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Abstract

The parallel programming paradigm based on migratable ob-
jects, as embodied in Charm++, improves programmer productiv-
ity by automating resource management. The programmer decom-
poses an application into a large number of parallel objects, while
an intelligent run-time system assigns those objects to processors.
It migrates objects among processors to effect dynamic load bal-
ance and communication optimizations. In addition, having multi-
ple sets of objects representing distinct computations leads to im-
proved modularity and performance. However, for complex appli-
cations involving many sets of objects, Charm++’s programming
model tends to obscure the global flow of control in a parallel pro-
gram: One must look at the code of multiple objects to discern
how the multiple sets of objects are orchestrated in a given ap-
plication. In this paper, we presentCharisma, an orchestration
notation that allows expression of Charm++ functionality without
fragmenting the expression of control flow. Charisma separates
expression of parallelism, including control flow and macro data-
flow, from sequential components of the program. The sequential
components only consume and publish data. Charisma expression
of multiple patterns of communication among message-driven ob-
jects. A compiler generates Charm++ communication and syn-
chronization code via static dependence analysis. As Charisma
outputs standard Charm++ code, the functionality and perfor-
mance benefits of the adaptive run-time system, such as automatic
load balancing, are retained. In the paper, we show that Charisma
programs scale up to 1024 processors without introducing undue
overhead.

Categories and Subject Descriptors

D.1.3 [Concurrent Programming]: Parallel programming; D.3.3
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1. Introduction

Our approach to parallel programming seeks an optimal divi-
sion of labor between the run-time system and the programmer.
In particular, it is based on the idea of migratable objects. The
programmer decomposes the application into a large number of
parallel computations executed on parallel objects, while the run-
time system assigns those objects to processors (Figure 1). This
approach gives the run-time system the flexibility to migrate ob-
jects among processors to effect load balance and communication
optimizations.

User View

System Implementation

Figure 1. With Charm++, User Programs with
Objects and System Maps Objects to Proces-
sors

Charm++ is a framework that embodies this concept. Charm++
objects, orChares, execute parallel subtasks in a program and
communicate via asynchronous method invocations. A method



Figure 2. Structure of a Molecular Dynamics Simulation Application: NAMD

on a remote object can be invoked by a message, and the caller
does not wait for the method to return. Many chares can be orga-
nized into an indexed collection called achare array, and a sin-
gle program may contain multiple chare arrays for different sets
of subtasks. Applications developed with Charm++ enjoy several
performance benefits including adaptive overlap of communica-
tion and computation, automatic load balancing, system-level fault
tolerance support, and communication optimizations. The idea of
using over-decomposition and indirection in mapping work to pro-
cessors has been studied in the past, including in DRMS [18]. Us-
ing process migration for load balancing has also been investigated
[5], and this broad approach has gained momentum recently [1,
10].

A large number of applications have been developed using the
Charm++ framework, such as NAMD [12], a production-level
molecular dynamics program which has demonstrated unprece-
dented speedups on several thousand processors, and
LeanCP [17], a Quantum-Chemistry simulation application. Other
examples include rocket simulation, crack propagation, space-time
meshing with discontinuous Galerkin solvers, dendritic growth in
solidification processes, level-set methods, computational cosmol-
ogy simulations, and parallel visualization of cosmology data.

Although Charm++ has demonstrated its utility in runtime opti-
mizations such as load balancing, and although it is more modular
than MPI (see [11]), it can be challenging to clearly express the
flow of control due to its local view of control, especially for com-
plex applications that involve multiple sets of chare-arrays, as seen
in the motivating example in the next section.

Also, in Charm++, methods clearly distinguish the places where
data isreceived, but the places where data issent(invocations) can
be buried deep inside functions of the object code. This asymmetry
often makes it hard to see the parallel structure of an application,
which is useful for understanding performance issues.

We presentCharisma, a higher-level language notation that re-
tains the benefits of Charm++ while allowing for easy expression
of global flow of control as well as symmetric expression of com-
munication. Charisma separates sequential code fragments (meth-
ods) from the parallel constructs, and allows the programmer to
describe the global control flow with a script language. Since the
script language controls the behavior of acollectionof migratable

objects, we also call it an orchestration language.

