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Abstract

It is commonly believed that parallel programming can be difficult. Because it is already
difficult enough, any automatic ways of simplifying parallel programming are welcome. This
thesis describes how source-to-source translators can be used to make parallel programming
easier. This thesis describes three source-to-source translators and provide some examples
of translated codes. The translators used the ROSE library.

The first source-to-source translator removes global and static variables from a program
and encapsulates them in a structure which is allocated on the stack. This translator fa-
cilitates the use of any MPI code with AMPI, an adaptive MPI implementation which
unfortunately has limited support for MPI applications containing global or static vari-
ables. The source-to-source translator just transforms the code a minimal amount so that
existing compilers, linkers, and loaders can be used. Thus no special compilers or loaders
are required. Requiring special compilers or loaders necessarily would limit the acceptance
of AMPI, whereas a source-to-source translator would provide a simple automated way of
transforming an MPI code for use on any platform.

The second source-to-source translator inserts calls to functions for tracing an applica-
tion. The traces are used for post-mortem performance analysis. The translator inserts a
Projections function tracing call at the beginning and end of each function in the source
code. Thus an existing MPI application can be analyzed for performance function by func-
tion, without any need for the user to manually modify the application’s code.

The third source-to-source translator automatically creates PUP routines for Charm+-+

applications. PUP routines are functions that serialize the state of a migratable object.
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PUP routines are normally created by hand, which leaves room for programmer error. For
example, it is easy to overlook a member variable in a class. The source-to-source translator,
however, can easily iterate through all member variables and add each to the PUP routine.

AMPI shows great potential for improving the performance of scientific simulations that
use MPI. AMPI adaptively manages parallel resources, provides runtime instrumented load
balancing, fault-tolerance, and supports virtualization. These features are very useful for
dynamic applications and are essential for large scale parallel codes. AMPI augmented with
the global variable rewriting translator will be able to provide these features automatically to
any C or C+4 MPI application. Parallel scientific applications are generally concerned with
two main criteria, capabilities and performance. To analyze performance, the source code
instrumenting tool will be useful. All AMPI scientific application developers can benefit from

this tool. These translation tools will increase the productivity of parallel programmers.
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Chapter 1

Introduction

It is commonly believed that parallel programming can be difficult. Because it is already
difficult enough, any automatic ways of simplifying parallel programming are welcome. This
thesis describes how source-to-source translators can be used to make parallel programming
easier. This thesis describes three source-to-source translators in chapters 3, 4, and 5 while
providing some examples of translated codes in chapter 6. The translators use the ROSE
library which is described in chapter 2.

The first source-to-source translator removes global and static variables from a program
and encapsulates them in a structure which is allocated on the stack. This translator fa-
cilitates the use of any MPI code with AMPI, an adaptive MPI implementation which
unfortunately does not allow MPI applications to contain global or static variables on non
32-bit ELF platforms. The source-to-source translator just transforms the code so that ex-
isting compilers, linkers, and loaders can be used. Thus no special compilers or loaders are
required for all relevant platforms. Requiring special compilers or loaders necessarily would
limit the acceptance of AMPI, whereas a source-to-source translator would provide a simple
automated way of transforming an existing MPI code for use with AMPI on any platform.

The second source-to-source translator inserts calls to functions for tracing an applica-
tion. The traces are used for post-mortem performance analysis. The translator inserts
function tracing call at the beginning and end of each function in the source code. Thus an
existing MPI application can have its performance traced function by function in a reason-
able manner, without any need for the user to manually modify the application’s code. Just

as many vendors provide tracing libraries relevant to their own particular machines, and as



many MPI implementations provide their own tracing facilities, AMPI and Charm++ use
their own performance analysis tool Projections. Projections is a very advanced tool which
is currently being extending to provide even more performance views for AMPI traced ap-
plications.

The third source-to-source translator automatically creates PUP routines for Charm+-+
applications. PUP routines are functions that serialize the state for a migratable object.
PUP routines are normally created by hand, which leaves room for programmer error. For
example, it is easy to overlook a member variable in a class. The source-to-source translator,
however, can easily iterate through all member variables and add each to the PUP routine.

This thesis describes three source-to-source translators using the ROSE library along
with their motivating issues and examples of translated codes. The examples are simple
enough for the reader to quickly understand, but the translators have been used on much
larger codes spanning dozens of files and thousands of lines of code. The translators are

available in the Charm++ source code repository for any interested readers to view or use.

1.1 Related Work

There are no existing software source-to-source translation tools that perform the specific
translations done by the three source-to-source tools described in this thesis. The translators
proposed in this thesis use the ROSE library[1, 14, 16, 15]. Other frameworks could have
been used to perform similar tasks, but ROSE best suited the initial goals of the project. For
example, the LLVM compiler infrastructure[10, 9, 8] is a particularly well suited framework
to build the translators described in this thesis, however it was not chosen because its
generated output code does not look like the original C or C++ input. It is a goal of
our work to be able to rewrite an application and retain its original structure as much as
possible, including the comments which would have been lost in a LLVM based translation.

ROSE just translates from source to source not to some optimized machine language as does



LLVM. Another research oriented extensible compiler infrastructure for source-to-source
translation is Cetus[12]. Cetus does not provide support for Fortran, and is designed to
facilitate parallelizing Java, C++, and C. Cetus is a successor in some ways to the Polaris
compiler [13] which operated instead on Fortran 77. Also, various other source-to-source
converters are not of concern to the work of this thesis because they deal with converting
between languages, not modifying code in the manner proposed in this thesis. For example,
there are UPC to C, CAF to F90, Java to C++, and countless other esoteric variants like

SML to Java, or Lambda Calculus to Javascript.



Chapter 2

Source-To-Source Translation

Source-to-source translation is a process by which a source code is modified by a special
purpose application and the resulting source code can then be used as desired. Source-to-
source translation therefore can be platform independent, and can facilitate a number of
interesting changes to a set of source code files. Some change for example can be applied to
hundreds or thousands of files at once in a manner much faster than could be done by hand.
The input and output languages from a translator may or may not be the same. This thesis
only considers translation from C to C or C++ to C+4. Some possible example changes

include:

Changing all variable names to be consistently formatted

Translating a fortran program to a functionally equivalent C program

Restructuring loops to facilitate optimizations(unrolling, jamming, merging)

- Inlining of functions

Changing all function names in a library’s source to be prepended with the library’s

name

Source-to-source translation should be done by an application that fully understands
and can correctly parse the input language. A simple search-and-replace function of a text
editor will not be able to correctly analyze the structure and symantics of most languages.
For example, a regex based search will not be able to differentiate between a function and

variable with the same name.



The general method for source-to-source translation is to parse the input source code
into an abstract syntax tree(AST), then to manipulate the AST, and finally to generate
source code from the modified AST. Figure 2.1 shows this flow from input to output, with

an example of an actual AST produced by the PUP translator described in Chapter 5.

Original Source Code

Generated Translated Source Code

Figure 2.1: Source-to-source overview



2.1 ROSE for Source-to-Source Translation

ROSE is a library that can be used to write source-to-source translators[l, 14, 16, 15]. A
ROSE based translator can parse, modify and output C or C++ code. The ROSE library
is developed at Lawrence Livermore National Laboratories by Dan Quinlan and others. It
currently supports C and C++ languages, although it has been used by some other group
to support FORTRAN via a front-end parser called OPEN64. ROSE is not available on the
internet, but may someday be freely released. Academic users might be able to obtain a
copy from the ROSE team.

ROSE uses the EDG front-end for its parsing of C++ and C into the abstract syntax
tree that is exposed to the user of the ROSE library. Each node in the tree will have a
scope, a file info, some type of specifier for how the associated code should be generated
after modification, a link to a parent, and various specific attributes such as a name. Some
of the 241 types of AST nodes used by ROSE are listed in figure 2.2. The programmer
reference documentation distributed with ROSE should be used to explore the various types
of nodes. Each node has its own kinds of attributes and accessor functions. The details for
each node is well beyond the scope of this thesis.

In addition to parsing source files into an AST, the ROSE library provides query functions
that traverse the AST building a list of all nodes of the desired type. For example, it is easy
to obtain a list of all variable declarations in a file or given scope. Iterators can easily
scan through all variable reference expressions, or any other type of AST node. Various
mechanisms are in place and are being developed in ROSE to allow for modification of the
AST. Lower level rewrite mechanisms allow for modification, removal, and insertion of AST
nodes while higher level mechanisms allow for insertion of arbitrary C++ code represented

by a string to the AST in a specified location.



SgProject A ROSE project that can contain multiple files

SgFile A source-code file

SgFunctionDeclaration A function declaration

SgFunctionDefinition A function definition

SgFunctionCallExpr A function call expression

SgFunctionRefExp A function reference, to be used in a function call expression
SgBasicBlock A block of code, surrounded by { and }

SgVarRefExp A variable reference expression

SgVariableDeclaration A variable declaration

SgClassDeclaration A class declaration, either a forward declaration or a defining
declaration

SgClassDefinition A class definition
SgMemberFunctionDeclaration A member function in a class
SgCtorInitializerList for initialization lists at constructors
SgArrowExp The “->” operator for pointers

SgThisExp The pointer to the “this” object

SgWhileStmt A while statement

SgMinusOp The unary operator minus

SgPointerDerefExp A pointer dereference expression

SgDeleteExp The C++ delete operator

Figure 2.2: A selection of the 241 AST nodes used by ROSE



2.2 The Simplest Possible ROSE Translator

The simplest of all ROSE translators is the identity translator, an example of which is shown
in figure 2.3. It takes the source for a program, parses it in to the internal AST format,
and generates output code which should be almost identical to the initial input files. This
translator is useful for debugging ROSE, and for initially testing new codes. For example
the identity translator should always be used first when a new code is being translated. This
will ensure the translator is being given correct compiler options, include directories, and

ROSE language flags.

#include ”"rose.h”

int main( int argc, char x argv|[] )

{
// Build the AST used by ROSE

SgProject* project = frontend (argc,argv);
// Insert your own manipulation of the AST here...

generateDOT (¥ project ); // Generate a graph for the AST
generatePDF (xproject ); // Generate a pdf describing the AST

// Generate source code from AST and call the normal compiler
return backend(project);

Figure 2.3: A simple identity translator that uses ROSE

All transformations are done through accesses to the project variable which contains
pointers to the SgFile nodes in the project. Each file contains a scope node which can be
used to further access the tree. Additionally queries can be performed directly on project

or any other node to return a list of any desired type of node in the AST.



2.3 Complications

When using ROSE for the first time, a number of problems can arise, and the ROSE docu-
mentation is large, but has sparse coverage of the entire ROSE library and its use. A new
user of ROSE should be aware of two considerable problems when developing translators.
The first is an issue regarding language differences between C and C++ while the second is

a simpler problem with include flags.

2.3.1 Languages

There are a number of subtle issues regarding dialects of C and C++. All C programs are
not valid C++ programs. Thus in some cases the user of a translator must pass special flags
to the ROSE-based translator to specify which language is used for a program.

This problem exists when parsing the NAS Parallel Benchmark IS. The NAS NPB bench-
marks use a variable called class to store the desired benchmark problem size. In C++,
class is a reserved keyword, which can therefore not be used as a variable name.

To parse such a C file, it may be necessary to use the command line option -rose:C_only
or -rose:C99_only. Running the identity translator on a code should allow the user to

quickly determine which flag should be used.

2.3.2 Compiler Flags

W

ROSE currently does not include as an include directory, so a flag such as “-1.” should
commonly be used. Additionally, a space is not allowed between the “I” and the following

directory. Some common compilers allows such a space, but ROSE does not.



2.4 Stability and Robustness

Rose provides multiple different mechanisms for manipulating AST’s, from a very low level
tedious manual modification of the nodes of the tree and all their associated fields to a higher
level method whereby a string of C4++ code can be inserted at a particular location in the
AST. The higher level methods are not robust or fully implemented, and thus are not used
for the three translators described in this thesis. The low level method is seeming quite
robust. Unfortunately learning how to use each particular type of AST node is non-intuitive
at first, and much guessing and checking is required before learning what must be done in
each case. There is no description of what is required for each node in a well-formed ROSE
AST.

Currently there are only two known C codes which we have not yet managed to parse with
even the identity translator. The first is a C program which includes the file charm++.h and
the second is part of the Zoltan partitioning library. These may prove to be simple hurdles

to overcome, or maybe ROSE has bugs which will be difficult to pinpoint.
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Chapter 3

Thread Variable Privatization

3.1 Introduction

Amongst the various possible uses of source-to-source translation in parallel programming
is the modification to remove global variables from C or C++ programs. Various user-level
thread packages will require global variables to be handled differently when virtualization
is applied. The term “virtualization” refers in this thesis to the use of multiple threads or
virtual processors within a single process on one physical processor. Parallel frameworks such
as AMPI[6, 3, 11, 7, 5] and various multi-paradigm languages currently under development
will be able to benefit from this work.

In order to build a user-level thread based system, the thread-private state for each
thread must be encapsulated and accessible by the currently running thread upon a thread
context-switch. Often time the thread-private data is the stack, and associated internal
processor state including the contents of various registers.

