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Abstract— Ordinary floating point operations are slow
when subnormal(also called denormalized or unnormal-
ized) floating point values are used or produced. This
paper describes how to quantify the extent of the slowdown
caused by subnormal values by providing a simple micro-
benchmark. Previous work has shown that the slowdown
caused by subnormals is significant for some real world
applications and that the occurrence of subnormals should
not just be treated as an exceptional case[1]. This paper
both proposes a micro-benchmark and then analyzes
the results for running the proposed micro-benchmark
in both C and Java on a variety of modern micro-
architectures. The results presented show that all common
modern micro-architectures are susceptible to this type of
undesirable slowdown.

I. I NTRODUCTION

Operating system interference causes serious problems
for application developers and system designers. Some
seemingly innocuous minor problems can become ampli-
fied to overwhelming proportions on parallel machines.
Dismal application performance is often the inciting
force which leads to the discovery of new types of
interference. Various groups have discovered a number
of factors which limit the performance of large-scale
parallel applications. These problems are significant be-
cause they affect some or all jobs run on large expensive
high-performance computer systems. The problems so
far discovered include OS threads waking randomly[2],
[3], [4], improperly scheduling tasks on processors[5],
[6], [7], [8], variance in system clocks[9], ignoring
the potentially variable and non-deterministic cost of
communication in SMPs or clusters[10], and the large
time required for OS traps[11].

This paper describes a type of interference or irregular-
ity in computational throughput which is of importance
to both single-processor and multi-processor floating-
point intensive applications. Simple tests which isolate

and quantify the extent of interference-related problems
are useful in predicting the optimal performance of an
algorithm or application. Consequently, applications can
be evaluated with respect to some theoretical model
for performance that incorporates known factors such
as noise and interference. This paper gives a simple
micro-benchmark which can be used to demonstrate and
quantify the impact of subnormal floating point values on
a computation. The focus of this paper is both to provide
a useful micro-benchmark and to evaluate or quantify the
performance hit caused by subnormals on a wide range
of modern processors.

Fig. 1. Range for Subnormalized Values
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Subnormals are a class of floating point values defined
by the IEEE 754 standard[12]. They are the range
of floating point values closest to 0.0 as shown in
Fig. 1. They have the smallest possible exponent, but
the non-zero mantissa has at least one leading 0 bit.
Since the mantissa contains leading zeroes, the value
of a subnormal has fewer significant digits/bits than a
normal, and thus a processor may be required to inform
an application if a loss in accuracy occurs because a
subnormal is produced by a floating point operation.
It is widely believed that subnormals are not common
in real applications and that if processors don’t exhibit
drastic performance differences between subnormals and
normals, then subnormals can be ignored[13]. We agree
with this general belief when considering only sequential
applications where subnormals may occur infrequently
but not for parallel applications where the slowdown can
be amplified by a factor ofp as shown in [1]. The belief



that subnormals are not important is a guiding principle
for processor designers who want their commodity chips
to perform well for the common cases. Subnormals
can cause serious performance issues for real world
applications[1], and thus it is a worthwhile endeavor to
quantify the extent of the performance impact caused by
subnormals.

II. SUBNORMAL SLOWDOWN M ICRO-BENCHMARK

In order to quantify the comparitive effects of sub-
normals on a variety of processors, a simple freely-
available portable micro-benchmark should be used. We
wrote a simple micro-benchmark in C that quantifies
the slowdown that occurs naturally through a gradual
underflow to the subnormal range when averaging a
series of 0’s and 1’s populated in an array. This section
briefly describes the micro-benchmark, provides the code
for the micro-benchmark, and describes in detail how
the micro-benchmark works. Section III will give the
results produced by the micro-benchmark on many types
of processors. First we provide an algorithm for the
micro-benchmark calledSubnormal Slowdown Micro-
Benchmark.
Algorithm Subnormal Slowdown Micro-Benchmark
1. ITER← 1000
2. SIZE ← 100000
3. tiny ← a small positive normalized value
4. a← {1.0, 0.0, 0.0, . . .}
5. for i← 1 to ITER
6. for n← 3 to SIZE
7. a[n]← a[n]+a[n−1]+a[n−2]

