
Charm++, Offload API, and the Cell Processor

David Kunzman, Gengbin Zheng, Eric Bohm, Laxmikant V. Kale
Parallel Programming Lab

University of Illinois at Urbana-Champaign
201 N. Goodwin Ave.

Urbana, IL 61801
kunzman2,gzheng,ebohm,kale@uiuc.edu

ABSTRACT
As multicore processor designs become more mainstream,
it becomes more important to both expose and efficiently
exploit parallelism in a clear and straight forward manner.
We believe that the Charm++ paradigm is a good fit for the
Cell processor (a heterogeneous multicore processor). Many
aspects of the Charm++ runtime system allow it to take ad-
vantage of the benefits provided by the Cell processor in a
clear and natural manner. These aspects include being able
to peek ahead in the message queue, effective prefetching of
data, virtualization, encapsulation of data, etc. In adapting
the Charm++ runtime system to be able to use the Cell
processor, we have developed the Offload API. The Offload
API is a general purpose API, which can be used indepen-
dently of Charm++, that allows a program to easily take
advantage of the Cell’s potential. Additionally, Charm++
applications are portable between many existing platforms
in common use today. By adapting the Charm++ runtime
system to utilize the Cell processor without modification
to the user’s application code, Cell programs written using
Charm++ will automatically be portable to Cell-based plat-
forms. Finally, we will discuss some initial efforts in porting
the popular molecular dynamics program NAMD to the Cell
processor.

1. INTRODUCTION
The Cell processor [1] jointly developed by IBM, Sony, and
Toshiba deviates from standard processor design. While it
has more computational power than most processors, it also
presents many challenges. One of the challenges that it
presents is how hard it can be to program in an efficient
manner. Efficiently programming for the Cell processor re-
quires the programmer to explicitly manage the resources
available to each of the SPEs (see The Cell Processor section
below). This, of course, also greatly hinders the portability
of code when moving between a Cell-based platform and a
non-Cell-based platform.

Charm++ [2] can provide portability to the Cell. Charm++
applications can already be ported across platforms com-
prised of many different combinations of processors and in-
terconnects by simply recompiling the code without mod-
ification. In practice, Charm++ applications mainly fall
within the realm of High Performance Computing (HPC).
We are currently in the process of applying some of the ab-
stractions and techniques we have developed to Cell-based
platforms. In the course of this process, we have devel-
oped the Offload API. The Offload API is independent of

Charm++ and allows C/C++ based programs to more eas-
ily utilize the SPEs on a Cell.

We believe that the Charm++ paradigm can also help solve
many of these programability issues. Charm++ is a mes-
sage driven paradigm. As messages arrive on a processor
they are queued. The Charm++ runtime system can peek
ahead in this queue telling the runtime what code will be
executed along with what data will be needed in the future.
Through virtualization, a technique already widely used in
Charm++, the SPE communication overhead can be over-
lapped with useful computation effectively hiding overhead.
On other platforms, Charm++ automatically handles many
other aspects of a parallel program, such as measurement-
based dynamic load-balancing. These techniques can be
applied to the Cell, both between multiple Cell processors
and between the SPEs on a single Cell processor. See the
Charm++ section below for more details.

2. THE CELL PROCESSOR
The Cell processor has been jointly developed by IBM, Sony,
and Toshiba. Commonly referred to simply as Cell, it presents
a departure from mainstream processor design. The proces-
sor has nine cores. There is a main core called the Power
Processor Element (PPE). This core can be thought of as
a standard 2-way SMT processor. The other eight cores,
called Synergistic Processor Elements (SPEs), are special-
ized cores. The SPEs do not have direct access to main
memory. Instead, each SPE has a private memory called a
local store (LS). The local store is 256KB in size and con-
tains all data needed by the SPE during execution (including
code, heap, and stack). DMA transactions are explicitly is-
sued by the program to move data between the local stores
and main memory. These DMA transactions are controlled
by the hardware. That is to say, the PPE and SPEs queue
the DMA transactions and then continue processing while
the hardware asynchronously takes care of moving the data.

Information on the Cell processor and the Cell Broadband
Engine Architecture (CBEA) in general, is publicly available
at http://www-128.ibm.com/developerworks/power/cell/.