It is not always possible to just invent a new language and compiler for use in existing
production applications. Because a huge amount of code for existing applications is already
written in C, C++, and FORTRAN; it is best to try to utilize these languages as much
as possible. Section 3.2 describes the layout of C and C++ programs in memory and
why we must specifically address global and static variables. Section 3.3 addresses the
issues with global and static variables in the context of virtualized MPI applications. The
information provided in this chapter may also prove useful in contexts other than MPI, such

as a virtualized version of a GAS language.
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3.2 Data Layout for Variables in C and C++

Almost all compiled languages on traditional computers follow the same pattern for data
layout. Source code is compiled into executable programs that use a single 32 or 64-bit virtual
address space. The program, when executing, will be loaded into its virtual memory space
in a number of segments. Figure 3.1 shows a simple view of the partitioning or segmenting of
a program’s address space. The exact layout depends upon the operating system, compilers,
linkers and loaders used to compile and run the program. The typical method is to have a
code segment, a data segment, a stack, and a heap. The code segment may be write-protected
while the data segment is able to be written. The series of instructions to be executed will be
loaded at runtime into the code segment. The data segment will contain constants and data
compiled into the program. The heap is used at runtime from which memory is dynamically
allocated. The stack will grow from one end of its segment as functions are called and their
return pointers and variables are pushed onto the stack. In reality on many systems the
layout can be more complicated, with more segments, complicated permission schemes, and
varying names or designations for the regions of memory, but these further complications

are beyond the scope of this thesis.

3.2.1 Globals and Statics: An Overview

Global variables are both simple and complicated. In a C program, it is trivial to create
a global variable, however understanding how a global variable is handled by compilers,
linkers, and loaders is more difficult. This section provides simple examples to show how
global variables are compiled on current systems. Additionally this section provides example
programs containing static variables, which are similar but not identical to globals. Table
3.1 lists the code from two files, and shows the relevant symbols from an executable compiled
from these two source files. The symbols are produced by running the tool nm on the resulting

executable. The program has 2 globals in the first file, one called a, and a static global called
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Process

Code Segment

Data Segment
Globals, Statics

Stack

Heap

Figure 3.1: Memory layout for a program and a user-level threaded program

b. The second file utilizes the same global a as well as its own static global b. As expected
in the symbols found in the executable are found two b variables, one for each file, and one
a shared by both files. Additionally each file contains a function which in turn contains a
static variable. These statics are not globals, but a similar effect happens when they are
compiled, that is they are located along with the globals in a single memory segment. The
symbols in the executable show that indeed two variables named c.0 appear. These are for

the two different static integers named c.

User Level Threads

Code Segment

Data Segment
Globals, Statics

Thread 1 Stack

Thread 2 Stack

Thread 3 Stack

Heap

Source File 1

Source File 2

Symbols in Executable

int a;
static int b;
void f(void);
int main(){
static int c;
a=100;
b=100;
f();

}

#include <stdio.h> 08049614 B a

int a;

static int b;
void f(void){
static int c;

08049620 b b
08049628 b b

0804961c b c.0

printf(”a=%d b=%d”, a, b); | 08049624 b c.0

a=100;
b=0;
}

080483b8 T £
0804838c T main

Table 3.1:

2 source-code files with global and static variables.
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Global variables are accessible from any file in which they are declared, either with
or without the use of the term extern. Global variables are all grouped together into a
particular segment of memory when a program is run. Thus all files can know exactly how
to reference the global. Static variables are variables whose values persist beyond exiting the
scope of the variable. For this reason, a static variable is essentially a global variable with
a limited scope. The static variable can only be accessed in its scope using the standard
scoping rules. Thus a static variable can be implemented in the same manner as a global,
with a sufficiently mangled name to distinguish between multiple static variables with the

same name, but different scopes.

3.3 Global Variables with Virtualization

In an MPI application, the user expects that if one of the processors sets the value of a
global variable, then the value will still be the same the next time that the same processor
reads the value. Commonly this may occur as in Figure 3.2. Obviously the programmer
will expect the value of my_rank not to change after setting it. In the most common MPI
implementations, each MPI processor is assigned to an OS process running on a physical
processor. In this case each process has its own set of global variables. Thus things work as

expected. Unfortunately, under virtualization, things start breaking down.

#include "mpi.h”
int my_rank;

int main(){
MPI Init (...);
MPI_Comm _rank ( MPLCOMM WORLD, &my_rank );

printf (”"myrank=%d\n” , my_rank);
Figure 3.2: MPI example program with a global variable called my_rank

If multiple threads run sharing a single copy of the global, they may interfere with each

14



other, and each may not see its latest updates to a global variable. Figure 3.2 shows a not so
farfetched example where a global variable is used in an MPI program. Thus in our example
the actual memory location holding the my rank should be unique for each MPI process.
In AMPI, many virtual processors may execute within a single OS process. Thus we must
have a mechanism for providing separate sets of global variables for each virtual processor.
Section 3.3.1 describes one mechanism for providing separate sets of globals to each virtual
processor; just require that the programmer remove any global variables. Vacuously, then,
there is a null set of globals for each process. A better mechanism for providing separate
sets of variables it to modify the GOT as described in Section 3.3.2. Section 3.3.3 discusses
briefly how a compiler could eliminate global variables, but tells of the downsides to this
approach. The scheme we propose is to use a source-to-source translator which removes all
globals and statics from a program without changing the behavior of the program. Section

3.3.4 describes the source-to-source translator written for this purpose.

3.3.1 Manually Rewrite Source Code

One way of solving this problem for AMPI applications is to not use any global variables.
The globals will therefore live on the stack or heap, not in the single overlapping section for
the DATA segment. This is easily accomplished for the example 3.2 as shown in 3.3. The

global variable is just declared in the main function.

##include "mpi.h”
int main (){
int my_rank;

MPI_Init (...);
MPI_Comm_rank ( MPLCOMM WORLD, &my_rank );

Figure 3.3: Code from figure 3.2 manually rewritten to eliminate the global variable

15



3.3.2 Swap Globals

Another way of solving this problem for AMPI applications is to have AMPI swap the
globals in and out at each thread context switch. This solution requires a platform where
it is possible to identify the memory locations for globals making it possible to replace the
global data. On some platforms all global variables are removed from their actual data by a
second layer of indirection. To access a global variable, a pointer to the data is stored in a
table. On such platforms, AMPI can just store different copies of the table and modify the
pointers in the table at a context switch.

A platform which supports swapping global variables by use of a table of pointers to
the global variables is ELF. ELF uses a Global Offset Table(GOT), which contains a list of
all global variables, and pointers to the actual data, along with other data describing the
variables. The entries in this table can be modified easily, but the modifications will take
small amounts of time. Unfortunately, the methods for accessing the ELF GOT varies across
operating systems and architectures. Currently AMPI’s swap-globals method supports 32-
bit x86 linux. Extending it to support 64-bit ELF could probably be done as well.

A common platform which does not provide ELF is Apple’s Mac OSX, which uses Mach-
O executable format. All globals are accessed by a pointer computed as an offset from the
contents of a register which is essentially the program counter. Thus globals can be more
quickly accessed on Mach-O systems, but they lack the flexibility provided in ELF by its use

of an extra level of indirection.

3.3.3 Compiler Based Solutions

Compilers could be modified to force global variables to be located on the stack inside of the
main function. Such a solution would work with AMPI, where each thread has its own stack,
and would hence have its own set of global variables. Unfortunately, modifying a compiler

will limit the potential deployment platforms because users may not want to build or install

16



another set of compilers. Also, common compilers such as gcc are notoriously difficult to
modify due to a lack of documentation for the compiler’s codebase. Users will also have
their preferences for compilers which are fast or work well with their applications, and many

of those are proprietary, and thus not easily modified.

3.3.4 Automatically Rewrite Source Code

A source-to-source translator could be used to automatically encapsulate all global variables
and put them on the stack. The approach of creating a source-to-source translator to
encapsulate the global variables has proven effective so far. The translator we propose
uses the ROSE library to parse and modify the source code for an application. The source
for the translator is provided in Appendix A. The steps in the process are listed below. Dan
Quinlan, the lead developer for ROSE, wrote an initial translator which which identified and
moved global variables. It only worked in the simplest cases, it didn’t handle statics, and it

didn’t handle multiple files well, but it led to our proposed translator.

- Build list of all global variables by iterating through entire AST

- Build list of static variables by iterating through entire AST

- Set output filenames to overwrite existing if desired

- Find file containing the main function: main(), AMPI Main()or AMPI Main cpp()

- Create a struct(initially empty) to encapsulate all the globals and statics

- Create a new initializer function(initially empty)

- Build list of all variable references to statics or globals by iterating through entire AST

- Move all global variables into the class, removing their old declarations
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- Move all static variables into the class, removing their old declarations, and mangling

their names
- Declare an instance of the struct in the top of the main function

- Add a call to the initializer function in the main function, using the new instance of

the struct
- Append a reference to the struct to all function definitions in the project
- Append the reference to the struct to all function call expressions

- Fixup all references to the globals or statics to be indirected through the parameter

provided in all functions

- Remove all initializers from the globals and statics contained in the struct, and place

equivalent statements in the initializer function

- Copy the struct definition from its one location in the file containing the main function

to the top of all other files

- Remove extern declarations for any globals moved into the struct

The translator which was written following the structure listed above works with a great
many samples. Unfortunately there is at least one known cases where this approach fails.
Section 3.4 describes one of these problems and a proposed solution in the context of a real

application we want to use with the translator.

3.3.5 Example translations

This section provides two example programs translated by a source-to-source translator
which eliminates global and static variables. The first example shows a program with three

global variables. The second example shows a program with multiple static variables, each
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with the same name. The examples are meant to provide easy to read examples, not to show
all the features of the translator .

Figure 6.6 lists the original code for a simple program which contains three global vari-
ables. Figure 6.7 lists the code output by the translator. The output code contains no
globals, but does contain a struct which encapsulates the globals. The struct is instantiated
in the top of main, and is added on as a pointer parameter to all other functions, in this
case only £ (). Tables 6.8 and 6.9 verify that the globals are present before translation, and
they are eliminated by the translation.

The second example, which shows how statics are handled, is shown in Figures 6.10 and
6.11. The two statics have their names mangled to reflect their different scopes. To do
this, the translator specifically requests a mangled name for each static variable from ROSE.
Thus a complicated mangled name replaces the original name for the variable. Although
seemingly complicated, a mangled name must be used if more than one static variable has
the same name. The intializers are handled correctly in this case as well. For the example, if
main() or £ () had contained other statements, those would have remained, but this example

is intended to be simple.

3.4 Case Study: MILC

This section presents a large MPI code named MILC. It describes the limited success so
far with the translator and the plans for expanding the translator to work well with the

complicated cases that arise when using this large real world application.

3.4.1 MIMD Lattice Computations

MILC is a code used to simulate and study quantum chromodynamics(QCD), a theory
describing the strong interactions between subatomic particles. MILC, which stands for

MIMD Lattice Computation, is a widely used large code with over a hundred files in its

19



distribution[4]. Tt is written in C, C4++ and assembly, using MPI for its parallel version.

The benchmarking version of MILC has been analyzed to determine the extent of its
usage of global variables. The object files produced when compiling MILC can be viewed
with the nm utility to determine exactly how many global and static variables MILC contains.
The object files contained 78 global variables which need to be dealt with before this code
can work with AMPI. Figure 3.4 lists the global variables and the corresponding object files
in which they were found. The globals are spread across 8 different files. Manually modifying
MILC is therefore a complicated task. Thus having a source-to-source translation tool for
automatically removing these variables is of great importance.

The translator described in this chapter does not yet work with this complicated example,
but work is proceeding on making it translate the needed MILC files. The reason it does not
yet work is that there are global variables with user defined types that are only within the
scope of some of the files, namely those where the global is declared. Thus adding the variable
to the stack allocated struct is non-trivial. There have been various discussed methods for
handling the user defined types, and the best solution proposed so far will require many
additional transformations of the code. First we will create a getsize name() function for
each global variable in the file where such a global variable exists. This function will return
the size of the global variable by simply calling sizeof (global_variable. Additionally a
non-defining function declaration for each getsize name() function, i.e. a prototype, must
be added to the file containing main(). Then the struct will contain a pointer instead
of an actual declaration of the variable. Then in main() each variable will be allocated
using alloca(getsize name()). Finally, when rewriting all references to the globals, the
variable will have to be dereferenced from the struct since it is now a pointer. This solution
should work for all possible examples we could foresee, including typedef and class global

variables. The situation is similarly complicated for static variables of a user defined type.
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gaugefix2.o:
diffmat_offset
sumvec_offset
setup.o:
gf
par_buf
gauge_stuff.o:
gauge_action_description
loop_char
loop_coeff
loop_expect
loop_ind
loop_length
loop_num
loop_table
control.o:
beta
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epsilon
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fpi_mass
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gen_pt
g_ssplaq
g_stplaq
iseed
lattice
linktrsum
mass]
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nflavors1
nflavors2
niter
node_prn
npbp_reps_in
n_sources
nt
number_of_nodes
nx
ny
nz
odd _sites_on_node
phases_in
propinterval

control.o:
rsqmin
rsqprop
savefile
saveflag
sequence_number
sites_on_node
source_inc
source_start
spectrum_multimom _low_mass

spectrum_multimom_mass_step
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startfile
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quark _stuff.o:
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Figure 3.4: Global Variables in compiled MILC object files
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3.5 Case Study: WRF

This section presents a large MPI code named WRF. We first give a brief description of
WREF and then describe why the global variables in this example cannot be eliminated by
my translator. Finally we discuss the future plans for extending my translator to work with

FORTRAN codes, and hence the important interesting code WREF.