3
8. a← {1.0, tiny, tiny, . . .}
9. for i← 1 to ITER
10. for n← 3 to SIZE
11. a[n]← a[n]+a[n−1]+a[n−2]

3
12. timeslow ← time for step5
13. timefast ← time for step9
14. slowdown← timeslow

timefast

15. print slowdown

The micro-benchmark we created simply creates an
array of double precision values, initially setting all
entries to0.0 except for the first entry which is set to1.0.
Then a loop is repeated a fixed number of times. Each
loop iteration scans through the array entries from the
second0.0 to the end, replacing each array element with
the average of its current value and the the previous two
array entries. The two previous array entries were just
computed in the same loop iteration. The same process
is then repeated with the array values initially being set
to 1.0E-50 instead of 0.0. This causes all values in the

array to stay inside the normalized range. The two sets
of iterations are timed and a slowdown compares the
runtime of the former to the later. The former will cause
a large number of subnormal values to populate much
of the array, while the latter contains only normalized
values. A noticable difference in time does occur on all
modern platforms that we tested.

The computed final value of the micro-benchmark
is the ratio of the time taken for the loop with no
subnormals in it to the time taken for the version of
the loop with initial conditions fora that will cause
subnormals to quickly fill most of the array. This ratio
allows us to compare various platforms which have
differing processor speeds, pipelining strategies, and
mechanisms for handling subnorms. The slowdown ratio
does not provide any hint to the absolute speeds of
processors when they run the micro-benchmark, and such
an analysis is beyond the intent and scope of this paper.
We do provide the micro-benchmark code to satisfy the
curiosity of the reader who can replicate any specific
interesting results.

Both a C and Java version of the micro-bechmark are
provided in the Appendix.

Now we describe the actual implementations of the
benchmark and how they work on modern processors.
The micro-benchmark creates an array nameda. It
applies an in-place Gauss-Seidel style averaging method
which replaces each value with an average of three
already computed values. When we run the micro-
benchmark and print out the values ina that are pro-
duced, we see that the values in the array are con-
verging to 1

3 , which is a steady-state value since1
3 =(

1
3 + 1

3 + 1
3

) (
1
3

)
. Fig. 2 displays the values in the first

portion of the arraya after exactly 1000 and 2000 itera-
tions. After iterationn, approximately the first3n values
in the arraya are equal to13 . Of more importance for this
paper, however, is the occurrence of subnormal values.
When examining the numerical values in the array past
the first3n entries, we find an exponential dropoff which
can easily be seen in Fig. 3. After some index all array
entries become4.94 ·10−321 which is a subnormal value.
Table I lists numerical values for a sample of points
in the array after exactly 1000 iterations. After 1000
iterations with an array size of 100000, we see that
91% of the values in the array have underflowed into
the subnormal range. After only one iteration, 97% of
the entries in the array are already subnormals. Thus on
average about 94% of the array values are subnormal
during the first 1000 iterations. Although most of the



values are subnormals, the micro-benchmark does not
show the absolute worst case slowdowns which could
be caused when all array entries are subnormals, but the
micro-benchmark is simple and it comes close to the
worst case scenario.

Fig. 2. Array values produced by the Subnormal Slowdown
Micro-Benchmark. Shows convergence to1

3
as number of iterations

increases from 1000 to 2000
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Fig. 3. Array values produced by the Subnormal Slowdown Micro-
Benchmark. Close-up view of curve after 1000 iterations
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Modern processors do not handle subnormals quickly
due to design considerations which optimize the common
paths but sacrifice the speed of what are considered
exceptional cases by their designers. In the worst case
the processors traps to the operating system kernel to
handle a floating point operation in software, possibly
via a user library which catches a SIGFPE exception. In
the best case, an extra cycle may be required to process
a subnormal value. The exact methods for handling the
subnormals in the processor or in traps to the operating
system is not important to an application developer.
What is important to an application developer is the cost