2. Motivation

Many scientific and engineering applications have complex
structures. Some may involve a large number of components with
complicated interactions between them. Others may contain mul-
tiple modules, each with complex structures. Unfortunately, for
these applications, conventional parallel programming models do
not handle the balance between high performance and program-
ming productivity well. OpenMP [2] programs have a shared view
of data and control. The programmer writes code for all the com-
ponents of the program, with only independent loop iterations ex-
ecuted in parallel. This model may be easy to program for a sub-
set of applications, but it is often incapable of taking advantage
of large scale parallelism among modules and concurrent control
flows, and consequently suffers poor scalability. MPI [15], which
represents the message passing model, provides a processor cen-
tric programming model. A parallel job will be divided into sub-
tasks according to the number of available processors, and data
needed for each subtask is localized onto that processor. Then the
user expresses an algorithm in the context of local MPI processes,
inserting message passing calls to exchange data with other pro-
cesses. Basically, it provides a local view of data and a local view
of control, although for SPMD programs, the global flow of con-
trol is often similar to the local flow of control. Performance wise,
MPI programs can achieve high scalability, especially if the pro-
gram has “regular” patterns, typically with systolic computation-
communication super-steps. Some algorithms are simply too dif-
ficult to be written in such a fashion. In terms of productivity,
this model is fairly easy to program when the application does not
involve many modules. Otherwise the programmer will have to
first partition the processors between modules, losing the potential
performance opportunity of overlapping communication and com-
putation across modules, as well as doing resource management
across modules. Some programmers may choose to assign multi-
ple roles to the same group of processors for the sake of perfor-
mance. This results in complexity in writing the message passing
procedures, and compromises productivity.

For a concrete example, consider a 3D molecular dynamics



Figure 3. Structure of a Quantum Chemistry Simulation Application: LeanCP

simulation application NAMD [16] illustrated in Figure 2 (taken
from [16]). This simplified version of NAMD contains 3 types of
components. The spatially decomposed cubes, shown by squares
with rounded corners, are calledpatches. A patch, which holds the
coordinate data for all the atoms in the cube of space correspond-
ing to that patch, is responsible for distributing the coordinates, re-
trieving forces, and integrating the equations of motion. The forces
used by the patches are computed by a variety ofcomputeobjects,
with Angle Compute and Pairwise Compute shown in the figure as
examples. There are several varieties of compute objects, respon-
sible for computing different types of forces (bond, electrostatic,
constraint, etc.). Some compute objects require data from one
patch and only calculate interaction between atoms within that sin-
gle patch. Others are responsible for interactions between atoms
distributed among neighboring patches.PME objects implement
the Particle Mesh Ewald method [3], which is used to compute
the long-range electrostatic forces between atoms. PME requires
two 3D Fast-Fourier-Transform (FFT) operations. The 3D FFT
operations are parallelized through a plane decomposition, where
first a 2D FFT is computed on a plane of the grid, followed by
a global transpose and a 1D FFT along the third dimension. The
simulation in NAMD is iterative. At each time step, the patches
send out coordinate data to compute objects and PME objects as
necessary, and the compute objects and PME objects perform the
force calculations in parallel. When force information is available,
it is then communicated back to the patches, where integration is
performed.

When we consider the various programming models for this
relatively simple molecular dynamics application, we find it of-
ten difficult to reach a graceful balance between productivity and
performance.

Programming with OpenMP, one will write code that, in ef-
fect, serializes the coordinate distribution, angle force calculation,
pairwise force calculation, PME calculation, force reduction, and
patch integration. The flow of the program looks clear, but it is
unable to parallelize concurrent subtasks, such as angle force cal-
culation and pairwise force calculation, unless wildcard receives
with awkward cross-module flow of control are used. Performance
and scalability are sacrificed for the ease of programming.

MPI allows the programmer to partition the job into groups of
subtasks and assign the subtasks onto partitions of available MPI
processes. The programmer can choose to overlap several subtasks
onto same set of processes to keep the CPUs busy. For example,
if we have some patch objects and some compute objects residing
on the same processor, the patches may use the CPU for the coor-
dinates multicast, and subsequently yield the CPU to the compute
objects for force calculation. Since MPI message passing is based
on processors, when the programmer wants to express the inten-
tion to “send message to subtaskS”, he/she needs to make the MPI
call to send the message explicitly to processor rankK instead of
subtaskS’s ID. Therefore, the programmer has to maintain a map-
ping between the subtask IDs to the process ranks.