3.5.1 Description of WRF

WRF is a Weather Research and Forcasting modeling system, developed by the National
Center for Atmospheric Research(NCAR)[17, 2]. It is an advanced 3-D fluid dynamics code
that incorporates a variety of models for air, land, and oceans. Its goal is “to provide a
next-generation mesoscale forecast model and data assimilation system that will advance
both the understanding and prediction of mesoscale weather and accelerate the transfer of
research advances into operations.”

WRF uses multiple levels of nested structured grids with microphysics, cumulus param-
eterizations, surface physics, planetary boundary layer physics, and atmospheric radiation

physics.

3.5.2 Globals and Statics Variables in WRF

I built a copy of WRF to determine what global variables exist in its executables. My plan
was then to determine if my translator would be able to eliminate these global variables.
Unfortunately WREF contains a number of FORTRAN files which currently cannot be han-
dled by my translator. Because many scientific and engineering applications use FORTRAN,
the translator must be extended to support this currently unsupported language. Adding
fortran support is currently a major desire for the PPL group members working with AMPI
applications.

WREF can be built with the command ”compile em_b_wave”. This produced two im-
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Executable | Number of Globals
ideal.exe 43
wri.exe 61

Figure 3.5: Count of Global BSS symbols in WRF executables

portant executables on the NCSA IBM AIX machine named copper. The first executable
is ideal.exe. The second is wrf.exe. The executables were examined with the "nm” tool
and a count of the Global BSS symbols is reported in table 3.5. These variables are from
FORTRAN modules, which are similar to C global variables. wrf.exe contains 61 globals

while ideal.exe contains 43.
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&&N&@Qdata_info
&&N&@esmf_calendarmod
&&N&Qesmf_timemod
&&N&@module_configure
&&N&@module_date_time
&&N&@module_dm
&&N&@module_domain
&&N&@Qmodule_ext_internal
&&N&@Qmodule_io
&&N&@module_machine
&&N&@module nesting
&&N&@Qmodule_quilt_outbuf_ops
&&N&@module_wrf_error
&&N&@Qmodule_wrf_quilt
&&N&Qwrf_data
__C_runtime_pstartup
cdf_routine_name
domain_info
io_seq_compute
io_seq_monitor
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point_move_receives
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regular_decomp
rsIMPIHandleLUT
rsl_debug_flg
rsl_mpi_communicator
rsl_myproc
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rsl_noprobe
rsl_nproc
rsl_nproc_all
rsl_nproc_m
rsl_nproc_n
rsl_padarea
rslsysxx
sh_descriptors
sw_allow_dynpad
xp_descriptors
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&&N&@Qdata_info
&&N&@Qesmf_calendarmod
&&N&Qesmf_timemod
&&N&@module_configure
&&N&@module_date_time
&&N&@Qmodule_dm
&&N&@Qmodule_domain
&&N&@module_ext_internal
&&N&@Qmodule_io
&&N&@Qmodule_machine
&&N&Qmodule_mp_etanew
&&N&@Qmodule_mp_ncloud3
&&N&@module_mp_ncloudb
&&N&@Q@module_mp_thompson
&&N&@Qmodule_mp_wsm3
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&&N&@module_wrf_error
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&&N&@Qmodule_wrf_top
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Chapter 4

Automated Performance Tracing

It is critical to be able to accurately analyze the performance of large scale high-performance
applications. Various languages and parallel systems provide different tools for analyzing
performance. Charm++ and AMPI support tracing and analyzing performance with the
tool named Projections. Projections contains many tools for analyzing time varying data
including processor utilization, message statistics, timelines, and a number of histograms
and other views.

When analyzing performance in both serial and MPI applications, an important metric is
the amount of time spent in each function. Currently the Projections performance analysis
tool does not rewrite binaries, so it relies upon tracing calls made by the runtime communica-
tion library as well as user written tracing calls. Thus to get the most detailed performance
data in an AMPI application, the user must explicitly write some special function calls.
These calls inform the tracing library when a particular function or piece of code starts
and ends. The calls are simple, and can therefore be easily inserted automatically. This
chapter describes and shows an example of the source-to-source translator for automatically

generating and inserting tracing calls.

4.1 AMPI Performance Tracing with Projections

AMPI supports a set of function calls for tracing nested functions. These functions have

prototypes and simpler macro wrappers in ampi.h which is identical to the file called mpi.h

provided by AMPIL.
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- traceBeginFuncProj () specifies the beginning of a function
- traceEndFuncProj () specifies the end of a function

- traceRegisterFunction() called once at the beginning of the program to register

each function which is traced

Often a program will have a stack of function calls. If all these functions are traced, the
analysis is complicated by the excessive data. For example, a multi-physics code may just
want to trace the time spent in each of its three numerical solvers, and therefore the calls to

each solver are bracketed with the functions above.

4.2 Performance Tracing Source-to-Source Translator

We implemented a translator which automatically inserts the calls listed above into an
application’s source code. The translator first identifies functions within a specified call
depth from main(). It then inserts tracing calls inside each of the definitions of each
of these functions. traceBeginFuncProj() is inserted at the beginning of each function,
and traceEndFuncProj() is called at the end of each function and also preceding all
return statements in the function. Each function that is traced also has a correspond-
ing traceRegisterFunction() added to main().

The call depth is a configurable command line argument to the translator. This allows a
user to control the degree of detail that will appear in the resulting traced performance data.
When planning this translator, we decided we wanted a simple mechanism for specifying how
much of an application to trace. In the future, if it becomes helpful, we will add some means
for a user to specify which files to not trace or files to add to those traced.

The Projections runtime and post-mortem tools will compute the exclusive times spent in
each of the traced functions. Thus applicable tools can be written to display various types

of performance analyses. Currently we are developing tools inside Projections for AMPI
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now that we have a means for automatically tracing large programs. This project is active
work with new graphical display tools currently being written, so performance results from

applications are not described here.

4.3 Example

Figure 6.3 shows an example program that has a main() function and three other functions,
AQ), BO, and C(). The functions are called one from another, starting with main. The
purpose of having this chain of functions is to illustrate that this source-to-source translator
is capable of tracing nested functions to a user selected depth. Figure 6.4 shows the resulting
translated code after tracing calls were inserted to a depth of 3. Figure 6.5 shows the resulting
translated code when the depth of tracing was specified to be 2. The main difference is that
function C() is not traced in the later case because it is at a call depth of 3 which is greater
than the specified 2. The simplicity of specifying just a simple integer depth is quite useful,

but yet also provides a great deal of control over the amount of tracing data recorded.
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Chapter 5

Automatic PUP Function Creation

5.1 PUP Functions

Charm++ is a parallel runtime system and programming model which provides support for
migratable objects composed of user written C++ classes along and a simple interface defi-
nition. Charm++ does not use its own compiler because it is not a language itself except for
its simple translation of the short interface definitions into C++. The decision not to create
and use a special purpose compiler has limited the available code analysis for help with
various useful parallel functions such as the serialization of migratable objects. Charm++
currently requires uses to write Pack-and-UnPack (PUP) functions for each migratable ob-
ject. See Figure 5.1 for an example of a PUP function. Each PUP function has a single
pupper as its parameter, often named p, which has an associated overloaded vertical bar
operator. The pupper has internal state specifiying whether it is in a packing state or an
unpacking state, and this internal state controls the behavior of the overloaded vertical bar.
Thus only a single function is required in order to perform both the packing and unpacking
functions which serialize and unserialize an object into or from some buffer.

PUP functions are used not only for migrating objects, but is also used for checkpointing
and restarting objects to and from disk or remote memories, serializing some graphics data
when using LiveViz and CCS, and other miscellaneous tasks.

Users are currently required to write their own PUP functions, but a compiler based
solution or an automated source-to-source solution would eliminate the need for users to

be concerned with writing PUP functions and keeping them up to date whenever a class is
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#include <pup.h>
class exampleClass

{

int a;
double b;
char c;

void PUP(class PUP::er &p)

Figure 5.1: A C++ class with a PUP function

modified. Generally writing PUPs is considered simple, but a hassle.

5.2 PUP Creator Source-to-Source translator

This thesis presents a simple PUP creation source-to-source translator. It takes in a set of
C++ source files and will add to each class a PUP function. The PUP function will be
populated with statements for PUPing each of the member variables in the class. Currently
the translator generates a call in the form pla; for each class member variable. This works
for many cases, although arrays and pointers should be handled differentlly. This translator
could be extended to handle arrays and pointers. The main trouble with this extension is
that it may not be possible to determine the size of an array at compile time. One downside
to automatically creating PUP functions is that a user knows the minimal set of state which
should be PUPed. It is non-trivial for a compiler to determine this set of data. For example,
it may be faster to compute a set of values than transmit them over a network, or maybe
the programmer can easily determine which variables are live at the point where they are
PUPed. This leads to one disadvantage of the current implementation; all member variables

are PUPed. In an ideal version, a minimal amount of data should be PUPed since the
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serialized version will be written to disk, stored in memory, or sent over a network. Live
variable analysis is not currently implemented in ROSE, but it could potentially be added
if needed. A few other concerns which are yet unaddressed are whether to PUP inherited

members. Currently we do not PUP any inherited members.

5.3 Example

Figure 6.1 and 6.2 shows a C++ source file before and after the PUP calls are added by my
source-to-source automatic PUP creation tool. One curious result is that the explicit use of
the (this)-> code generated by the translator. Note that (this)-> a is equivalent to a
inside a class in most cases. The obvious exception is when another variable “a” is in a local
scope and the class variable is hidden. The files displayed in the figure are the exact code

consumed and produced by my translator.
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Chapter 6

Example Translated Codes

This chapter contains examples of translated codes for each of the source-to-source transla-

tors described in the thesis. Chapters 3,5, and 4 describe these examples and their motiva-
tions.
#include <pup.h>
class someClass {
public:
int a;

double b;

private:
char c¢;

}s

Figure 6.1: A C++ file before the automatic creation of PUP functions
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#include <pup.h>
class someClass

{
public: int a;
double b;
private: char c;

public: void PUP(class PUP::er &p)

{
p|(this) — a;
p|(this) — b;
p|(this) — c;

}

Figure 6.2: A C++ file after the automatic creation of PUP functions
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#include <mpi.h>

int C(){
if (0==1)
return 0;
else
return 1;

}

void B(){
CO);
}

int A(int j){
B();

return 7;

}

int main(int argc, charxx argv){

A(1);
}

Figure 6.3: A sample program before tracing calls are inserted
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#include <mpi.h>

int C()
{

traceBeginFuncProj (”C” ,” UnknownFile” ;1);
it (0 — 1)) {

traceEndFuncProj (7C” ) ;

return 0;

}

else {
traceEndFuncProj (7C”);
return 1;

}
traceEndFuncProj (7C”);

void B()

{

traceBeginFuncProj (”B” ,” UnknownFile” ;1);

CO);
traceEndFuncProj (”B” );

}

int A(int j)
{
traceBeginFuncProj (”A” ,” UnknownFile” ,1);
B();
traceEndFuncProj (7A” );
return 7;
traceEndFuncProj (7A” );

}

int main(int argc,char xxargv)

{
traceRegisterFunction (”main” ,—999);
traceBeginFuncProj (”main” ,” UnknownFile” |1);
traceRegisterFunction ("A” ,—999);
traceRegisterFunction ("B”,—-999);
traceRegisterFunction ("C” ,—999);
A(L);
traceEndFuncProj (” main” );
traceEndFuncProj (”main” );

}

Figure 6.4: Program of Figure 6.3 after tracing calls are inserted to a depth of 3.
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#Finclude <mpi.h>

int C()
{
it ((0 =1)) {
return 0;
}
else {
return 1;

}

void B()

{
traceBeginFuncProj (”B” ,” UnknownFile” ;1);
CO;
traceEndFuncProj (”B” );

}

int A(int j)
{
traceBeginFuncProj (”A” ,” UnknownFile” ,1);
B();
traceEndFuncProj (7A” );
return 7;
traceEndFuncProj (7A” );

int main(int argc,char xxargv)

{
traceRegisterFunction (”main” ; —999);
traceBeginFuncProj (”main” ,” UnknownFile” |1);
traceRegisterFunction ("A” ,—999);
traceRegisterFunction ("B”,—-999);
A(1);

traceEndFuncProj (” main” );

Figure 6.5: After inserting tracing calls to a depth of 2
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int global_a;
float global_b;
unsigned global_c;

int f(int j){ return j + global_c; }

int main(int argc, charxx argv){
f(global_a);
}

Figure 6.6: An example program with multiple global variables

struct AMPI _globals_t

{

int global_a;
float global_b;
unsigned int global_c;

}s

int f(int j,struct AMPI globals_t *AMPI _globals)
{ return ((j) + AMPI_globals —> global_c); }

int main(int argc,char xxargv)

{
struct AMPI _globals.t AMPI_globals_on_stack;

f((& AMPI_globals_on_stack) —> global_a , & AMPI_globals_on_stack );
}

Figure 6.7: Translated version of program from Figure 6.6. Contains no global variables.