TABLE I

ARRAY VALUES PRODUCED BY THESUBNORMAL SLOWDOWN

M ICRO-BENCHMARK AFTER 1000 ITERATIONS. SUBNORMALS IN

BOLD

Array Index Slow Version Fast Version
[0] 1 1

[500] 0.3333333333333 0.3333333333333
[1000] 0.3333333333333 0.3333333333333
[1500] 0.3333333333332 0.3333333333332
[2000] 0.3333333333332 0.3333333333332
[2500] 0.3333318162687 0.3333318162687
[3000] 0.1665328859509 0.1665328859509
[3500] 8.61E-06 8.61E-06
[4000] 1.17E-15 1.17E-15
[4500] 3.17E-30 3.17E-30
[5000] 1.16E-48 1.17E-48
[5500] 2.45E-70 1.00E-50
[6000] 9.52E-95 1.00E-50
[6500] 1.66E-121 1.00E-50
[7000] 2.66E-150 1.00E-50
[7500] 7.09E-181 1.00E-50
[8000] 5.05E-213 1.00E-50
[8500] 1.44E-246 1.00E-50
[9000] 2.31E-281 1.00E-50
[9500] 2.77E-317 1.00E-50
[10000] 4.94E-321 1.00E-50
[10500] 4.94E-321 1.00E-50
[11000] 4.94E-321 1.00E-50
[11500] 4.94E-321 1.00E-50

[...] ... ...
[99999] 4.94E-321 1.00E-50

of handling the subnormals. The micro-benchmark we
propose provides a good way for a programmer to de-
termine the cost of performing floating point operations
on subnormals in any available computer system.

III. PERFORMANCE OFMODERN ARCHITECTURES

It is critical for application programmers and de-
velopers of numerical methods to know how modern
computer platforms respond when subnormal values
arise. This section provides a comparative survey of
most modern micro-processor families. We include re-
sults from our micro-benchmark described in detail
in section II when run on Intel, AMD, Alpha, and
Power based systems. For the sake of completeness we
ran the micro-benchmark compiled with each available
compiler(including icc,xlc,gcc) on each platform with
each of the following flags where available: -O, -O2,
-O3, -ffast-math, -mieee, -mieee-with-inexact, -mfp-trap-
mode=u, -mieee-conformant. We then provide the worst
case slowdown for each platform. We did not consider all
processor models even within a family because we have
not had access to all possible types of machines. Table II



lists in sorted order the results of the micro-benchmark
on various systems.

TABLE II

WORST CASE SLOWDOWNS ON OURSUBNORMAL SLOWDOWN

M ICRO-BENCHMARK ON COMMON MICRO-ARCHITECTURES

Designer Processor Slowdown
AMD K6 1.4
IBM PowerPC G4 1.4
IBM PowerPC G4 1.6
IBM BlueGene/L 1.9
IBM Power4 2.1
IBM PowerPC 970 2.4
AMD AthlonXP 5.5
AMD Athlon 6.0
AMD AthlonXP 7.1
Intel Pentium 3 Xeon 14.5
Intel Pentium 3 15.8

Alpha EV67 20.5
AMD Athlon 64 21.4
AMD Athlon 64 X2 23.3
AMD Opteron64 23.8
Alpha PCA56 31.9
Intel Core Duo 44.2
Intel Pentium 4 92.2

Alpha EV6.8 95.1
Intel P4 Xeon 97.9
Intel Pentium 4 131.0
Intel Itanium 2 183.2
Sun UltraSPARC IV 520.0

Although we just listed in Table II the worst-case
slowdowns over all compilers and compiler flags, our
findings contradict the hypothesis that a particularly bad
compiler is to blame for any slowdowns. Table III shows
the full results for an Intel Xeon 3.2Ghz processor
when using both gcc Intel’s own icc and icpc. We see
small but insignificant variations in the slowdowns, but
all are between 82.2 and 97.9. On some platforms, if
subnormals are disabled, i.e. flushed to zero(FTZ) by the
processor, then the slowdowns can be greatly reduced,
since subnormals never occur in the micro-benchmark.
However, there are problems with flushing subnormals to
zero: some processors do not support FTZ, FTZ will have
its own performance cost, and numerical simulations
may lose accuracy because a smaller range of floating
point values can be represented exactly when FTZ is
enabled[14].