To achieve higher CPU utilization, we want to be able to pro-
cess the messages as soon as they are received. When the mes-
sage passing model does in-order message processing with tag
matching, the time wasted on waiting for the next in-order mes-
sage to arrive is unavoidable. The programmer can take advantage
of wildcard source and tag matching, accepting any incoming mes-
sage, and process them accordingly. While it is possible to achieve
high efficiency, this approach has a major productivity drawback.
When there are multiple subtasks from multiple components on
one processor, it is difficult to maintain a definite mapping from



an arbitrary incoming message to its destination and handler func-
tion. The message passing calls will look confusing, and the flow
of control cannot be expressed clearly.

Charm++, like MPI, provides a local view of control, but unlike
MPI, it takes an object-based approach. The programmer writes
code for various classes for different subtasks, then instantiates
object arrays of arbitrary size from such classes. These objects are
assigned onto physical processors by the run-time system automat-
ically, and therefore the programmer does not have to be restricted
by the concept of processor. In Charm++’s asynchronous method
invocation model, each object’s code specifies, in a reactive man-
ner, what the object will do when presented with a particular mes-
sage. When a message is delivered, its destination object and the
method to invoke on that object are stated. Because the message
contains information on what to do with it at the receiver side,
this can be called anactive message[19]. Such active messages
ensure the prompt processing of data as they become available,
and the Adaptive Run-Time System (ARTS) offers further oppor-
tunities for performance optimization. However, for complex pro-
grams with a large number of object arrays, this comes at a cost
of obscuring the overall flow of control: The transfer of control
is fragmented by the message sending between objects. To follow
the flow of control, one often needs to dig deep into the objects’
class code and hop from one to another, and in the meanwhile,
to understand parallel operations, such as broadcast, multicast and
reduction, among the objects. This poses some difficulty for the
expression of the parallel program for both the programmer and its
readers.

The above example is not an extremely complicated parallel
program. Indeed, it has only 3 types of components and a few
short-running concurrent control flows. A quantum chemistry sim-
ulation [17] under development using Charm++ involves 11 dif-
ferent parallel structures, together with complex concurrent flows
(See Figure 3). Clearly, understanding the global control flow is
difficult by looking at individual object’s codes.

The language we propose, Charisma, aims at achieving high
programming productivity without losing the performance benefits
from the ARTS. It describes the global view of control in a parallel
application or module.

3. Language Design

Charisma employs a macro dataflow approach for productive
parallel programming. The programmer writes a script-like or-
chestration program containing statements that produce and con-
sume collections of values. From analyzing such producing and
consuming statements, the control flows can be organized, and
messages and method invocations can be generated. This idea is
similar to the macro dataflow model [8] and the hybrid dataflow
architecture model [7]. In [7], the data-driven distributed control
model is combines with the traditional von Neumann sequential
control model to exploit fine-grain parallelism without sacrific-
ing the performance benefits of the existing optimizations such as
pipelining. In contrast to the instruction level dataflow, Charisma’s
object-level macro dataflow mechanism takes advantage of the
message-driven execution model in Charm++’s and enables dy-
namic resource management such as automatic load balancing.

A Charisma program consists of two components: theorches-
tration code(in .or file) that describes the global view of control,
and thesequential code(in .h and.C files) that specifies the lo-

cal behavior of individual objects. Charisma compiler generates
parallel code from the orchestration statements and integrate the
sequential methods to produce the target Charm++ program. By
separating parallel code from sequential code, the programmer can
focus better on the local actions on the objects, such as physics
computation.

3.1 Parallel Object Array

In Charisma, a program is composed of parallel objects. A col-
lection of such objects can be organized into an array to perform a
subtask, such as the patches and the force calculators in the previ-
ous NAMD example. Although they are called “arrays”, these are
really a collection of objects indexed by a very general indexing
mechanism. In particular, the objects can be organized into 1-D
or multi-dimensional arrays that can be sparse, or into collections
indexed by arbitrary bit-patterns or bit-strings. One can also dy-
namically insert and delete elements in an object array. Charm++’s
ARTS is responsible for adaptively mapping the object array ele-
ments onto available physical processors efficiently.