Address | Type | Name
00000000 | T |f
00000004 | C | global_a
00000004 | C | global-b
00000004 C global_c
0000000d | T | main

Figure 6.8: Symbols created when compiling the code in Figure 6.6

Address | Type | Name
00000000 | T | f
0000000e | T | main

Figure 6.9: Symbols created when compiling the code in Figure 6.7
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void f(){
static int a=3;
}

int main(int argc, charxx argv){
static int a=2;
}

Figure 6.10: An example program with two static variables. Both static variables are named
a, but they have different scopes.

struct AMPI_TL_Vars

{
int f___Fb_v_Gb__Fe___scope____SgSS2____scope_-_a;
int main___Fb_i Gb_i__sep____Pb____ Pb__c__Pe____Pe\
___Fe___scope____SgSS2____scope__a;
¥

9

void AMPI_TL_Vars_Init (struct AMPI.TL Vars «xAMPI TLs)
{
AMPI.TLs — f___Fb_v_Gb__Fe___scope____SgSS2____scope__a = 3;
AMPI.TLs — main___Fb_i_Gb_i__sep_.___Pb____Pb__c_._Pe____\
Pe___Fe___scope____SgSS2____scope__a = 2;

}

void f(struct AMPI.TL_Vars *AMPI TLs)

{

}

int main(int argc,char xxargv)

{
struct AMPI_TL_Vars AMPI_globals_on_stack;
AMPI_TL Vars_Init(& AMPI _globals_on_stack );

}

Figure 6.11: After translation, the two static variables are replaced with two variables with
mangled names are in the struct. The end of the mangled name is the original name a.
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Chapter 7

Conclusions

Parallel programming can be difficult and time consuming. Using tools such as source-
to-source translators can ease the burden of parallel programming. This thesis proposes
a methodology and examples of source-to-source translation to simplify various aspects of
parallel programming and performance analysis. The first translator eliminated global and
static variables from a C or C++ application. The second translator inserted performance
tracing calls into an MPI application for use with the Projections performance analysis tool.
The final translator wote PUP functions for C++ classes. These translators were written
using the ROSE library, and they can handle a wide range of C and C++ applications.
FORTRAN is not yet supported by these translators, but FORTRAN support may be added
in the future. The output resulting code from the translators is very similar to the input
code except for the modifications performed by the translator. This thesis proposes that
source-to-source translation is a good approach to dealing with various parallel programming

tasks.
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Appendix A

Thread Variable Privatization: Code
Listing

The following is the source code for the Thread Variable Privatization tool described in
Chapter 3. The main source file for this translator is globalVariableRewrite.C. Addition-
ally the shared code described in Appendix D is required. The latest versions are available

in the PPL group’s CVS repository under the ROSE-Translators module.

/*
Adapted by Isaac Dooley from the file CharmSupport.C written by the ROSE group at LLNL.

Purpose: Encapsulate all Thread Local(TL) wvariables in a structure declared on
the stack, and pass around a pointer to this structure.

TL wvariables include global and statics
Why :

AMPI can only handle global wariables on certain platforms. Basically
each thread needs its own thread—local copy of the global wvariables ,
but each thread runs in a single process which has only a single set
of global wariables. On ELF based systems, we can modify the ELF
Global Offset Table on thread context switches, but on systems with
Mach based linkers/loaders, all code is position independent, and
globals are hard coded relateive to the PC, so on thread contexts,
there is mo efficient way of swapping in and out global wvariables
short of swapping in and out the entire DATA Segment(which can be
done ). Thus rewriting global variables with a compiler is the best
solution to this problem, as it will be efficient as well as platform
independent.

TODO: remove the placeholder wariable after everything is built.
Only do modifications if some statics or globals are found

*/

#include <rose.h>
#include <list >
#include <vector>
#include <algorithm>

#include <iostream >
#include <exception>

#include ”globalVariableCommon .h”

#define DEBUG 0

using namespace std;

/* The MiddleLevelRewrite mechanism is not yet robust enough to use. */

/* Unfortunately the current low level rewrite doesn’t handle include statements at the top correctly =/
/* Unfortunately the Middle level rewrite doesn’t handle multiple files correctly */

#define USEMIDDLELEVELREWRITE 0

bool overwrite_existing-files;

const char xstructName = " AMPI_TL_Vars”;
const char xinitFuncName = " AMPI_TL_Vars_Init”;
const char xplaceHolderName = " ____AMPI_place_holder”;
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/** main files contain a function that looks like main x/
bool isFileMain (SgFile xfile){
// scan through all function declarations and see if any of them are main()
list <SgNodex> functions = NodeQuery:: querySubTree (file ,V_SgFunctionDeclaration);
for (list <SgNodex>::iterator i = functions.begin(); i != functions.end(); i++) {
if (isFunctionMain (isSgFunctionDeclaration (*xi)))
return true;

return false;

}

/x% builtin functions should start with double underscore x/
bool isFunctionBuiltin(SgFunctionDeclaration *func_decl){
char xfunc_name = func_decl—>get_name ().str ();
if (strlen (func_name)<2)
return false;
else if(func_.name[0] == ’_’ && func_name[l] = ’_’ )
return true;
else
return false;

/*% Lookup the correct struct to wuse for the references to the global wvariables x/
SgExpression* lookupTLStruct(SgNodex whichNode){

// walk up AST to the functionDeclaration containing this FunctionCallExzp
SgNodex n = whichNode;

while( ! isSgFunctionDeclaration(n) )
n = n—>get_parent ();
SgFunctionDeclaration *parentFunctionDeclaration = isSgFunctionDeclaration(n);

assert (parentFunctionDeclaration );

// If we are not in main, wuse final parameter from parameter list
if (! isFunctionMain (parentFunctionDeclaration)){
SgFunctionParameterList *fpl = parentFunctionDeclaration—>get_parameterList ();
assert (fpl);
list <SglnitializedNamex*> &args = fpl—->get_args (); // really a std::list<>
assert (args.size () > 0);
SglnitializedName =xfinalArg = args.back();
assert (finalArg);
assert (finalArg—>get_scope ());
SgVariableSymbol xvariableSymbol = new SgVariableSymbol(finalArg);
assert (variableSymbol);

Sg-File_Infox fileinfo = Sg_File_Info:: generateDefaultFileInfoForTransformationNode ();
assert (fileinfo != NULL);

SgVarRefExp xvarRefExp = new SgVarRefExp (fileinfo , variableSymbol);

return varRefExp;

else { // we are in main use the struct we created

// Get main’s basic block (currently parentFunctionDeclaration is main)
SgBasicBlock xbasicBlock = isSgBasicBlock (parentFunctionDeclaration—>get_definition ()

assert (basicBlock );

// Find first statement in the basic block

SgStatementPtrList &statements = basicBlock—>get_statements ();

// TODO FIXME: assume the first statement in main is our struct declaration
SgStatement xfirstStatement= x(statements.begin ());

assert (firstStatement );

SgVariableDeclaration xvariableDeclaration = isSgVariableDeclaration (firstStatement );

assert (variableDeclaration);

// Get the first wariable defined in wvariable Declaration
// There can be multiple i.e. 7int i,j,k;”

SglnitializedNamePtrList &args = variableDeclaration—>get_variables ();
assert (args.size () == 1);

// assume that the front=only wvariable being declared is the one we want
SglnitializedName =finalArg = args.front ();

assert (finalArg);

//assert (finalArg—>get_scope ());

SgVariableSymbol svariableSymbol = new SgVariableSymbol(finalArg);
assert (variableSymbol);

// Create a reference to the struct wvariable

Sg-File_Infox fileinfo = Sg_File_Info:: generateDefaultFileInfoForTransformationNode ();
assert (fileinfo != NULL);

SgVarRefExp xvarRefExp = new SgVarRefExp (fileinfo , variableSymbol);

// Create an address of the reference to the struct

fileinfo = Sg_File_Info:: generateDefaultFileInfoForTransformationNode ();
assert (fileinfo != NULL);

SgAddressOfOp *pointer = new SgAddressOfOp(fileinfo , varRefExp ,NULL);

return pointer;

¥
return NULL;
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/*xx Reassociate Preprocessor statements and comments from a given node
This is mostly copied from rewriteLowLevellnterface.C
*/

void reassociatePreprocessorDeclarations (SgLocatedNode* fromHere, SgLocatedNodex toHere){
// Get attached preprocessing info
AttachedPreprocessingIlnfoType scomments = fromHere—>getAttachedPreprocessinglnfo ();

if (comments != NULL){
#ifdef DEBUG
printf (”Found attached comments (at %p of type: %s): \n”,fromHere, fromHere—>sage_class_name ());

#endif

if ( toHere—>getAttachedPreprocessinglnfo () != NULL){
toHere—>getAttachedPreprocessinglnfo()—>merge (*comments);

else {
toHere—>set_attachedPreprocessinglnfoPtr (comments);
}

for(std::list <Preprocessinglnfox* >::iterator i=comments—>begin (); i!=comments—>end (); ++i){

fromHere—>set_attachedPreprocessingInfoPtr (NULL);

/*x Cleanup struct by removing the temporaray place holder wvariable declaration x/
void fixupClassDeclarationPlaceHolder (SgClassDeclaration xclassDeclaration){

list <SgNodex> nodeList = NodeQuery:: querySubTree ( classDeclaration, V_SgVariableDeclaration );

list <SgNodex >::iterator ij;

for (i=nodeList.begin (); i!=nodeList.end (); ++i) {
SgVariableDeclaration sxvarDecl = isSgVariableDeclaration (*i);
assert (varDecl != NULL);

// if this wariable is called "place_-holder” then get rid of it
list <SglnitializedNamex*> & variableList = varDecl—->get_variables ();
list <SglnitializedNamesx*x>::iterator var;

for (var=variableList.begin(); var != variableList.end(); ++var) {
if( (*var)—>get_name ().getString () == string (placeHolderName) ){
cout << ”"Removing 7 << placeHolderName << ” variable” << endl;
SgClassDefinition xparent = isSgClassDefinition (varDecl—>get_parent ());

assert (parent!=NULL);
parent—>get_-members ().remove(varDecl);

/*% Move all initializers from the wvariables in the classDeclaration to x/

VAL assignment statements in the init function =/

void fixuplInitializers(SgClassDeclaration *classDeclaration, SgFunctionDeclaration xTLInit){
Sg-File_Infox fileinfo = Sg_File_Info:: generateDefaultFileInfoForTransformationNode ();

list <SgDeclarationStatement*> decls = classDeclaration—>get_definition()—>get_-members ();
list <SgDeclarationStatement* >::iterator 1ij

for (i=decls.begin(); i != decls.end(); ++i) {
SgVariableDeclaration xvardecl;
if (vardecl=isSgVariableDeclaration(xi) ){

list <SglnitializedNamex*> names = vardecl—>get_variables ();
for (list <SglnitializedNamex >::iterator n=names.begin ();n!=names.end();++n){
Sglnitializer* initializer = (*n)—>get_initializer ();

if(initializer != NULL){
SgAssignlnitializer xassignlInit;
if (isSgConstructorInitializer (initializer))

cout << "WARNING: Can’t yet handle SgConstructorInitializers” << endl;

if (isSgAggregatelnitializer (initializer))
cout << "WARNING: Can’t yet handle SgAggregatelnitializer” << endl;

if ((assignlnit=isSgAssignlnitializer (initializer))!=NULL){
SgExpression* initexpr = assignlnit—>get_operand ();

// figure out what ts the parameter(the struct) passed in
SgExpression *TLStruct = lookupTLStruct(TLInit—>get_definition ());
assert (TLStruct);
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SgType *type = new SgTypelnt ();

SgVariableSymbol * sym = new SgVariableSymbol(xn);

SgVarRefExp *varRefExp = new SgVarRefExp(fileinfo , sym);

// Dereference the struct to get the wvariable

SgArrowExpx* redirectedReference = new SgArrowExp(fileinfo ,
TLStruct ,varRefExp, type);

// Figure out ezactly what we are assigning (rhs)
SgIntVal xv = new SgIntVal(fileinfo , 7);

// create assignment statement
SgAssignOp * assignOp = new SgAssignOp(fileinfo , redirectedReference ,
initexpr , type);

SgExpressionRoot xexprRoot = new SgExpressionRoot(fileinfo ,
assignOp, type);

SgExprStatement* exprStatement = new SgExprStatement(fileinfo ,
exprRoot );

// insert assign statement into the init function
SgFunctionDefinition* funcDef = TLInit—>get_definition ();
SgBasicBlock xbb = funcDef—>get_body ();
bb—>append_statement (exprStatement );

}

(*n)—>set_initializer (NULL);

/xx Add a variable declaration to main that encapsulates all the globals. x/
void declareClassAndInitInMain (SgGlobalx globalScope, SgClassDeclaration *classDeclaration ,
SgFunctionDeclaration *TLInit){

assert (globalScope != NULL);
// Find the definition of main()
list <SgDeclarationStatement* >::iterator i = globalScope—>get_declarations ().begin ();
while(i != globalScope—>get_declarations ().end())
SgFunctionDeclaration xfunctionDeclaration = isSgFunctionDeclaration (*1i);
if (functionDeclaration != NULL){

if (isFunctionMain (functionDeclaration)){

// We must check for the function definition ,

// because we may be looking at a predeclaration/prototype for main
// At first this is not obvious that anyone would do this,

// but AMPI does it to rename main.