The results show that in general, up until recently, the
x86 processors by Intel and AMD had been progressively
getting worse and worse. The Power family of processors
all performed very well, and the modern Sun Ultra-
SPARC IV platform performs poorly. The Sun machine
does trap to the operating system upon every instruction

TABLE III

SUBNORMAL SLOWDOWN M ICRO-BENCHMARK RESULTS FOR A

3.2GHZ INTEL XEON USING BOTH GCC AND ICC

Compiler Flags icc icpc gcc
none 92.2 91.3 82.2
-O 89.0 97.9 90.0
-O2 91.9 91.1 90.9
-O3 86.6 87.3 89.0

-ffast-math n/a n/a 84.0

that produces a subnormal. Thus the slowdown of 520
seems reasonable for modern architectures since a kernel
trap will likely take a few hundred cycles, while a
pipelined floating point operation on normalized values
can take essentially a single cycle.

The good news, for programmers who require the ac-
curacy provided by preserving subnormal values in their
numerical methods, is that the trend for the past decade
may be reversing. Modern Intel Core processors are
significantly better than their older Pentium counterparts.
The Core processors have significantly shorter pipelines
than the Pentiums, and thus we suspect the generation
of subnormals affect fewer in-flight instructions, which
gives better performance. Unfortunately, subnormals are
still 55 times slower than normals even on a recent Core
Duo processor.

IV. SUBNORMALS IN JAVA V IRTUAL MACHINES

An increasing number of numerical codes are being
developed in Java. It has been argued that Java can be
a reasonable language for numerical computing if a few
major performance bottlenecks are addressed[15]. Be-
cause people are using Java for numerical applications,
we also quantify how Java programs are affected by
subnormal values. Java runs all programs in a virtual
machine, and it provides a strict standard for floating
point arithmetic. A Java program executing similar in-
structions to a comparable C program could potentially
take a performance hit due to the additional imposed
restrictions of the Java floating point model. In order
to quantify this impact in performance, we created a
Java version of the same micro-benchmark described in
section II.

The Java micro-benchmark code is almost unchanged
from the C version. The timing routines and code struc-
ture obviously must be changed to fit the Java language,
but the same algorithm and parameters are used. The
micro-bechmark written in Java is provided in its entirety
in the Appendix.



This Java micro-benchmark was run on some common
platforms with the commonly available java compilers
and virtual machines. The code was compiled withjavac
without any command line arguments. It was then run
with the available commandjava. Our initial results
show that the Java Virtual machine yields performance
for the micro-benchmark which is similar to the worst
case slowdown for the processor. An Intel Core Duo
processor showed less than 1% difference between the
slowdown exhibited in the Java and C versions of the
micro-benchmark. The PowerPC processor yielded a
slowdown 12% better under Java than the worst case
for the C version. The Athlon 64 X2 processor yielded
a slowdown 22% worse under Java than the worst case
for the C version. Similarly with Java the Pentium 4
processor yielded a slowdown that was 21% better than
the worst case C version. These results are shown in
Table IV. So far it seems that Java’s strict floating point
requirements do not significantly affect the degree to
which operations on subnormals are slower. Although
the slowdown factors are similar between the Java and
C versions of the micro-benchmark, the absolute times
taken for the Java versions were all longer for both the
slow and fast portions(timeslow and timefast) of the
micro-benchmark.

TABLE IV

WORST CASE SLOWDOWNS ON OURJAVA VERSION OF THE

SUBNORMAL SLOWDOWN M ICRO-BENCHMARK

Processor Worst-Case Slowdown C Slowdown Java
PowerPC 970 2.4 2.1

Athlon XP 5.5 8.1
Athlon 64 X2 23.3 28.5

Core Duo 45.1 45.2
Pentium 4 131.0 103.5

In summary, the common Java compilers and virtual
machines we used exhibited approximately the same
behavior as the C version in regards to the slowdown
caused by subnormal values.

V. FUTURE WORK

We do not yet know the extent of the slowdowns
caused by subnormals in all application domains. Our
previous paper showed the effects of subnormals on a
parallel simulation of a 1D wave propagating through a
finite 3D bar discretized as an unstructured tetrahedral
mesh[1]. The wave propagating through the bar should
ideally be a step function, but the chosen discretization
cannot perfectly represent the wave. The wave therefore

has similar characteristics to the micro-benchmark pro-
vided in this paper in that it has a region of subnormal
values along the wavefront. This one application led the
authors of [1] to discover that subnormals can seriously
degrade the performance of a parallel program. We sus-
pect this phenomenon occurs silently in a wide range of
diverse applications from all types of domains including
Computational Science and Artificial Intelligence. We
have been seen the occurrence of subnormals in one
machine learning algorithm, but have not rigorously
examined this case. Additionally we expect some numer-
ical relaxation techniques to produce many subnormals.
As future work we hope to perform a wide survey of
applications to determine the true real-world-extent of
the performance issues quantified in this paper.