Moreover, these objects are migratable with support from the
ARTS. Once created, these parallel objects report the workload at
run-time to the system load balancer, and the load balancer will
automatically migrate the objects as necessary to achieve higher
overall utilization.

class Cell : ChareArray2D;
class CellPair : ChareArray4D;

obj cells : Cell[N,N];
obj cellpairs : CellPair[N,N,N,N];

Above is an example of object array declaration in orchestra-
tion code for a 2-D Molecular Dynamics (MD) application. The
first part is class declaration for classCell andCellPair . The
second part is the instantiation of two object arrayscells and
cellpairs from these classes. The arraycells is responsible
for holding the atom information in the 2-D partition that corre-
sponds to its index, and the arraycellpairs does the pair-wise
force calculation for a pair ofcells objects.

The programmer also provides sequential code that specifies
the behavior of individual objects. There will be a.h file for each
class, with class member variables and methods that are needed
for sequential user code. Note that this header file does not have
complete class declaration. It just has the variables and methods
declaration used in the sequential code. The definition of those
sequential functions is provided in the.C files.

3.2 Foreach Statement

In the main body of orchestration code, the programmer de-
scribes the behavior and interaction of the elements of the object
arrays using orchestration statements. The most common kind of
parallelism is the invocation of a method across all elements in an
object array. Charisma provides aforeachstatement for specifying
such parallelism. The keywordsforeach andend-foreach
forms an enclosure within which the parallel invocation is per-
formed. The following code segment invokes the entry method
doWork on all the elements of arraymyWorkers .

foreach i in myWorkers
myWorkers[i].doWork();

end-foreach



The foreach statement looks very much like theFORALL
statement in HPF [13]. Indeed, they both express the global flow of
control. In HPF,FORALLprovides a parallel mechanism for value
assignment of elements of a distributed data array, whereas the
foreach statement in Charisma specifies the parallelism among
the entry method invocation of parallel objects.

The programmer can have multiple statements in oneforeach
enclosure, if those statements are invoked on the same object ar-
ray with the same indexing. This is really a shorthand notation for
having oneforeach enclosure for each of these statements. Note
also that the implementation does not need to broadcast a control
message to all objects to implement this. Global control can be
compiled into local control, and modulated by data dependencies
described below.

3.3 Producer-Consumer Model

In MPI model, message passing is via specifying the destina-
tion processor’s rank and communicator, with a tag to be matched.
As explained earlier, this mechanism does not always work well
in achieving both performance and clear algorithm expression in
presence of complex parallel programs. Charm++’s message de-
livery specifies the destination object and the function handler.
With this information, the destination object knows which func-
tion to invoke to process the incoming message. While Charm++
offers a more intuitive way to deal with communications between
subtasks, the programmer still needs to worry about sending and
receiving messages while writing sequential part of the code. To
further separate the task of writing communication code for par-
allelism and composing the sequential computation blocks in a
parallel program, Charisma supports producer-consumer commu-
nication directly.

In the orchestration code, there is no function call for explic-
itly sending or receiving message between objects. Instead, each
object method invocation can have input and output parameters.
Here is an orchestration statement that exemplifies the input and
output of this object methodworkers.foo .

foreach i in workers
<q[i]> := workers[i].foo(p[i+1]);

end-foreach

Here, the entry methodworkers[i].foo produces (orpub-
lishesin Charisma terminology) a valueq, enclosed in a pair of
angular brackets before the publishing sign “:= ”. Meanwhile,p
is the value consumed by the entry method. An entry method can
have an arbitrary number of published (produced and reduced) val-
ues and consumed values. In addition to basic data types, each of
these values can also be an object of arbitrary type. The values
published byA[i] must have the indexi , whereas values con-
sumed can have the indexe(i) , which is an index expression in
the form of i ±c wherec is a constant. Although we have used
different symbols (p andq) for the input and the output variables,
they are allowed to overlap.

The variables that can be used as input and output values are
declared in theparameter spacein Charisma. The variables in the
parameter space correspond to global data items or data arrays of a
restricted shared-memory abstraction. The programmer uses them
solely in the orchestration code to facilitate the producer-consumer
model, and has no knowledge of them in the local-view sequential
code. A parameter variable can be of an intrinsic or user-defined
data type, or a data array.

param error : double;
param atoms : AtomBucket;
param p : double [256];

When composing the sequential code in Charisma, the pro-
grammer does not need the knowledge of the sources of the in-
put data or the destinations of the output data. The input data is
seen as parameters passed in, and the output data is published via
a local function call. Specifically, for producing, a reserved key-
word outport is used to mark the parameter name to be produced
as appears in the orchestration code, and aproducecall associates
the outport parameter name with an actual local variable whose
value is to be sent out. For instance, in the sequential code for
WorkerClass::foo , the programmer makes a local function
call produce with outport variableq to publish the value of a
local variablelocal q (assumingp andq are double precision
type).

