu/</u> Parallel Programming Lab at University of Illinois