VI. SUMMARY

This paper describes a micro-benchmark that can
demonstrate and quantify the performance impact caused
by subnormal values in floating point computations. This
paper provides code for the micro-benchmark in C and
Java, and analyzes the performance of both versions on
a wide range of computer systems. It was shown that
subnormals significantly degrade performance when they
occur frequently on any modern micro-architectures.
Quantifying intereference causing problems is critical
for predicting performance and achieving optimal per-
formance of high performance applications on modern
high performance systems.

APPENDIX

We provide both a C and Java version of the micro-
benchmark proposed in this paper. First is the C version
for the Micro-Benchmark:

/*
File: subnormal-slowdown-bench.c
Author: Isaac Dooley

A program to test how subnormal or
denormalized floating point values
affect performance. Test your compiler
and options with this program.

This program will print the time of the
"slower" version, namely the one which
should contain denormalized values.
It will also print the time taken by
the "fast" version, which should
contain no denormalized values.
The slowdown is calculated as the



ratio of these values.

http://charm.cs.uiuc.edu/subnormal/
*/

#include <sys/time.h>
#include <stdio.h>
#include <stdlib.h>

#define SIZE 100000 /* array size */
#define ITER 1000 /* iterations */

/* Return the time in seconds */
double myTimer() {

struct timeval tv;
gettimeofday(&tv, 0);
return (tv.tv_sec * 1.0) +

(tv.tv_usec*0.000001);
}

int main(void)
{

int i, j;
double tstart, tslow, tfast;
double *a=(double*)malloc(

sizeof(double) * SIZE);

/* Initialize with 0’s */
for (i = 1; i<SIZE; i++) a[i] = 0.0;
a[0] = 1.0;
tstart = myTimer();
for (j=0; j<ITER; j++)

for (i = 2; i<SIZE; i++)
a[i] = (a[i] + a[i-1] + a[i-2])*

(1.0/3.0);
tslow = myTimer()-tstart;

/* Initialize with small */
/* normalized values */
for (i = 1; i<SIZE; i++) a[i] = 1e-50;
a[0] = 1.0;
tstart = myTimer();
for (j=0; j<ITER; j++)

for (i = 2; i<SIZE; i++)
a[i] = (a[i] + a[i-1] + a[i-2])*

(1.0/3.0);
tfast = myTimer()-tstart;

printf("time slow: %15.12f fast: "
"%15.12f\n",

tslow, tfast);
printf("slowdown=%f\n",tslow/tfast );
return 0;

}

The following is the Java code for the Micro-
Benchmark, provided in its entirety.

/** Gause-Seidel Subnormal
* Microbenchmark
* Java Version
*/

class bench {
public static void main(String[] args) {

System.out.println(
"Running Gauss-Seidel Micro-bench");

int SIZE = 100000;
int ITER = 1000;
int i, j;
double tstart, tslow, tfast;
double []a= new double[SIZE];

/* Initialize with 0’s */
for (i = 1; i<SIZE; i++)

{ a[i] = 0.0; }
a[0] = 1.0;
tstart = myTimer();
for (j=0; j<ITER; j++){
for (i = 2; i<SIZE; i++){

a[i] = (a[i] + a[i-1] + a[i-2])*
(1.0/3.0); } }

tslow = myTimer()-tstart;

/* Initialize with normals */
for (i = 1; i<SIZE; i++)

{ a[i] = 1.0E-50; }
a[0] = 1.0;
tstart = myTimer();
for (j=0; j<ITER; j++){
for (i = 2; i<SIZE; i++){

a[i] = (a[i] + a[i-1] + a[i-2])*
(1.0/3.0); } }

tfast = myTimer()-tstart;

System.out.printf(
"time slow: %15.12f ", tslow);

System.out.printf(
"fast: %15.12f\n", tfast);

System.out.printf(



"slowdown=%f\n",tslow/tfast);
}

static double myTimer(){
return System.currentTimeMillis()

/ 1000.0;
}
}
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