SgFunctionDefinition *fdef = isSgFunctionDefinition (functionDeclaration—>
get_definition ());
if (fdef){
SgBasicBlock* block = isSgBasicBlock (fdef—>get_body ());
assert (block );

// Create a variable declaration
Sg_-File_Infox fileinfo =
Sg_-File_Info :: generateDefaultFileInfoForTransformationNode ();

assert (fileinfo != NULL);

SgClassTypex variableType = new SgClassType(classDeclaration—>
get_firstNondefiningDeclaration ());

assert (variableType != NULL);

SgName *varname = new SgName(” AMPI_globals_on_stack”);
SgVariableDeclaration* variableDeclaration =

new SgVariableDeclaration(fileinfo ,*varname, variableType);
varname—>set_parent (variableDeclaration );
variableDeclaration —>set_parent (block);
assert (variableDeclaration != NULL);

// Create a function call exzpression statement
SgFunctionSymbol xfuncSymbol = new SgFunctionSymbol(TLInit);
// TODO: Probably not correct, but it works for now
SgFunctionType *funcType = new SgFunctionType(new SgTypeVoid ());
SgFunctionRefExp* functionRefExp = new SgFunctionRefExp (fileinfo , funcSymbol,
funcType);
SgExprListExp* exprlist = new SgExprListExp(fileinfo );
SgFunctionCallExp* funccall =
new SgFunctionCallExp (fileinfo , functionRefExp, exprlist,

funcType);
SgExpressionRoot *xexprRoot = new SgExpressionRoot( fileinfo , funccall,
funcType);

SgExprStatement * exprStatement = new SgExprStatement(fileinfo , exprRoot);
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// First prepend the init function call, then prepend the struct declaration
block—>prepend_statement (exprStatement );
// Insert the wvariable declaration into the body of main()

block—>insert_statement (block—>get_statements ().begin (), variableDeclaration );
variableDeclaration —>set_parent (block);

i+

Rewrite all function call and declaration parameter lists to include the encapsulated globals x/

void addTLClassAsParameter (SgNodex subtree, SgClassDeclaration xclassDeclaration){

map<string ,int ,less <string> > modifiedFunctionNames;

assert (subtree != NULL);
// Add parameter to function declarations

list <SgNodex> functionDecls = NodeQuery:: querySubTree (subtree,V_SgFunctionDeclaration);
cout << "Found ” << functionDecls.size () << ” FunctionDeclarations in this subtree” << endl;

list <SgNodex >::iterator ij;

for (i = functionDecls.begin(); i != functionDecls.end(); ++i) {
SgFunctionDeclaration xfunctionDeclaration = isSgFunctionDeclaration (*1i);
assert (functionDeclaration != NULL);
if ( ! isFunctionMain (functionDeclaration) &&

isStatementInHeader (functionDeclaration) &&
!

functionDeclaration—>get_file_info()—>isCompilerGenerated ()

) A

//create the parameter
SgClassType* variableType = new SgClassType(classDeclaration—>

get_firstNondefiningDeclaration ());
assert (variableType != NULL);

SgName varl_name = "AMPI_TLs” ;

SgPointerType xref_type = new SgPointerType(variableType);

Sglnitializer = varl_initializer = NULL;

SglnitializedName xvarl_init_-name=new SglnitializedName (varl_name, ref_type,
varl_initializer , NULL);

varl_init_-name—>set_scope (functionDeclaration—>get_scope ());

assert (varl_init-name—>get_scope ());

// Insert argument in function parameter list

SgFunctionParameterList xparameterList = functionDeclaration—>get_parameterList ();
parameterList —>append_arg(varl_init_name);

varl_init_-name—>set_parent (parameterList);

assert (varl_init_name—>get_parent ());

varl_init_-name—>set_scope (functionDeclaration—>get_scope ());

// Add to the list of modified functions
modifiedFunctionNames [functionDeclaration —>get_name ().str ()] = 1;

}

// Build a list of function calls within the AST
list <SgNodex*> functionCallList = NodeQuery :: querySubTree (subtree,V_SgFunctionCallExp);
cout << ”Modified 7 << modifiedFunctionNames.size () << 7 function parameter lists ” << endl;

cout << ”"Found ” << functionCallList.size () << ” function call expressions ” << endl;

// Add parameter to function calls

for (list <SgNode*>::iterator i = functionCallList.begin(); i != functionCallList.end (); i++) {
SgFunctionCallExp* functionCallExp = isSgFunctionCallExp (*i);

ROSE_ASSERT (functionCallExp != NULL);
if (isSgFunctionRefExp (functionCallExp—>get_function ()) ){
SgFunctionSymbol * symbol = isSgFunctionRefExp (functionCallExp—>get_function())—>
get_symbol_i();
assert (symbol!=NULL) ;
char * name = symbol—>get_name ().str ();
// Only add the parameter if we have modified the corresponding function
if (modifiedFunctionNames [name] == 1){

// Add the address of the struct to the function call arguments
functionCallExp —>append_arg (lookupTLStruct (functionCallExp));

else {
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cerr << "We don’t yet handle function call by pointers” <<

»

SgPointerDerefExp is, I can probably append the function parameter(file=" <<

functionCallExp—>get_file_info()—>get_filenameString () << ”)” << endl;

/*% Build a list of TL Variable References x/
list <SgVarRefExp*> buildListOfTLVariableReferences ( SgNodex node ) {

// return wvariable
list <SgVarRefExp*>

TLVariableUseList ;

// list of all wvariables (then select out the global wvariables by testing the
// scope, or the statics by the appropriate manner)
list <SgNode*> nodeList = NodeQuery :: querySubTree ( node, V_SgVarRefExp );

list <SgNodex >::iterator i = nodeList.begin ();

while(i != nodeList

.end ())

SgVarRefExp *variableReferenceExpression = isSgVarRefExp(*1i);

assert (variableReferenceExpression != NULL);
assert (variableReferenceExpression —>get_symbol () != NULL);
assert (variableReferenceExpression —>get_symbol()—>get_declaration () != NULL);
assert (variableReferenceExpression —>get_symbol()—>get_declaration()—>get_scope ()
I= NULL);
SglnitializedNamex* variableName = variableReferenceExpression—>get_symbol()—>

get_declaration ();
SgScopeStatement* variableScope = variableName—>get_scope ();

assert (variableScope);
// Check if this is a wvariable declared in global scope, if so, then save it

if (isSgGlobal(variableScope) != NULL)
TLVariableUseList.push_back(variableReferenceExpression);

// Note that wariableReferenceEzpression—>get_-symbol()—>get_declaration () returns the
// SglnitializedName not the SgVariableDeclaration where it was declared!
SgVariableDeclaration* variableDeclaration = isSgVariableDeclaration (variableName—>

get_parent ());

// Also save any static wvariables

}

L4+
}

if (variableDeclaration != NULL && isVarDeclStatic(variableDeclaration)) {
TLVariableUseList.push_back(variableReferenceExpression);

return TLVariableUseList;

}

SgClassDeclaration* createTLClass(SgGlobal* scope) {

// We have two options for inserting the class declaration. The first is simple, but is buggy

#if USEMIDDLELEVELREWRITE
// This mechanism is not yet working. I have submitted a bug report for it

char newCode[256];
sprintf (newCode, ”

struct %s {void *%s;};\n”, structName, placeHolderName);

MiddleLevelRewrite :: insert (scope, newCode,
MidLevelCollectionTypedefs :: StatementScope ,
MidLevelCollectionTypedefs :: TopOfCurrentScope);

Helse

Sg_File_Infox fileinfo = Sg_File_Info:: generateDefaultFileInfoForTransformationNode ();

assert (fileinfo != NULL);

SgClassDefinition *classDefinition = new SgClassDefinition(fileinfo );

assert (classDefinition != NULL);

SgClassDeclaration

xclassDeclaration =

new SgClassDeclaration(fileinfo , structName, SgClassDeclaration::e_struct , NULL,

assert (classDeclar

classDefinition );
ation != NULL);

// Set the defining declaration in the defining declaration!
classDeclaration —>set_definingDeclaration (classDeclaration );
classDeclaration —>set_-scope (scope);
classDeclaration —>set_parent (scope);

// Set the end of

construct ezplictly

// (where mot a transformation this is the location of the closing brace)
classDefinition —>set_endOfConstruct (fileinfo );
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SgClassDeclaration* nondefiningClassDeclaration =

new SgClassDeclaration(fileinfo ,structName, SgClassDeclaration::e_struct ,NULL,NULL);
assert (classDeclaration != NULL);
// Set the internal reference to the non—defining declaration
classDeclaration —>set_firstNondefiningDeclaration (nondefiningClassDeclaration );
// Set the defining and no—defining declarations in the mon—defining class declaration!
nondefiningClassDeclaration —>set_firstNondefiningDeclaration(nondefiningClassDeclaration );
nondefiningClassDeclaration —>set_definingDeclaration (classDeclaration );
nondefiningClassDeclaration —>setForward ();
nondefiningClassDeclaration —>set_scope (classDeclaration —>get_scope ());
classDefinition —>set_declaration (classDeclaration );
classDefinition —>set_parent (classDeclaration);

// Insert a place_holder wvariable for convenience in later calls

// Do mot delete this, as it is actually used to insert wvariables after itself.

// For some reason the rewrite mechanism will allow insertion of statements after other

// statements, but this requires an ezisting statement to use

SgName *varname = new SgName(placeHolderName);

SgVariableDeclaration *variable = new SgVariableDeclaration (fileinfo , *varname, new SgTypelnt);

variable —>set_parent (classDefinition );
varname—>set_parent (variable);

// varname—>set_scope (variable—>get_scope ());
classDeclaration —>get_definition()—>append_-member(variable);

// Insert the class declaration before the first declaration in a non—header file

list <SgDeclarationStatement*> decls = scope—>get_declarations ();
list <SgDeclarationStatement* >::iterator d;

for (d=decls .begin ();d != decls.end();++d){
// Insert after typedef statements in a non—header file
if (! isStatementInHeader (*d) && !isSgTypedefDeclaration (xd)){
insertStmt (xd, classDeclaration , true);
break;

}
#endif

// Find the SgClassDeclaration for this newly inserted class/struct

// This is here if we choose some other higher level method for rewriting/inserting the struct
// Additionally it is a mice sanity check

SgClassDeclaration *newClassDeclaration=NULL;

list <SgDeclarationStatement* >::iterator i = scope—>get_declarations ().begin ();
while(i != scope—>get_declarations ().end())
SgClassDeclaration xclassDeclaration = isSgClassDeclaration (xi);
if (classDeclaration != NULL && strcmp (structName, classDeclaration—>get_name ().str())==0)
newClassDeclaration = classDeclaration;
it++;

assert (newClassDeclaration);

return newClassDeclaration;

void copyTLClassToFile(SgClassDeclaration *classDeclaration , SgFilex file){

// Insert the class declaration before the first declaration in a non—header file

assert (classDeclaration != NULL);

SgNode*x n = classDeclaration —>copy (SgTreeCopy ());

SgClassDeclaration xclassDeclarationDeepCopy = isSgClassDeclaration(n);

list <SgDeclarationStatement*> decls = file —>get_globalScope()—>get_declarations ();
for (list <SgDeclarationStatement* >::iterator d=decls.begin ();d != decls.end();++d){

// Insert after typedef statements in a non—header file

if (! isStatementInHeader (xd) && !isSgTypedefDeclaration (xd)){
insertStmt (xd, classDeclarationDeepCopy , true);
break;

SgFunctionDeclaration* createTLInitializer (SgGlobal* scope, SgDeclarationStatements TLStruct) {
assert (TLStruct != NULL);
assert (scope != NULL);

Sg-File_Infox fileinfo = Sg_File_Info:: generateDefaultFileInfoForTransformationNode ();
assert (fileinfo != NULL);

// Create new function which wtill be inserted as a member function of class ¢
SgBasicBlock *bb = new SgBasicBlock (fileinfo ,NULL);

SgFunctionDefinition xfuncdef = new SgFunctionDefinition(fileinfo ,bb);
bb—>set_parent (funcdef);
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// Setup new function
SgReferenceType* intPointerType = new SgReferenceType(new SgTypelnt);

SgName n(”unused :(”); // this gets ignored and the name comes from somewhere else

SglnitializedName xname = new SglnitializedName (n,intPointerType ,0,0,0);
name—>set_scope (funcdef);

SgFunctionParameterList *fpl = new SgFunctionParameterList(fileinfo );
fpl—>append_arg (name);

name—>set_parent (fpl);

SgFunctionType xfunc_type = new SgFunctionType(new SgTypeVoid(), FALSE);

SgName func_name (initFuncName);

SgFunctionDeclaration* fdecl= new SgFunctionDeclaration (fileinfo , func_name, func_type, funcdef);
funcdef—>set_declaration (fdecl);
insertStmt (TLStruct, fdecl, false);
return fdecl;
¥
/** Put each TL variable into the TL struct and remove its original declaration x/
void moveTLVariablesIntoClass (list <SglnitializedNamex> & globalVariables ,
list <SglnitializedNamex> & staticVariables ,
SgClassDeclaration* classDeclaration )
{
// Remove all duplicates from the global wariable list
removeDuplicates (globalVariables );
SgVariableSymbolx globalClassVariableSymbol = NULL;
Sg-File_Infox fileinfo Sg-File_Info :: generateDefaultFileInfoForTransformationNode ();
//
// Add in the globals
for (list <SglnitializedNamex*>::iterator var = globalVariables.begin ();
var != globalVariables.end (); var4++){
#ifdef DEBUG
cout << ”Adding variable 7 << (*xvar)—>get_name (). getString () << 7 to struct” << endl;;
#endif
SgVariableDeclaration* globalVariableDeclaration = isSgVariableDeclaration ((*var)—>
get_parent ());
assert (globalVariableDeclaration != NULL);
// Get the global scope from the global wariable directly
SgGlobalx globalScope = isSgGlobal(globalVariableDeclaration—>get_scope ());
SglnitializedName xin = =x(globalVariableDeclaration—>get_variables ().begin());
assert (globalScope != NULL);
SgVariableDeclaration *firstVarInStruct = isSgVariableDeclaration (x(classDeclaration