3. OFFLOAD API
The Offload API provides a simple interface that a user can
use to offload chunks of computation onto the SPEs making
it easier to program for the Cell processor. Each chunk
of computation is referred to as a work request. The idea
is to have each work request be a separate, self-contained



Figure 1: Timeline of SPE Runtime (not to scale): [1] The PPE makes a work request and the Offload
API decides which SPE should execute the work request. [2] The SPE receives the work request through
its work request list and initiates a DMA-Get to retrieve the needed input data. [3] The DMA controller
asynchronously brings the input data from main memory into the local store. [4] Once the input data has
arrived, the SPE executes the work request. Once the work request has completed execution, a DMA-Put is
issued to move the results back to main memory. [5] The DMA controller asynchronously moves the results
to main memory. [6] Once the data has been placed into main memory, the SPE notifies the PPE that the
work request has completed. Please note that this image is not to scale; ideally, the execution time for a
work request ([4]) should be much longer than the time to transfer the data ([3] + [5]).

unit of work (i.e. - no direct data dependencies between
concurrently executing work requests). The work request
is then passed into the Offload API. The Offload API is
responsible for: moving the data buffer(s) associated with
the work request to one of the SPEs, executing the code
associated with the work request, moving the result(s) back
to main memory, and then notifying the PPE that the work
request has completed. Between the time the PPE code
makes the work request and the SPE notifies the PPE that
the work request has finished, the PPE is free to do other
work (including submit more work requests to the Offload
API).

As a simple example to help illustrate the idea, consider
adding two matrices, A + B = C, where all the matrices
have the dimensions M by N. Assuming the matrices are
stored in row major format, the data for each row is stored
in consecutive memory. The addition of each set of rows can
form a single work request. That is, there will be M work
requests each performing the computation A(i, ∗)+B(i, ∗) =
C(i, ∗) where 0 ≤ i < M , i has a unique value for each work
request, and X(i, ∗) denotes the ith row of matrix X.

Section 8 contains an example “Hello World” program (used
for brevity) that demonstrates the use of the Offload API.

3.1 Making a Work Request
There are two components needed to make a work request:
what code to execute and what data to use. Currently, the
Offload API does not support migration of SPE code be-
tween the local stores and main memory. All SPE code
must be statically compiled into a SPE binary that placed
onto the SPE when the Offload API initializes. Each work
request type is given a unique number. When the PPE makes
a work request, it specifies the work request type which ba-
sically identifies what user defined code on the SPE will be
executed. At the time the work request is made, numerous
data buffers can be specified. Each buffer can be identi-
fied as either a read/write buffer, a read-only buffer, or a

write-only buffer. Read/write buffers are moved to the lo-
cal store before the work request is executed and moved back
to main memory after the work request has finished. Read-
only buffers are moved to the local store before the work
request is executed and then their contents are discarded by
the SPE after the work request has finished. For write-only
buffers, a buffer of equal size is set aside in the SPE but no
data is transferred before the work request executes. The
work request can produce results to the write-only buffer.
Once the work request has finished executing, the contents
of the write-only buffer are transferred to its counterpart in
main memory. The read-only and write-only buffer types
are meant to reduce pressure on the enhanced interconnect
bus (EIB).

3.2 SPE Runtime
Once a work request has been made by the PPE and the
Offload API has assigned it to a particular SPE, all of the
coordination for the work request is taken care of by the SPE
owning the work request. Each SPE has a SPE Runtime
executing on it to handle the coordination of work requests
assigned to it along with moving data buffers in and out
of the SPE’s local store. Figure 1 illustrates how the SPE
Runtime works. Each work request has an associated state
while it is being processed by the SPE Runtime. There are
no ordering restrictions between work requests. That is to
say, the order in which work requests are submitted may not
match the order in which they are completed. It is up to the
code calling the Offload API to ensure that work requests
are acting on independent sets of data. A work request is
considered completed when it’s results have been stored to
main memory. For example, if there are two work requests
submitted at almost the same time, one that needs quite
a bit of input and one that does not need any input, it is
likely that the work request with no input will execute first
regardless of the actual submission order.

3.3 Notification of Work Request Completion



The PPE code is notified using one of two schemes as cho-
sen by the user. The first is by callback. When the Offload
API is initialized, a callback function can be specified. This
callback function will be called each time a work request has
completed. If no callback function is specified at initializa-
tion, then the user’s PPE code must explicitly check if a
work request has finished (the second scheme). Each time
a work request is made, a work request handle is returned.
The user’s PPE code may poll the Offload API to check
if the work request associated with that handle has com-
pleted. Alternatively, the user’s code can also block until a
work request associated with the handle has finished.

Once a work request has been completed the PPE is notified
by the SPE. This does require the PPE to do some work as
it must check for notifications from the SPEs. The Offload
API provides a progress call that takes care of this. Period-
ically, the PPE code needs to make progress on the Offload
API to clear finished work requests and possibly send more
work requests to the SPEs (that were not be sent imme-
diately because all SPE work request lists were full at the
time). Additionally, some Offload API function calls also
make progress on the Offload API when they are called.