WorkerClass::foo(double p[], outport q) {
local_q = ...;
...
produce(q, local_q);

}

Fortran-M [6] is similar to Charisma because they both use the
concept ofport. In Fortran-M, ports are connected to createchan-
nelsfrom which point-to-point communications are generated. It
is useful in facilitating data exchange between dissimilar subtasks.
Charisma analyzes theinports andoutportsof data and generate
communications for both point-to-point and collective operations
among object arrays, by analyzing data dependencies among pa-
rameters in the orchestration code. The goal of Charisma is to
provide a way of clearly expressing global flow of control in com-
plicated parallel programs. In addition, Charisma is built on top
of a powerful adaptive run-time system which offers the generated
program performance benefits at no additional cost of program-
ming complexity.

3.4 Organizing Parallel Control Flows

The control transfer in a Charisma program is clearly expressed
in the orchestration code. After the initial statements in the con-
trol chain, which typically do not consume any value, the control
flow progresses in a data-driven fashion. If a statement consumes
some values, then as soon as the values are available, the state-
ment can be executed, without any barrier across the object array
or global synchronization. Charisma extends the message driven
model of Charm++, taking advantage of its high efficiency and of-
fering clear expression of the control flow and programming pro-
ductivity.

In the producer-consumer model, Charisma respects the pro-
gram order in connecting producing and consuming ports. In other
words, a consuming statement will look for the value produced
by the latest producing statement in the program order. In a le-
gal orchestration program, each consuming statement and tagged
input value has its corresponding unique producing statement. Of
course, a single produced value may be consumed by multiple con-
suming statements. If a producing statement does not have a later
consuming statement, the produced value will not have any effect
on the program behavior.

Beyond the program order restriction of the data flow, Charisma
is consistent with Charm++’s asynchronous invocation model, in



which explicit barrier or other synchronization operation is not
supported. If the programmer does need to enforce a barrier oper-
ation, a dummy reduction can be used (see Section 3.5).

This also means there is no further implicit barrier between
foreach statements. For instance, during any iteration in the
following code, workers[2].bar does not have to wait till
workers[2].foo has completed. As soon asp[1] is pub-
lished byworkers[1].foo , even if workers[2].foo has
not started yet,workers[2].bar can start executing before
workers[2].foo .

for iter = 1 to MAX_ITER
foreach i in workers

<p[i]> := workers[i].foo();
end-foreach
foreach i in workers

workers[i].bar(p[i-1]);
end-foreach

end-for

Loops are supported withfor statement andwhile state-
ment. The first consuming statement will look for values produced
by the last producing statement before the loop for the first itera-
tion, and the last producing statement within the loop body for the
following iterations. At the last iteration, the last produced values
will be disseminated to the code segment following the loop body.
Take the code segment in Figure 5 as an example, thecoords
produced in the firstforeach statement is consumed by the first
consuming statement in the for-loop. Thereafter, each iteration
produces a freshcoords from the integrate function at the
end to be consumed at the next iteration. The produced parameter
of coords is available after the for-loop, although it is not used
here in this example.

3.5 Describing Communication Patterns

The method invocation statement in the orchestration code spec-
ifies its consumed and published values. These actions of con-
suming and publishing are viewed as input and output ports, and
Charisma run-time willconnectthese ports by automatically gen-
erating efficient message between them. Using the language and
the extensions described below, the programmer is able to express
various communication patterns.

• Point-to-point communication
We now introduce the mechanism to allow point-to-point com-

munication among objects via the producer-consumer model. For
example, in the code segment below,p[i] is communicated via a
message in asynchronous method invocation between elements of
object arrayA andB.

foreach i in A
<p[i]> := A[i].f(...);

end-foreach
foreach i in B

<...> := B[i].g(p[i]);
end-foreach

From this code segment, a point-to-point message will be gen-
erated fromA[i] ’s publishing port toB[i] ’s consuming port.
WhenA[i] calls the local functionproduce() , the message is
created and sent to the destinationB[i] . By this mechanism, we
avoid using any global data and reduce potential synchronization

overhead. For example, in the code segment above,B[2].g()
does not have to wait on allA[i].f() is completed to start its ex-
ecution; as soon asA[2].f() is done and the value p[2] is filled,
B[2].g() can be invoked. In fact, even beforeA[i].f() com-
pletes,p[i] can be sent as soon as it is produced, using callback
in the implementation.