—>get_definition()—>getDeclarationList (). begin ()));

// there should be at least some placeholder or real variables in
assert (firstVarInStruct!=NULL);

/*
2 options here:
1) Create a null expression and move comments onto it

2) move comments onto mezt declaration

this

This should work since there will probably never be a global

variable at the bottom of a file,

and even if there ts, its attached comments won’t likely be

*/

// Reassociate any comments/preprocessor statements to the mnext declaration

// find mnext declaration

struct

missed

decllist .end (), ds);

list <SgDeclarationStatement*> & decllist = globalScope—>get_declarations ();

SgDeclarationStatement *xds = globalVariableDeclaration ;

list <SgDeclarationStatement*>::iterator i = find(decllist.begin(),

SgDeclarationStatement *xfollowingDecl=NULL;

if (i != decllist.end() && (i++)!=decllist.end()){ // If there 1is
followingDecl = *i;

reassociatePreprocessorDeclarations (globalVariableDeclaration ,

}
else { // If there is no following declaration. We should probably

”declaration is after the global in a file” << endl;
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// As usual, the higher level mechanisms(here LowLevelRewrite), don’t work
// Here the insertion just doesn’t happen??? not sure why yet
// Remove the wvariable

#if 1
// This one doesn’t detach comments and preprocessor stuff before moving
// Thus an include statement could move into the class :(
SgStatement xparent = isSgStatement(globalVariableDeclaration—>get_parent ());
assert (parent);
parent—>remove_statement (globalVariableDeclaration );
F#Helse
LowLevelRewrite :: remove(globalVariableDeclaration );
#Hendif
// Fizup the variable to make sure it is output, and not clinging to its original file
globalVariableDeclaration —>set_file_info (fileinfo );
// Add the wvariable to the class
#if 1
classDeclaration—>get_definition()—>append_member(globalVariableDeclaration );
globalVariableDeclaration —>set_parent (classDeclaration —>get_definition ());
FHelse
SgDeclarationStatementPtrList &decllist = classDeclaration—>get_definition()—>get_members ();
SgDeclarationStatementx* firstDecl = xdecllist.begin ();
insertStmt (firstDecl, globalVariableDeclaration , FALSE);
#Hendif
}
//
// Add in the static wvariables
// Statics can be global or not global
// If global, they have already been moved into the struct, and we should not attempt to move
// them again. We should however rename them with some mangled scope containing a filename
for (list <SglnitializedName=* >::iterator var = staticVariables.begin ();

var != staticVariables.end(); var4++){
Sg-File_Info xfileinfo=(xvar)—>get_file_info ();

// If this is a global wvariable, then don’t move it into the struct again
if (find (globalVariables.begin (), globalVariables.end(),*var) == globalVariables.end()){
SgVariableDeclaration* staticVariableDeclaration = isSgVariableDeclaration ((*var)
—>get_parent ());
assert (staticVariableDeclaration != NULL);

SgVariableDeclaration *firstVarInStruct = isSgVariableDeclaration (*(classDeclaration —>
get_definition()—>getDeclarationList (). begin ()));

// there should be at least some placeholder or real variables in this struct
assert (firstVarInStruct );

// TODO: See mnote for globals above

SgStatement *parent = isSgStatement (staticVariableDeclaration—>get_parent ());
assert (parent);

parent—>remove_statement (staticVariableDeclaration );

classDeclaration —>get_definition()—>append_member(staticVariableDeclaration );
assert (staticVariableDeclaration —>get_parent ());

}
// Remove the static classifier
SgDeclarationStatement * decl = (xvar)—>get_declaration ();

SgDeclarationModifier &declModifier = decl—>get_declarationModifier ();
SgStorageModifier &storageModifier = declModifier.get_storageModifier ();
storageModifier.setDefault ();

assert (! storageModifier.isStatic ());

// Replace name with mangled name
// TODO: simplify these if possible
(*var)—>set_name ((* var)—>get_mangled_name ());

cout << endl;
return;

}

void fixupReferencesToTLVariables ( list <SgVarRefExpx> & variableReferenceList)

{

// Now fizup the SgVarRefExzp to reference the global wariables through a struct
for (list <SgVarRefExpx*>::iterator var = variableReferenceList.begin ();

var != variableReferenceList.end (); var4+)
assert (xvar != NULL);
SgNode* parent = (*xvar)—>get_parent ();
assert (parent != NULL);
// If this is not an expression then is likely a meaningless statement such as Tx;”)
SgExpression* parentExpression = isSgExpression (parent);
assert (parentExpression != NULL);

48



// Build the reference through the global class wvariable 7x? —> "AMPI_globals.z”

// Build source position information (marked as transformation)
Sg_File_.Infox fileinfo = Sg_File_.Info:: generateDefaultFileInfoForTransformationNode ();
assert (fileinfo != NULL);

// Lookup the correct struct to wuse for the redirected reference
SgExpression xlhs = lookupTLStruct(xvar);
assert (lhs);

// Build "AMPI_globals.z” from 7z”

SgArrowExpx redirectedReference = new SgArrowExp(fileinfo ,lhs  *xvar);
assert (redirectedReference != NULL);
if (parentExpression != NULL) {

// Introduce reference to *wvar through the data structure

// case of binary operator
SgUnaryOp#* unaryOperator = isSgUnaryOp(parentExpression);
if (unaryOperator != NULL) {

unaryOperator—>set_operand (redirectedReference );
}

else {

// case of binary operator

SgBinaryOp=* binaryOperator;

SgExprListExpx* exprListExp;

SgAssignlnitializer* assignlnitializer;

SgConditionalExp* condExp;

SgSizeOfOpx* sizeofExp;

if (binaryOperator = isSgBinaryOp(parentExpression)){
// figure out if the xvar is on the lhs or the rhs
if (binaryOperator—>get_lhs_operand () == xvar) {

binaryOperator—>set_lhs_operand (redirectedReference );

}

else {
assert (binaryOperator—>get_rhs_operand () == *var);
binaryOperator—>set_rhs_operand (redirectedReference );

I

else if(exprListExp = isSgExprListExp(parentExpression)){
// Where the wariable appears in the function argument list the
// parent is a SgExzprListExzp
exprListExp—>replace_expression (xvar, redirectedReference);
// FIXME: This call is deprecated

else if(assignlnitializer = isSgAssignlnitializer (parentExpression)){
assignlnitializer —>set_operand (redirectedReference);

else if(condExp = isSgConditionalExp (parentExpression)){
// The trinary operator ?:
if (condExp—>get_conditional_exp () == *var) {
condExp—>set_conditional_exp (redirectedReference );
}

else if (condExp—>get_true_exp () == xvar) {
condExp—>set_true_exp (redirectedReference);
}

else if (condExp—>get_false_exp () == =*var) {
condExp—>set_false_exp (redirectedReference );

else {
assert (0 && ”"some conditional operator broken”);
}
} else if(sizeofExp = isSgSizeOfOp (parentExpression)){
if (sizeofExp—>get_operand_expr () == *var)
sizeofExp —>set_operand_expr (redirectedReference );
else {

assert (0 && ” sizeof operator broken” );

}

else {
// ignore these cases for now!
switch(parentExpression—>variantT ()) {
case V_Sglnitializer:
case V_SgRefExp:
case V_SgVarArgOp:
default: {
cerr << ”"BAD Error: default reached in 7
”switch parentExpression = ” << endl;
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void transformTLVariablesToUseStruct ( SgProject xproject )

{
// Call the transformation of each file (there are multiple SgFile
// objects when multiple files are specfied on the command line!).
assert (project != NULL);

// These are the global wvariables in the input program (prowvided as helpful information)
list <SglnitializedNamex> globalVariables = buildListOfGlobalVariables(project );
list <SglnitializedNamex> staticVariables = buildListOfStaticVariables(project);

#ifdef DEBUG

cout << "Project Wide: global variables: ” << endl;
for (list <SglnitializedNamex* >::iterator var = globalVariables.begin(); var != globalVariables.end ();
var4+)
cout << 7 ? << (xvar)—>get_-name ().str () << endl;
cout << endl;
cout << ”"Project Wide: static variables: 7 << endl;
for (list <SglnitializedNamex*>::iterator var = staticVariables.begin(); var != staticVariables.end();
var++){
cout << 7 ? << (xvar)—>get_name ().str () << ” ; mangled =" <<

(*var)—>get_mangled_name ().str () << endl;
Sg_File_Info *fileinfo=(xvar)—>get_file_info ();
cout << 7 was in file ” << fileinfo —>get_filenameString () << endl;

cout << endl;
#endif

SgFilePtrList* fileList = project—>get_fileList ();
SgFilePtrList ::iterator file;

SgClassDeclaration* classDeclaration ;
SgFunctionDeclaration* TLInit ;

// First handle the main file
bool foundFileMain = false;
for (file=fileList —>begin (); file != fileList —>end (); ++file) {

if( overwrite_existing_files )
(xfile)—>set_unparse_output_filename( (xfile)—>get_sourceFileNameWithPath() );
if (isFileMain (* file)){
cout << "Found main in file ” << (xfile)—>get_file_info()—>get_filenameString () << endl;

assert (foundFileMain == false); // should only be one main file
foundFileMain = true;

// get the global scope within the file
SgGlobalx globalScope = (xfile)—>get_globalScope ();

assert (globalScope != NULL);

// Build the class declaration

Sg_File_.Infox fileinfo = Sg_File_Info:: generateDefaultFileInfoForTransformationNode ();
assert (fileinfo != NULL);

classDeclaration = createTLClass(globalScope);

// Create the initializer function
TLInit = createTLInitializer (globalScope ,h classDeclaration);

// Find references to TL wariables
list <SgVarRefExp*> variableReferenceList = buildListOfTLVariableReferences(project);

#ifdef DEBUG
cout << "TL variables referenced in this project(all files)” << endl;
for (list <SgVarRefExp*>::iterator var = variableReferenceList.begin ();

var != variableReferenceList.end (); var4++)
cout << 7 ? << (xvar)—>get_symbol()—>get_declaration()—>get_name ().str () ;
cout << endl;
#endif
// Put the global wvariables into the class, removing the original declarations
moveTLVariablesIntoClass (globalVariables ,staticVariables ,classDeclaration );
// Create the struct on the stack and add it as a parameter to
// all function calls and declarations
declareClassAndInitInMain (globalScope, classDeclaration , TLInit);
addTLClassAsParameter (project , classDeclaration );
// Fizup all references to Thread Local wvariable to access the wvariable through the class
/) (Tx” —> "AMPI_struct.z”)
fixupReferencesToTLVariables(variableReferenceList);
// move all initializers into class from the wvariables that
fixupInitializers (classDeclaration, TLInit);
}
¥
if (foundFileMain == false) {
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cerr << "ERROR: Didn’t find a file containing main() or
"We currently must have such a file” << endl;
return;

similar .

»

// Cleanup struct by remowving the temporaray place holder variable declaration

fixupClassDeclarationPlaceHolder (classDeclaration );

// Cleanup on each file

for(file=fileList —>begin (); file != fileList —>end (); ++file) {
// Put the struct definition in the top of all files
if (!isFileMain (* file )){

cout << 7 filename= " << (xfile)—>getFileName () << endl;

copyTLClassToFile(classDeclaration, =file);

}

// Remove any “extern” definitions from the global scope of this file
SgGlobalx globalScope = (xfile)—>get_globalScope ();

assert (globalScope != NULL);

list <SgDeclarationStatement*> decls = globalScope—>get_declarations ();

list <SgDeclarationStatement* >::iterator 1ij
for (i=decls.begin(); il=decls.end(); ++i) {

SgVariableDeclaration xvarDecl = isSgVariableDeclaration (*xi);
if (varDecl != NULL && isVarDeclExtern (varDecl)) {
globalScope—>remove_statement (varDecl);

}

}

[/ Kk ok Kk o Kk o kK S sk kK 3 S ok K K o kK K o kKK KKk K Kok
MAIN PROGRAM

[/ Kk kKoK ok koK ok sk kK sk ok K K Sk koK K sk koK K s kKK K Kok K Kok ok

int main( int argc, char x argv[] )

cout << 7 7 << endl;

cout << ”Thread Local Variable Encapsulation Translator. \nIf last command line argument
”?\” —-OVERWRITE\” then the source code will be overwritten” << endl;

if(string (argv [argc —1]) == string ("—OVERWRITE” )){
cout << ” I am OVERWRITING all your source files :) 7 << endl << endl;
overwrite_existing_files = true;

} else {
overwrite_existing_files = false;

}

cout << ” ’ << endl;

// Build the AST used by ROSE
// Strip off last parameter’-OVERWRITE” if we have it

SgProject* project = frontend(overwrite_existing_files?argc—1:argc, argv);

assert (project != NULL);

// transform application as required
transformTLVariablesToUseStruct(project );

#if 1
generateDOT (x project );
generatePDF (xproject );

#endif

// Code generation phase (write out mew application “rose_<input
return backend(project);

o1
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Appendix B

Automated Performance Tracing:
Code Listing

The following is the source code for the Automated Performance Tracing-Call Insertion tool
described in Chapter 4. The main source file for this translator is globalVariableRewrite.C.