3.4 Current Status and Availability
As stated, the Offload API has been developed to be used
by the Charm++ runtime system. However, it does not rely
on Charm++ to function and can be used as a standalone
API in C/C++ applications. The Offload API is included
in the Charm++ distribution available for download at the
Charm++ website (http://charm.cs.uiuc.edu). While it is
available for use, it is still under development with new fea-
tures being added.

4. CHARM++
Charm++ is an asynchronous message passing paradigm.
The program is broken up into objects called chares. Each
chare, individually, does a portion of the overall computa-
tion. They pass messages between one another to coordinate
and perform the entire computation. Each chare has one or
more entry methods. Basically, entry methods are member
functions that act as receiving points for messages. When
one chare sends a message to another chare, it specifies both
the message and the entry method that will receive the mes-
sage (as if it were just doing a normal member function call
on the receiving chare object). The chares themselves are
spread out over all of the processors during the execution
of a Charm++ program. Typically, there are many chares
per processor. Each processor has a Charm++ runtime sys-
tem that controls the execution, load-balancing, sending and
receiving messages, etc. for all the chares located on that
processor.

We believe that there are several aspects of the Charm++
paradigm that could be useful for Cell. These are covered in
the subsections below. Additionally, Charm++ can provide
portability to Cell-based platforms. The overall Charm++
applications can remain the same. When the program is
compiled, our interpreter will automatically generate the
code needed by the Offload API for those entry methods that
are deemed safe to execute on the SPE. Here, safe would
be defined as self-contained (as discussed above) and only
requiring features of the Charm++ runtime that are sup-

ported by the SPE Runtime. This will provide portability
as the application code will not need modification to move
between Cell-based and non-Cell-based platforms, only re-
compilation.

4.1 Message Queuing, Encapsulation, and
Virtualization

While the local stores are small and contain the only mem-
ory that the SPEs can directly access, they do provide two
advantages. First, they are completely under the control of
the programmer. Second, they provide a constant latency
during load and store operations. The second advantage al-
lows for better scheduling of instructions during code com-
pilation. However, for the programmer to see these benefits,
the programmer must be able to preemptively DMA the
data into the local store before it is needed. This presents
two challenges. The programmer must be able to predict
what data will be needed before it is needed with enough
time for a DMA transaction to complete (provided by the
Charm++ model). Also, the programmer must explicitly
manage the local store (the SPE Runtime handles this for
the programmer).

The Charm++ model can assist with both of these chal-
lenges. First, remember that the overall computation per-
formed by the program is broken up into chunks. These
smaller chunks of computation are encapsulated within the
chares. For the most part, the computation within a sin-
gle chare only accesses the data contained in the message
that was just received and the data contained within the
chare itself. Because of this, the common case is that the
data, and more importantly the location of the data, that
will be used is known prior to its actual use. Each message
has a known entry method that will receive it. This means
that the code to be execute is also known prior to its exe-
cution. As the Charm++ runtime system receives messages
for the chares, it queues the messages. The runtime system
can peek ahead in the message queue and preemptively start
DMAing the required data and code needed by an entry
method before the entry method is executed. By the time
the message reaches the head of the queue, that is, by the
time the chare needs to do computation in reaction to re-
ceiving the message, the required data and code has already
been moved into the SPE’s local store. This is similar to
our Out-of-Core work that has already been done in [4].

This process will clearly add some overhead. To help hide
this overhead, Charm++ relies on virtualization. In this
context, virtualization refers to each processor having mul-
tiple chares (sometimes referred to as virtual processes).
While, one chare’s entry method is being executed, the run-
time system can be DMAing data for other chares into/out-
of the SPE’s local store. This effectively creates a double
buffering effect (but typically with more than two buffers)
at the granularity of entry methods. Concurrently, data
buffers for pending entry methods are being DMAed into
the local store, the SPE is executing another entry method,
and results for previously executed entry methods are being
DMAed back to main memory. This overlap of data move-
ment with entry method execution will effectively hide the
overhead needed to move data around within the Cell pro-
cessor without requiring the programmer to explicitly write
Cell specific code to handle DMAs, double buffering, etc.



However, it is important to make sure the PPE is provid-
ing enough work requests to the SPE’s to make sure they
continuously have work to do.