• Reduction
In Charisma, the publishing statement uses a+ to mark a re-

duced parameter whose value is to be obtained by a reduction
operation across the object array. Following is an example of a
reduction of valueerr on a 2-D object arrayA.

foreach i,j in workers
<..., +err> := workers[i,j].bar(..);

end-foreach
...
Main.testError(err);

In the sequential code forWorkerClass::bar , the pro-
grammer calls a local functionreduce to publish its local value
local err and specifies the reduction operation “>” (for MAX).
Similar to theproduce call, anoutport keyword indicates for
which output port parameter this reduce call is publishing data.
This call is almost identical to theproduce primitive, only with
an extra parameter for specifying the reduction operation.

WorkerClass::bar(..., outport err) {
local_err = ...;
...
reduce(err, local_err, ">");

}

The dimensionality of the reduced output parameter must be
a subset of that of the array publishing it. Thus reducing from
a 2-D object array onto a 1-D parameter value is allowed, and
the dimension(s) on which the reduction will be performed on is
inferred from comparison of the dimensions of the object array
and the reduced parameter.

• Multicast
A value produced by a single statement may be consumed by

multiple object array elements. For example, in the following code
segment,A[i] is a 1-D object array,B[j,k] is a 2-D object
array, andpoints is a 1-D parameter variable. Suppose they all
have the same dimensional size N.

foreach i in A
<points[i]> := A[i].f(...);

end-foreach
foreach k,j in B

<...> := B[k,j].g(points[k]);
end-foreach

There will be N messages to send each published value to the
consuming places. For example,point[1] will be multicast to
N elements inB[1,0..N-1] .

• Scatter, Gather and Permutation Operation
A collection of values produced by one object may be split and

consumed by multiple object array elements for a scatter opera-
tion. Conversely, a collection of values from different objects can
be gathered to be consumed by one object. Combining the two,
we have the permutation operation.



foreach i,j,k in cells
<coords[i,j,k]> := cells[i,j,k].produceCoords();

end-foreach
for iter := 1 to MAX_ITER

foreach i1,j1,k1,i2,j2,k2 in cellpairs
<+forces[i1,j1,k1],+forces[i2,j2,k2]> := cellpairs[i1,j1,k1,i2,j2,k2].

calcForces(coords[i1,j1,k1],coords[i2,j2,k2]);
end-foreach
foreach i,j,k in cells

<coords[i,j,k],+energy> := cells[i,j,k].integrate(forces[i,j,k]);
end-foreach
MDMain.updateEnergy(energy);

end-for

Figure 4. MD with Charisma: Clear Expression of Global View of Control

/* Scatter Example */
foreach i in A

<points[i,*]> := A[i].f(...);
end-foreach
foreach k,j in B

<...> := B[k,j].g(points[k,j]);
end-foreach

A wildcard dimension “*” in A[i].f() ’s output points
specifies that it will publish multiple data items. At the consum-
ing side, eachB[k,j] consumes only one point in the data, and
therefore a scatter communication will be generated fromA to B.
For instance,A[1] will publish datapoints[1,0..N-1] to
be consumed by multiple array objectsB[1,0..N-1] .

/* Gather Example */
foreach i,j in A

<points[i,j]> := A[i,j].f(...);
end-foreach
foreach k in B

<...> := B[k].g(points[*,k]);
end-foreach

Similar to the scatter example, if a wildcard dimension “*” is in
the consumed parameter and the corresponding published parame-
ter does not have a wildcard dimension, there is a gather operation
generated from the publishing statement to the consuming state-
ment. In the following code segment, eachA[i,j] publishes a
data point, then data points fromA[0..N-1,j] are combined
together to for the data to be consumed byB[j] .

Combining scatter and reduction operations, we get the permu-
tation operation. Please refer to Section 6.2 for an code example.

4. Code Example: MD

In this section, we show how Charisma can overcome some of
Charm++’s difficulty of describing global view of control with a
concrete example to . This example is a simplified version of the
NAMD simulation explained in Section 2, with only the pairwise
force calculation included.Cells are the objects that hold the
coordinates of atoms in patches, andcellpairs are the objects
calculating pairwise forces between twocells . In the following
comparison, sequential functions such asCell::Integrate
andCellPair::calcForces are not listed, since they access
only local data and should be the same for both versions.