Additionally the shared code described in Appendix D is required.

/*

Insert performance profiling calls into AMPI codes.
We would like better profiling of MPI codes with Projections.

Author: Isaac Dooley

*/

#include <iostream >
#include <algorithm>
#include <string>
#include <rose.h>

#include <globalVariableCommon .h>

using namespace std;

/*% Build a list of functions within a specified call depth from main
depth=0 means just main will be included
depth=1 means just main or functions called by main will be included
depth=2 means those in depth=1 and any called by them is in the list

Obviously it is hard to do much with function pointers, so we ignore them.

*

list <SgFunctionDeclaration*> buildFunctionDefsToDepth (int depth, SgProject sxproject){
list <SgFunctionDeclaration*> funcDeclList;

list <SgNodex> funcDecls = NodeQuery:: querySubTree (project ,V_SgFunctionDeclaration);
for (list <SgNode*>::iterator i = funcDecls.begin(); i != funcDecls.end(); i++) {
if (isFunctionMain (isSgFunctionDeclaration (*xi))){
funcDeclList .push_back (isSgFunctionDeclaration (xi));
}

for (int d=0;d<depth;d++){

list <SgFunctionDeclaration*> newFuncs;
// for each function in the list
for (list <SgFunctionDeclaration*>::iterator i = funcDeclList.begin(); i != funcDeclList.end();
i++)
// find any SgFunctionRefEzp inside the functions
list <SgNodex> childRefs = NodeQuery:: querySubTree (xi,V_SgFunctionRefExp);
for (list <SgNodex>::iterator i = childRefs.begin(); i != childRefs.end(); i++) {
SgFunctionDeclaration *xfdecl = isSgFunctionRefExp(*i)—>get_symbol()—>get_declaration ();
newFuncs. push_back (fdecl);

}

newFuncs.sort ();
funcDeclList . merge (newFuncs);
removeDuplicates (funcDeclList );
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void

void

cout << ” Found 7 << funcDeclList.size () << ” functions to trace at depth 7 << d+41 << endl;

}

return funcDeclList;

insertTimerCalls (SgBasicBlock xbb, SgStatement xbegin, SgStatement sxend){
SgStatement * begincopy = isSgStatement (begin—>copy(SgTreeCopy ()));
SgStatement * endcopy = isSgStatement (end—>copy (SgTreeCopy ()));

assert (begincopy != NULL && endcopy != NULL);

bb—>prepend_statement (begincopy );

// don’t append to main since main always has a return statement(albeit implicitly sometimes)

assert (bb != NULL);
assert (isSgFunctionDefinition (bb—>get_parent ()) != NULL);
SgFunctionDeclaration xfdecl = isSgFunctionDefinition (bb—>get_parent())—>get_declaration ();

assert (fdecl!=NULL);
if (!isFunctionMain (fdecl))
bb—>append_statement (endcopy );

// also insert it before any return statements

list <SgNode*> returns = NodeQuery :: querySubTree (bb,V_SgReturnStmt);

for (list <SgNodex >::iterator i = returns.begin(); i != returns.end(); i++) {
endcopy = isSgStatement (end—>copy(SgTreeCopy ())); // make a copy to insert
insertStmt (isSgStatement(*xi), endcopy, true);

insertTimerCalls (SgFunctionDefinition =func,
SgFunctionDeclaration *beginFuncDecl,
SgFunctionDeclaration *endFuncDecl,
SgFunctionDeclaration *regFuncDecl,
SgFunctionDeclaration *mainFunc){

Sg-File_Infox fileinfo = Sg_File_Info::generateDefaultFileInfoForTransformationNode ();

// First create the call to traceBeginFuncProj
SgFunctionSymbol *startFuncSymbol = new SgFunctionSymbol(beginFuncDecl);
// TODO: Probably mnot correct, but it works for now
SgFunctionType xstartFuncType = new SgFunctionType(new SgTypeVoid());
SgFunctionRefExp *startFunctionRefExp =
new SgFunctionRefExp (fileinfo , startFuncSymbol, startFuncType);
SgExprListExp *startArgList = new SgExprListExp(fileinfo );
SgStringVal *xstartparaml = new SgStringVal(fileinfo , func—>get_-declaration()—>get_name ().str ()
startArgList —>append_expression (startparaml );
SgStringVal *xstartparam2 = new SgStringVal(fileinfo , ”UnknownFile” );
startArgList —>append_expression (startparam?2);
SgIntVal xstartparam3 = new SglntVal(fileinfo , 1 );
startArgList —>append_expression (startparam3);
SgFunctionCallExp *startFuncCall =
new SgFunctionCallExp (fileinfo , startFunctionRefExp, startArgList, startFuncType);
SgExpressionRoot xstartExprRoot =
new SgExpressionRoot( fileinfo , startFuncCall, startFuncType);
SgExprStatement xstartStatement = new SgExprStatement(fileinfo , startExprRoot);

// Second create the call to traceEndFuncProj

SgFunctionSymbol *endFuncSymbol = new SgFunctionSymbol(endFuncDecl);
// TODO: Probably not correct, but it works for now

SgFunctionType xendFuncType = new SgFunctionType(new SgTypeVoid ());

SgFunctionRefExp *endFunctionRefExp = new SgFunctionRefExp(fileinfo , endFuncSymbol, endFuncType);

SgExprListExp *endArgList = new SgExprListExp(fileinfo);
SgStringVal xendparaml = new SgStringVal(fileinfo , func—>get_declaration()—>get_name ().str () );
endArgList—>append_expression (endparaml );
SgFunctionCallExp *endFuncCall =

new SgFunctionCallExp(fileinfo , endFunctionRefExp, endArgList, endFuncType);
SgExpressionRoot *endExprRoot =

new SgExpressionRoot( fileinfo , endFuncCall, endFuncType);
SgExprStatement xendStatement = new SgExprStatement(fileinfo , endExprRoot);

SgBasicBlock* body = func—>get_body ();
if (body && !body—>get_statements ().empty())

insertTimerCalls (body, startStatement, endStatement);

// Finally insert the register call to the top of main
SgFunctionSymbol *regFuncSymbol = new SgFunctionSymbol(regFuncDecl);
// TODO: Probably mnot correct, but it works for now

SgFunctionType xregFuncType = new SgFunctionType(new SgTypeVoid ());

SgFunctionRefExp #*regFunctionRefExp = new SgFunctionRefExp(fileinfo , regFuncSymbol, regFuncType);

SgExprListExp *regArgList = new SgExprListExp(fileinfo );

53



//

SgStringVal xparaml = new SgStringVal(fileinfo , func—>get_declaration()—>get_-name ().str () );
regArgList —>append_expression (paraml);

SgIntVal xparam2 = new SgIntVal(fileinfo , —999 );

regArgLlList —>append_expression (param?2);

SgFunctionCallExp *regFuncCall = new SgFunctionCallExp (fileinfo , regFunctionRefExp, regArgList ,
regFuncType);
SgExpressionRoot xregExprRoot

new SgExpressionRoot( fileinfo , regFuncCall, regFuncType);
SgExprStatement xregStatement

new SgExprStatement(fileinfo , regExprRoot);

SgBasicBlock* mainbody = mainFunc—>get_definition()—>get_body ();
if (mainbody && !mainbody—>get_statements ().empty())

mainbody—>prepend_statement (regStatement );

Insert timer calls at a node if it is a function definition

void insertTimerCalls (SgProject* project, int tracedepth)

{

SgFunctionDeclaration xbeginFuncDecl=NULL, xendFuncDecl=NULL, xregFuncDecl=NULL, smainFuncDecl=NULL;

// Find function to insert a corresponding SgFunctionCallEzp for
list <SgNodex> functions = NodeQuery:: querySubTree (project ,V_SgFunctionDeclaration);

for (list <SgNodex >::iterator i = functions.begin(); i != functions.end(); i++) {
SgFunctionDeclaration *func_-decl = isSgFunctionDeclaration (i );
char *fun_name = func_decl—>get_name ().str ();
if (strecmp (fun_name ,” traceBeginFuncProj”)==0){
beginFuncDecl = func-decl;

if (stremp (fun_name ,” traceEndFuncProj”)==0){

endFuncDecl = func_decl;
if (strcmp (fun_name ,” traceRegisterFunction”)==0){
regFuncDecl = func_decl;

if (isFunctionMain (func_-decl) ){
mainFuncDecl = func_decl;
}

}

if (beginFuncDecl==NULL) {

cerr << "FATAL ERROR: couldn’t find function called ” << "traceBeginFuncProj” << endl;
return;

}
if (endFuncDecl==NULL ){

cerr << "FATAL ERROR: couldn’t find function called ” << "traceEndFuncProj” << endl;
return;

}
if (regFuncDecl==NULL) {

cerr << "FATAL ERROR: couldn’t find function called ” << ”traceRegisterFunction” << endl;
return;

if (mainFuncDecl==NULL) {

cerr << "FATAL ERROR: couldn’t find a main or AMPI.main function” << endl;
return;

// Insert timer calls at top and bottom of all functions
list <SgNode x> funcs = NodeQuery:: querySubTree (project,
V_SgFunctionDefinition );
list <SgFunctionDeclaration*> functionsToTrace = buildFunctionDefsToDepth (tracedepth, project);
for (list <SgFunctionDeclaration* >::iterator f = functionsToTrace.begin (); f!=functionsToTrace.end();
++1f)

cout << ”examining a function declaration” << endl;

insertTimerCalls ((* f)—>get_definition (),beginFuncDecl ,endFuncDecl,regFuncDecl ,mainFuncDecl);

main ( int argc, char * argv ][] )
int tracedepth;

cout << ” 7 << endl;
cout << ”Function Tracing insertion tool.\n Use —tracedepth n ” << endl;
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if (string (argv [argc —2]) == string ("—tracedepth”)){
cout << 7 Tracing to depth ” << argv[argc—1] << endl << endl;

tracedepth = atoi(argv|[argc —1]);
} else {
tracedepth=4;
}
cout << 7 ? << endl;

SgProject* project = frontend (argc, argv);
ROSE_ASSERT (project != NULL);

insertTimerCalls (project , tracedepth);

#if 1

generateDOT (x project );
// generatePDF (x project );
#endif

return backend (project);
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Appendix C

Automatic PUP Function Creation:
Code Listing

The following is the source code for the Automated PUP Creation tool described in Chapter

5. The main source file for this translator is insertPUPs.C.

/*

Created by Isaac Dooley

Purpose: create pup routines for classes

How :

For each class defined in the file

Create list of all class vartables (private or public)
Create a new function declaration , and insert it into the class
add a pup statement for each class wvariable

Variations :

Do we pup all class wvariables?
Do we pup inherited variables?

Notes :
We will wse the MIDDLE LEVEL REWRITE mechanism . This mechanism still has a
number of bugs, e.g. multifile support.

*/

#include <rose.h>
#include <list >
#include <vector>
#include <iostream>
#include <exception>
#include <string>

using namespace std;

void insert_PUP_In_Class(SgClassDefinition* ¢, SgType xpupperType, SgFunctionRefExp* pupfunction) {
/* MIDDLELEVEL doesn’t work since:
1) classes are unsupported as nodes into which you can insert codeA
2) it creates a file, inserts a string and then parses it with EDG. This file
doesn’t include the headers which define the PUP mnamespace

*/

Sg-File_Infox fileinfo = Sg_File_Info:: generateDefaultFileInfoForTransformationNode ();

// Create new function which wtll be inserted as a member function of class c
SgBasicBlock xbb = new SgBasicBlock(fileinfo ,NULL);

SgFunctionDefinition xfuncdef = new SgFunctionDefinition(fileinfo ,bb);
bb—>set_parent (funcdef);

// Setup parameters for new function

SgReferenceTypex pupperPointerType = new SgReferenceType (pupperType);

SgName n(”p”);

SglnitializedName xpuppername = new SglnitializedName (n,pupperPointerType,0,0,0);
puppername—>set_scope (funcdef);

SgFunctionParameterList *fpl = new SgFunctionParameterList(fileinfo );
fpl—>append_arg (puppername);

puppername—>set_parent (fpl);

// Setup the SgMemberFunctionDeclaration which pulls the function into the class
SgCtorlnitializerList *xctor = new SgCtorlInitializerList (fileinfo );

SgType * returntype = new SgTypeVoid ();

SgFunctionType * functype = new SgFunctionType(returntype, false);

SgName mfdname (?PUP” );
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SgMemberFunctionDeclaration *mfd = new SgMemberFunctionDeclaration (fileinfo ,mfdname,NULL, funcdef);
mfd—>set_parent (c);

mfd—>set_CtorInitializerList (ctor);

mfd—>set_parameterList (fpl);

mfd—>set_type (functype);

mfd—>set_scope (c);

fpl—>set_parent (mfd);

ctor—>set_parent (mfd);

funcdef—>set_parent (mfd);

funcdef—>set_declaration (mfd);

// Finally add the member function to the class
c—>append_member (mfd ) ;

// Insert a pup call for each member variable of the class

list <SgDeclarationStatement*> &members = c—>get-members ();

cout << ”There are ” << members.size () << ” declarations in the class 7 << endl;

for (list <SgDeclarationStatement* >::iterator i=members.begin (); i!=members.end();++1i){
SgVariableDeclaration =vardecl;
if (vardecl=isSgVariableDeclaration (*1i)){