4.2 Load-Balancing
The Charm++ runtime system already has various load-
balancers and also allows users to create their own load-
balancers. The load-balancers can take several metrics into
consideration including processor load, communication la-
tencies, network topology, etc. In terms of the Cell, we plan
to develop a load-balancer that takes the multilevel nature
of the overall system into account. This is useful for multi-
core platforms in general, not just Cell-based platforms. In
the case of Cell, the interconnect between processors is one
level and the EIBs on each Cell processor are another level.
The communications costs of sending the same amount of
data over each of these interconnects differs greatly. The
load-balancing framework in the Charm++ runtime system
can dynamically measure these effects and present a load-
balancer with this information.

The load-balancing framework within Charm++ is modular
and flexible. This will allow the same application to use a
platform specific load-balancing technique geared towards
the platform it is currently running on without modification
to the application code. This allows portability between
platforms without having to include platform specific code
in the application or sacrificing performance.

4.3 Charm++ and the Offload API
The adaption of the Charm++ runtime system to use the
Offload API has been broken down into three phases. The
first phase is to simply get the already existing Charm++
runtime executing on the PPE. The second phase is to cre-
ate the Offload API and provide a mechanism in Charm++
that will allow the user’s code to utilize the Offload API. The
third phase is to modify the Charm++ interpreter (char-
mxi) to automatically generate the code needed by the Of-
fload API. The overall goal of the third phase is to allow
Charm++ code to be able to execute on any processor, in-
cluding the Cell, with no modification. Charm++ code can
already be execute efficiently on a wide variety of platforms
and interconnects with no modification to the user’s code.
The third phase will add Cell-based platforms to this list.

The first phase has been completed. Currently, the second
phase is well underway and has already produced usable
results. Example Charm++ programs using the Offload API
already exist and are publicly available with the Charm++
distribution (http://charm.cs.uiuc.edu). We are continuing
to add features to the Offload API. We plan to start work
on the third phase in the near future.

4.4 NAMD on Cell
Work has already begun on modifying NAMD [3] to use the
Offload API. NAMD is a popular molecular dynamics code
written using Charm++. It is written and maintained by
both the Theoretical and Computational Biophysics Group
at UIUC’s Beckman Institute and the Parallel Program-
ming Lab. It is used by biophysicists throughout the world
with over an estimated 10,000 unique downloads. It runs on
many platforms ranging from small clusters using commod-
ity hardware to larger systems including BlueGene, XT3,

Altix, etc. Currently, using the Offload API along with
the initial Charm++ adaptions, portions of the non-bonded
electrostatic computations are already being computed by
the SPEs. For each non-bonded electrostatic computation
sent to an SPE as a work request, there are two lists of
atoms as input. The basic idea is that each atom in the
first list interacts with every atom in the second list (i.e.
- if one list has N atoms and the other list has M atoms,
there are N ∗M total interactions). The SPE calculates the
resulting forces and passes an array of force vectors back
to the PPE. In the future, we plan to move more work to
the SPEs (bonded force calculations, etc). For more in-
formation regarding NAMD, please visit it’s homepage at
http://www.ks.uiuc.edu/Research/namd.

5. CONCLUSION
The Offload API is a useful tool for helping programmers
to easily utilize the SPEs on a Cell processor. Additionally,
current modifications along with our planned modifications
will allow Charm++ applications to easily take advantage
of the SPEs on a Cell platform while maintaining portabil-
ity to other non-Cell-based platforms. We have shown how
the Charm++ paradigm fits well with the Cell processor.
Example Charm++ programs already exist and are freely
available. We are currently porting NAMD to the Cell us-
ing the Offload API.

All development to date has been done using the Cell sim-
ulator provided by IBM. We hope to have actual perfor-
mance measurements in the near future of the Offload API,
Charm++, and NAMD to present once we gain access to
Cell hardware. One possible drawback of this approach is
that the PPE may become a bottleneck as it must feed work
requests to all of the SPEs. If the grainularity of the work
requests being executed on the SPEs is small, the SPEs may
finish the work requests that has been passed to them faster
than the PPE can issue the work requests. While the sim-
ulator models the SPEs in great detail, the performance of
our approach will rely on the performance of the PPE, sys-
tem memory, and the EIB. Because of this, we are waiting
for access to actual Cell hardware before presenting any per-
formance results.

6. FUTURE WORK
6.1 Offload API
Due to the limited size of the local store when compared to
the possible amount of data, we would like to migrate both
the code and data associated with a work request instead
of just the data. Currently, the code executed by a work
request is statically linked with the SPE Runtime. We plan
to allow the code to move to the SPE along with the work
request needing it. This will allow for more SPE code in an
application than is possible with just static linking.