With Charisma, the MD code is listed in Figure 4. First, el-
ements in object arraycells producetheir coordinates, provid-
ing the initial data for the first iteration. During each iteration,

}

        cells.sendCoords();
    else
        CkExit();

}

}

Cell::sendCoords(){

}

Cellpair::recvCoords(coords){

    totalEnergy += energy;
    if iter++ < MAX_ITER 

MainChare::MainChare{

}

MainChare::reduceEnergy(energy){

    for index in 26 neighbor cellpairs
        cellpairs(index).recvCoords(coords);

        return;
    else  // neighborhood reduction completed

        mainProxy.reduceEnergy(energy);
        integrate();

    if not coords from both cells received
        buffer(coords);
        return;
    else  // all coords ready
        force = calcForces();
        for index in 2 cells
            cells(index).recvForces(forces);

    totalforces += forces;
    if not all forces from all cellpairs received

    cells.sendCoords();

Cell::recvForces(forces){

Figure 5. MD with Charm++: Overall Control
Flow Buried in Objects’ Code



cellpairs calculate forces byconsumingthe coordinates pro-
vided by twocells elements. In the same statement,cellpairs
produceforces combined via a reduction within acell ’s neigh-
borhood. These values getconsumedin the integration phase.
The integration alsoproducescoordinates for the next iteration
and total energy via a reduction operation across allcells . In
the Charisma code, each orchestration statement specifies which
pieces of data itconsumesandproduces, without having to know
the source and destination of those data items.

Figure 5 lists corresponding Charm++ pseudo code for the same
program. In three boxes are method definitions for three classes
MainChare , Cell , andCellPair , which are typically sep-
arated in different C files. To organize the global control flow,
one has to dig into the files and hop among them (represented by
the arrows). Thus, the flow is fragmented and buried in the ob-
ject code. Following control flow in such a parallel program is
more complicated than in sequential object-oriented programming
code, due to the complexity of the parallel operations among the
objects. For instance, collecting force data among acell ’s neigh-
boring cellpairs through a neighborhood reduction requires
non-trivial code (not shown in the pseudo code here), and this kind
of code is automatically generated in the Charisma version.

We are not listing the corresponding MPI code here, because
it would be much more complicated than the Charm++ version.
In addition to handling the collective operations, the MPI pro-
grammer has to write code for explicitly managing various sets of
subtasks, maintaining mapping scheme between subtasks’ iden-
tities and their physical locations (processor number), and auxil-
iary code such as load balancing. When the programmer wants to
achieve higher degree of overlap between computation and com-
munication, more code is needed to handle the wildcard source
and tag matching as discussed in Section 2.

5. Implementation

Charisma generates Charm++ code which can be compiled and
run in the adaptive run-time system. The code generation starts
with parsing the orchestration code in the.or file. Once the input
and output parameters are identified for each orchestration state-
ment, static dependency analysis is performed to find the connec-
tions between these input and output parameters. By analyzing
the indices of the parameters and of the object arrays, a global
graph of control flow is created. Next, Charisma generates appro-
priate method invocations and messages from the graph of parallel
control flow, since the program progress in Charm++ is driven by
asynchronous remote invocation with messages. During this pro-
cess, parallel code for expressing a variety of communication pat-
terns, including broadcast, multicast and reduction, is produced.
After the parallel flow is set up, the user’s sequential code is inte-
grated into the final output of the Charm++ program.

An important goal in the implementation of Charisma is to en-
sure the high efficiency of the generated code. One technique is
immediate outgoing messages. As soon as the data for an outgo-
ing message becomes available (indicated to the ARTS by apub-
lish statement), the message is assembled and sent out, without
having to wait for the function to complete. This mechanism al-
lows for a larger degree of adaptive overlap between communi-
cation and computation. Another optimization improves memory
efficiency. When multiple messages are needed to drive the next
link in the flow, such as in a gather operation, the naive solution

of buffering messages already received into user-allocated mem-
ory incurs overhead for a memory copy. Charisma eliminates this
unnecessary memory copy by postponing the deleting of the re-
ceived Charm++ messages until after all the messages have been
received.

Charisma also offers the user great flexibility to customize the
parallel program. The current implementation supports creation
of a sparse object array and its collective operations. The user can
supply sequential functions to provide hints to Charisma on issues
such as which elements to create in the sparse object array.