SglnitializedNamePtrList &args = vardecl—>get_variables ();

assert (args.size () == 1);

// assume that the front=only wvariable being declared is the one we want
SglnitializedName =xfinalArg = args.front ();

assert (finalArg);
SgVariableSymbol *variableSymbol = new SgVariableSymbol(finalArg);
assert (variableSymbol);

cout << ”found a variable member ” << variableSymbol—>get_name (). getString () << endl;

//The pupper itself
SgVariableSymbol* pupvarsymbol = new SgVariableSymbol(puppername);
SgVarRefExp* pupvar = new SgVarRefExp(fileinfo , pupvarsymbol);

// The variable to be pupped

SgVarRefExp* varToPup = new SgVarRefExp(fileinfo , variableSymbol);
SgClassSymbol xcs = new SgClassSymbol(c—>get_declaration ());

SgThisExp *t = new SgThisExp(fileinfo , cs, 0);

SgArrowExp *a = new SgArrowExp(fileinfo ,t,varToPup,variableSymbol—>get_type ());

SgExprListExpx exprlist = new SgExprListExp(fileinfo);
exprlist —>prepend_expression (a);
exprlist —>prepend_expression (pupvar );

SgFunctionCallExp* pfc = new SgFunctionCallExp (fileinfo , pupfunction, exprlist , pupperType);

// Put a in a null ezpression statement
SgExpressionRoot *exprRoot = new SgExpressionRoot( fileinfo , pfc, pupperType );
SgExprStatement * exprStatement = new SgExprStatement(fileinfo , exprRoot);

bb—>append_statement (exprStatement );

void transformClassesAddPUPs(SgProject* project){
bool done = false;

SgNamedType *pupperType;
list <SgNodex> types = NodeQuery:: querySubTree (project ,V_SgType);
for (list <SgNodex >::iterator i=types.begin();i!=types.end() && !done;++i){

if (isSgNamedType(*i)){
const string gname = isSgNamedType(*i)—>get_qualified_name (). getString ();
const string dname = "PUP::er”;

if (qname == dname){
cout << ”Found some type called PUP::er, hopefully I got the right one.” << endl;
pupperType = isSgNamedType(xi);
done=true;

// We first find a function declaration for our pup routine
// then we derive an SgFunctionRefEzp for it
Sg_File_Infox fileinfo = Sg_File_Info:: generateDefaultFileInfoForTransformationNode ();

cout << ”Looking for a pup function to reference” << endl;
SgFunctionDeclaration s*pupperfdecl=NULL;
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list <SgNodex> funcs = NodeQuery:: querySubTree

cout << ”created a list of ” << funcs.

done=false;

for (list <SgNodex >::iterator
SgFunctionDeclaration =xfdecl;

size () << 7

(project ,V_SgFunctionDeclaration );
function declarations” << endl;

i=funcs.begin ();i!=funcs.end () && !done;++i){

fdecl —>get_name (). getString ();

»

declaration called << gname << endl;
? << fdecl—>get_qualified_-name ().getString () << endl;

if (fdecl = isSgFunctionDeclaration (*1i)){
const string gname =
const string dname = “operator|”;
// Some will be called ”"operator|”
if (qgname == dname) {
cout << ”"Found some function
cout << ”qualified name =
pupperfdecl = fdecl;
}
¥
¥
cout << ”"done iterating through list ” << endl;

assert (pupperfdecl);

SgFunctionSymbol spupsymbol
SgFunctionType sxpupfunctype

SgFunctionRefExps* pupfunction

list <SgNodex> classes NodeQuery :: querySu
cout << ”Number of classes appearing
for (list <SgNodex>::iterator i
//Add PUP to this class
SgClassDefinitionx ¢ = isSgClassDefini
if (c!=NULL)
insert _PUP_In_Class (c, pupperType,
else

cout << "WARNING: NodeQuery :: querySubTree

”something that is not

// sk sk sk ok ok kK ok oK oK ok oK 3K 3K K 3 K K K K sk oK 3K 3K K K ok K K K K oK oK K K ok ok ok ok ok ok ok
// MAIN PROGRAM

/s ok sk sk ok sk sk sk ok sk sk ok sk sk sk sk ok sk sk ok sk ok sk sk ok sk R ok sk ok sk Sk ok Sk S oK Sk oK Sk ok
int main( int argc, char x argv[] )

// Build the AST used by ROSE
SgProject* project frontend (argc,argv);
assert (project != NULL);

cout <<

// transform application as required
transformClassesAddPUPs(project );

generateDOT (* project );
generatePDF (xproject );

// Code generation phase
return backend(project);

(write

in this
classes.begin (); i

out mew application

new SgFunctionSymbol(pupperfdecl);
new SgFunctionType(pupperType);
new SgFunctionRefExp (fileinfo ,

pupsymbol, pupfunctype);

bTree (project ,V_SgClassDefinition);
project: 7 << classes.size () << endl;
!= classes.end (); ++i ) {

tion (*1);
pupfunction);

»

(globalScope ,V_SgClassDefinition)
a SgClassDefinition” << endl;

returned

” Automatic PUP creation translator” << endl;

"rose-<input file mname>")
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Appendix D

Common Shared Routines: Code
Listing

The following is the source code for functions used in multiple translators. This code is in a

source file called globalVariableCommon.C.

VAL

* A set of wuseful routines for identifying global and static wvariables
* Used by both globalVariableRewrite and globalVariableFind

*/

#include ”globalVariableCommon .h”
using namespace std;

/** Determine if a statement is in a header file */
bool isStatementInHeader (SgStatementx s){

char % filename = s—>get_file_info()—>get_filename ();
assert (filename );

int len = strlen (filename);

if (filename [len —1]=="h’ && filename [len —2]==".")

return true;
else
return false;

/*% Determine if a variableDeclaration ts static or not */

bool isVarDeclStatic(SgVariableDeclaration xvariableDeclaration){
// TODO: a declaration has two flags which can specify statics. Add the other one as well
assert (variableDeclaration != NULL);
SgDeclarationModifier &declModifier = variableDeclaration—>get_declarationModifier ();
SgStorageModifier &storageModifier = declModifier.get_storageModifier ();
return storageModifier.isStatic ();

}

/*% Determine if a wvariableDeclaration is extern or not x/
bool isVarDeclExtern(SgVariableDeclaration xvariableDeclaration){
assert (variableDeclaration != NULL);
SgDeclarationModifier &declModifier = variableDeclaration—>get_declarationModifier ();
SgStorageModifier &storageModifier = declModifier.get_storageModifier ();
return storageModifier.isExtern ();

list <SglnitializedName=x> buildListOfStaticVariables (SgFilex file ) {
// This function builds a list of static wvariables (from a SgFile).
assert (file != NULL);

// return wvariable
list <SglnitializedNamex> staticVariableList ;

SgNodex node = file;
list <SgNodex*> nodeList = NodeQuery:: querySubTree ( node, V_SgVariableDeclaration );

list <SgNodex* >::iterator i = nodeList.begin ();
while(i != nodeList.end())

SgVariableDeclaration *variableDeclaration
assert (variableDeclaration != NULL);

isSgVariableDeclaration (*1i);

if (isVarDeclStatic(variableDeclaration)){
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list <SglnitializedNamex*> & variableList = variableDeclaration—>get_variables ();

list <SglnitializedNamex* >::iterator var = variableList.begin ();
while(var != variableList.end())
{

assert ((*var)—>get_scope ());
staticVariableList.push_back(xvar);
var—+-+;

} else {
// cout << 7didn’t find a static 7 << endl;

i+

return staticVariableList;

list <SglnitializedNamex> buildListOfGlobalVariables (SgFilex file ) {
// This function builds a list of global wariables (from a SgFile).
assert (file != NULL);
list <SglnitializedNamex*> globalVariableList ;

SgGlobalx globalScope = file —>get_globalScope ();

assert (globalScope != NULL);
list <SgDeclarationStatement*>::iterator i = globalScope—>get_declarations ().begin ();
while(i != globalScope—>get_-declarations ().end())
{
SgVariableDeclaration *variableDeclaration = isSgVariableDeclaration (*1i);
if (variableDeclaration != NULL)

if (! isVarDeclExtern(variableDeclaration))

list <SglnitializedName*> & variableList = variableDeclaration—>get_variables ();
list <SglnitializedName=* >::iterator var;
for (var=variableList.begin (); var != variableList.end (); +4+var)

{

// Don’t include wvarious globals which come from rose somehow
// At one point one showed up called _April_12.2005
if (! (xvar)—>get_file_info()—>isCompilerGenerated () ){
assert ((xvar)—>get_scope ());
globalVariableList.push_back(xvar);
} else {
cerr << "WARNING: Ignoring compilerGenerated variable 7 <<
(*var)—>get_name (). getString () << endl;

.
return globalVariableList;

list <SglnitializedNamex> buildListOfGlobalVariables ( SgProject* project ) {

// This function builds a list of global wvariables (from a SgProject).
list <SglnitializedNamex> globalVariableList;

SgFilePtrList* fileList = project—>get_fileList ();
SgFilePtrList :: iterator file = fileList —>begin ();

// Loop over the files in the project (multiple files ezist
// when multiple source files are placed on the command line ).
while(file != fileList —>end())
list <SglnitializedNamex> fileGlobalVariableList = buildListOfGlobalVariables (*file );

fileGlobalVariableList .sort ();
globalVariableList . merge(fileGlobalVariableList );

file++;
}

return globalVariableList ;
¥
list <SglnitializedNamex*> buildListOfStaticVariables ( SgProject* project ) {

// This function builds a list of static wvariables (from a SgProject).
list <SglnitializedNamex> staticVariableList;

SgFilePtrList*x fileList = project—>get_fileList ();
SgFilePtrList :: iterator file = fileList —>begin ();
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//
//

Loop owver the files in the project (multiple files exzist
when multiple source files are placed on the command line ).

while(file != fileList —>end())

file++;
}
return staticVariableList ;
¥
void printGlobalsAndStatics(SgProject* project){
// These are the global wvariables in the input program (provided as helpful information)
list <SglnitializedNamex*x> globalVariables = buildListOfGlobalVariables(project);
list <SglnitializedNamex> staticVariables = buildListOfStaticVariables(project);
cout << ”"Project Wide: global variables: ” << endl;
for (list <SglnitializedNamesx*>::iterator var = globalVariables.begin(); var != globalVariables.end();
var++)
cout << ” 7 << (xvar)—>get_name ().str () << endl;
cout << endl;
cout << "Project Wide: static variables: ” << endl;
for (list <SglnitializedNamex* >::iterator var = staticVariables.begin(); var != staticVariables.end();
var+-+){
cout << 7 ? << (xvar)—>get_-name ().str () << ” ; mangled =" << (*var)—>get_-mangled_name ().str ()
<< endl;
Sg_File_Info *fileinfo=(xvar)—>get_file_info ();
cout << ” was in file ” << fileinfo —>get_filenameString () << endl;
cout << endl;
}
/*% main—like functions are specified here x/
bool isFunctionMain(SgFunctionDeclaration sfunc_decl){
char xfunc_name = func_decl—>get_name ().str ();
if (stremp (func_name ,” main”)==0){
cout << ”"Main function called \”main\”” << endl;
return true;
if (strcmp (func_name ,” AMPI_Main” )==0){ // This one will occur for AMPI C programs. See mpi.h
cout << ”Main function called \”AMPI_Main\”” << endl;
return true;
¥
if (strcmp (func_name ,” AMPI_Main_cpp”)==0){ // This one wtill occur for AMPI C++ programs. See mpi.h
cout << ”"Main function called \” AMPI_Main_cpp\”” << endl;
return true;
return false;
¥
/x% Insert a single statement at the given target node wusing the
low—level rewrite interface, either before or after the target. x/
void insertStmt (SgStatement* target, SgStatementx stmt, bool insertBefore)
{
ROSE-ASSERT (target && stmt);
SgStatementPtrList temp_stmt_list;
temp_stmt_list.push_front (stmt);
LowLevelRewrite:: insert (target , temp_stmt_list, insertBefore);
¥
/*% Remove duplicate global wariables from the list =/
void removeDuplicates(list <SglnitializedNamex> & globalVariables){

list <SglnitializedNamex> fileStaticVariableList = buildListOfStaticVariables (*file );

staticVariableList .merge(fileStaticVariableList );

list <SglnitializedNamex> temp;
list <SglnitializedNamesx*x>::iterator i,j;

for (i=globalVariables.begin ();i!l=globalVariables.end();++1i){
bool found = false;
// check if this is in the temp array yet. If mot, insert it
for (j=temp.begin (); j!=temp.end();++j){
if ( (xi)—>get-name (). getString () == (*j)—>get_-name ().getString () ){
found=true;
}

¥
if (! found)
temp . push_back (x1i);
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}

globalVariables = temp;

void removeDuplicates(list <SgFunctionDeclaration*> & funcs){

list <SgFunctionDeclaration*> temp;
list <SgFunctionDeclaration* >::iterator 1i,j;

for (i=funcs.begin ();i!=funcs.end();++1){
bool found = false;
// check if this is in the temp array yet. If not,
for (j=temp.begin (); j!=temp.end();++j){

if( (xi)—>get_name ().getString () == (xj)—>get_name (). getString ()

found=true;

}
}
if (! found)
temp . push_back (*1i);

}

funcs = temp;

}
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