We would also like to allow affinity to be specified for both
code and data. By this we mean, if a particular data buffer
or section of code is needed by multiple work requests both
of those work requests should be passed to the same SPE.
This will help reduce pressure on the EIB by transferring the
data/code less often. Additionally, if multiple work requests
will be accessing and/or modifying the same data buffers,
the Offload API will need a mechanism that will allow the



calling code to identify data dependencies between work re-
quests. For example, consider the case where a work request,
A, produces data to a buffer and then another work request,
B, consumes that data. B must wait for A to complete be-
fore it can be executed, however, both A and B should be
executed on the same SPE. The calling code should be able
to clearly and easily indicate this (same SPE, execution or-
der) to the Offload API.

6.2 Charm++
While using the Offload API is not difficult, at the moment,
it still requires users to modify their Charm++ applications
to use it. This hinders the portability benefits possible with
the Charm++ model. With this in mind, we will be modify-
ing the Charm++ interpreter to automatically generate the
code needed by the Offload API while the Charm++ pro-
gram is being compiled. This will allow Charm++ applica-
tions to be portable between Cell-based and non-Cell-based
platforms with little to no modification.

7. REFERENCES
[1] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,

T. R. Maeurer, and D. Shippy. Introduction to the cell
processor. IBM Journal of Research and Development:
POWER5 and Packaging, 49(4/5):589, 2005.

[2] L. V. Kale and S. Krishnan. Charm++: Parallel
Programming with Message-Driven Objects. In G. V.
Wilson and P. Lu, editors, Parallel Programming using
C++, pages 175–213. MIT Press, 1996.

[3] J. C. Phillips, R. Braun, W. Wang, J. Gumbart,
E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel,
L. Kalé, and K. Schulten. Scalable molecular dynamics
with NAMD. Journal of Computational Chemistry,
26(16):1781–1802, 2005.

[4] M. Potnuru. Automatic out-of-core exceution support
for charm++. Master’s thesis, University of Illinois at
Urbana-Champaign, 2003.

8. OFFLOAD API CODE EXAMPLE
///// hello_shared.h (PPE + SPE) /////////////////

#ifndef __HELLO_SHARED_H__

#define __HELLO_SHARED_H__

#define FUNC_SAYHI 1

#endif //__HELLO_SHARED_H__

///// hello.cpp (PPE Only) ///////////////////////

#include <stdio.h>

#include <string.h>

#include <spert_ppu.h> // Offload API Header

#include "hello_shared.h"

#define NUM_WORK_REQUESTS 10

int main(int argc, char* argv[]) {

WRHandle wrHandle[NUM_WORK_REQUESTS];

char msg[] __attribute__((aligned(128)))

= { "Hello" };

int msgLen = ROUNDUP_16(strlen(msg));

InitOffloadAPI();

// Send some work requests

for (int i = 0; i < NUM_WORK_REQUESTS; i++)

wrHandle[i] = sendWorkRequest(FUNC_SAYHI,

NULL, 0,

msg, msgLen,

NULL, 0

);

// Wait for the work requets to finish

for (int i = 0; i < NUM_WORK_REQUESTS; i++)

waitForWRHandle(wrHandle[i]);

CloseOffloadAPI();

return EXIT_SUCCESS;

}

///// hello_spe.cpp (SPE Only) ///////////////////

#include <stdio.h>

#include "spert.h" // SPE Runtime Header

#include "hello_shared.h"

inline void sayHi(char* msg) {

printf("\"%s\" from SPE %d...\n",

msg, (int)getSPEID());

}

#ifdef __cplusplus

extern "C"

#endif

void funcLookup(int funcIndex,

void* readWritePtr, int readWriteLen,

void* readOnlyPtr, int readOnlyLen,

void* writeOnlyPtr, int writeOnlyLen,

DMAListEntry* dmaList) {

switch (funcIndex) {

case SPE_FUNC_INDEX_INIT: break;

case SPE_FUNC_INDEX_CLOSE: break;

case FUNC_SAYHI:

sayHi((char*)readOnlyPtr);

break;

default:

printf("ERROR :: Invalid funcIndex (%d)\n",

funcIndex);

break;

}

}

///// Output /////////////////////////////////////

"Hello" from SPE 0...

"Hello" from SPE 7...

"Hello" from SPE 4...

"Hello" from SPE 5...

"Hello" from SPE 6...

"Hello" from SPE 2...

"Hello" from SPE 3...

"Hello" from SPE 0...

"Hello" from SPE 1...

"Hello" from SPE 1...