6. Experiments and Results

In this section, we show the results of a few benchmarks with
Charisma. We compare the productivity, in terms of source lines
of code (SLOC), as well as the performance and scalability. The
benchmarking platforms are PSC’s Cray XT3 MPP system with
2068 dual 2.6 GHz AMD Opteron compute nodes linked by a
custom-designed interconnect, and NCSA’s Tungsten Cluster with
1280 dual 3.2 GHz Intel Xeon nodes and Myrinet network.

6.1 Stencil Calculation

Our first benchmark is a 5-point stencil calculation. This is a
multiple timestepping calculation involving a group of regions in
2-D decomposition of a 2-D mesh. At each timestep, every region
exchanges its boundary data with its immediate neighbors in 4 di-
rections and performs local computation based on the neighbors’
data. This is a simplified model of many applications including
fluid dynamics and heat dispersion simulation, and therefore it can
serve the purpose of demonstration.

Figure 6 compares the performance of the stencil calculation
benchmark written in Charisma vs. Charm++. The total problem
size is 163842 decomposed onto 4096 objects. The performance
overhead introduced by Charisma is 2 - 6%, scaling up to 1024
processors. Because this benchmark is relatively simple, the par-
allel code in Charm++ forms a significant part of the code. There-
fore we see a 45% reduction on SLOC with Charisma.

6.2 3D FFT

FFT is frequently used in engineering and scientific compu-
tation. Since highly optimized sequential algorithms are avail-
able for 1-D FFTs, multi-dimensional FFT containing multiple 1-
D FFTs on each dimension can be parallelized with a transpose-
based approach [14].

Following is the main body of the orchestration code for the
transpose-based algorithm for 3D FFT. From this code segment,
Charisma generates the transpose operation between the two planes
holding the data. Messages are created and delivered accordingly.

foreach x in planes1
<pencildata[x,*]>:=planes1[x].fft1d();

end-foreach
foreach y in planes2

planes2[y].fft2d(pencildata[*,y]);
end-foreach

Figure 8 compares the performance overhead of runs with prob-
lem size of 5123 on 256 objects, scaling up to 128 processors.
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Figure 6. Performance of Stencil Calculation

From the results, we can see that Charisma in this benchmark in-
curs up to 5% performance overhead, which can be attributed to
additional buffer copy for parameter variables. The reduction on
SLOC is only 37%. In this specific benchmark, sequential code
dealing with local FFT computation consists of a bigger portion
of the program, and therefore the reduction on the SLOC is not as
significant as simpler programs. This percentage of SLOC reduc-
tion is expected to be even smaller on larger and more complex
programs. It must be noted, however, that SLOC alone does not
make a good metric of productivity as it does not reflect the actual
programming effort. In fact, in more complicated applications, to
express parallel flow of control is far more difficult than in simpler
cases, and tools such as Charisma can better help programmers
code with less effort.

7. Conclusion

We described Charisma, a higher level notation that allows ex-
pression of global view of control in parallel programs, while still
allowing decomposition into multiple collections of dynamically

y
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Figure 7. Transpose-based 3D FFT
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Figure 8. Performance of 3D FFT

mapped objects as in Charm++. This approach cleanly separates
parallel and sequential code, strongly encourages locality aware
programming, allows expression of global flow of control in one
place, and still reaps the benefits of runtime optimizations of mi-
gratable objects.

The language proposed here does not cover expression of all
application patterns, especially the highly asynchronous patterns
supported by Charm++. Indeed, it is not even intended to be a
complete language. Instead it will be used in conjunction with
other paradigms where needed or appropriate. Currently, the or-
chestration language co-exists with Charm++ modules and mecha-
nisms thus ensuring completeness and high interoperability. Also,
our implementation of MPI, the Adaptive MPI (AMPI)[9] also in-
teroperates with Charisma. Beyond these languages, the ability to
support modules written in Charisma is crucial for productivity via
code reuse. We are designing language features to this end so that
we can provide user-level Charisma libraries such as parallel 3D
FFT.

Charisma supports a global view of control but a local view
of data, since only the object’s local variables are accessible in
the sequential methods. In contrast, Multi-phase Shared Array



(MSA) [4] supports a global view of data. Integrating the two
notations is an interesting future direction to explore.

Last but not least, SLOC is not necessarily a perfect metric
for measuring productivity. We plan to conduct classroom exper-
iments among parallel programming students to obtain a more re-
alistic evaluation of Charisma’s productivity advantage.
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