
A Fault Tolerance Protocol with Fast Fault Recovery

Sayantan Chakravorty Laxmikant V. Kalé
Department of Computer Science, University of Illinois at Urbana-Champaign

{schkrvrt,kale}@uiuc.edu

Abstract

Large machines with tens or even hundreds of thousands
of processors are currently in use. Fault tolerance is an im-
portant issue for these and the even larger machines of the
future. Checkpoint based methods, currently used on most
machines, rollback all processors to previous checkpoints
after a crash. This wastes a significant amount of compu-
tation as all processors have to redo all the computation
from that checkpoint onwards. In addition, recovery-time in
checkpoint based fault tolerance protocols is bound by the
time between the last checkpoint and the crash. Protocols
based on message logging avoid the problem of rolling back
all processors to their earlier state. However, the recov-
ery time of existing message logging protocols is no smaller
than the time between the last checkpoint and crash. We
present a fault tolerance protocol, in this paper, that pro-
vides fast restarts by using the ideas of message logging
and processor virtualization. We evaluate our implementa-
tion of the protocol in the Charm++/Adaptive MPI runtime
system. We show that our protocol not only provides fast
restarts but also has low fault-free overhead for many ap-
plications.

1 Introduction
Massively parallel systems with tens of thousands and

even hundreds of thousands of processors, such as ASCI-
Purple, Red Storm and Bluegene/L, are being used for sci-
entific computation. More powerful machines with more
processors are being planned and designed. Machines with
large numbers of components are likely to suffer from par-
tial failures frequently. ASCI-Q is reported to suffer a fail-
ure every few hours [1]. Therefore any application running
on machines with thousands of processors for an apprecia-
ble length of time will have to be able to tolerate faults.
Traditional checkpoint and restart systems roll back all pro-
cessors in an application, when a single processor crashes.
This not only wastes computing time but also slows down
the progress of the application in the presence of frequent
faults. Even current fault tolerant protocols that do not roll
back all processors ([1, 2]) redo all the computation of the

crashed processor on a single processor. As a result the re-
covery time of all protocols are bound by the time interval
between the crash and the previous checkpoint.

We present the design and implementation of a protocol
for fault tolerant computation in this paper. We combine
sender side message logging and object based virtualiza-
tion to build a system that has low overhead during normal
execution and allows fast restarts when recovering from a
crash. We do not assume the existence of any “fully reliable
or stable” component that never fails (assumed by other re-
searchers), since we think that it is difficult to realize such
an assumption in real life. Our scheme has many advantages
compared with the traditional checkpoint/restart scheme.
First, only the work of the failed processor is re-executed.
Second, object based virtualization [3] allows us to dis-
tribute the work of this failed processor among the other
processors (especially those that are waiting for data from
the failed processor). This speeds up the restart procedure,
making the recovery time considerably lower than the time
interval between the last checkpoint and the crash. This
would not have been possible if all processors had rolled
back to their previous checkpoint as in traditional check-
pointing based protocols. With our scheme, an application
can (potentially) make progress even when the mean time
between failure (MTBF) is lower than the checkpoint pe-
riod. On a large machine, processors that are not dependent
on data from the failed processor can continue to execute
further during crash recovery. Processors that are dependent
but do not receive messages from the failed processor can be
idle during recovery (thus reducing power consumption and
network contention). In principle, the system can also use
these processors to execute low-priority background jobs.
Compared with other sender-side-message-logging proto-
cols, our scheme distinguishes itself by its ability to speedup
recovery by parallelizing it using object-based virtualiza-
tion.

Our scheme has been implemented for a version of MPI,
called Adaptive MPI[4], and so can be used by all MPI pro-
grams. Applications written in Charm++[5], which is the
underlying layer of Adaptive MPI, can use our scheme as
well. In this paper we describe the scheme, and demon-

1

strate its performance on several benchmarks. The over-
heads are analyzed and shown to be reasonable for many
realistic applications. Clearly, the advantage of our scheme
over regular checkpointing is strongest in a large-system
regime where faults are more frequent than today. How-
ever, a solution to this problem is both an interesting and
challenging academic research issue in its own right as well
as a practically essential strategy, if the predictions about
future system sizes and reliabilities are realized.

2 Related Work

The solution space for fault tolerance protocols can be
divided into two main categories: checkpoint based and log
based recovery protocols as described in [6]. Checkpoint
based protocols periodically save the state of a computa-
tion to stable storage. After a crash, the computation is
restarted from a previously saved state. Checkpoint based
protocols can be divided into three types: uncoordinated,
coordinated and communication induced. Uncoordinated
checkpointing methods, which allow each processor to take
its checkpoint independent of the other processors, are fast
and memory efficient[7]. However, they suffer from the fa-
tal flaw of cascading rollbacks. In coordinated checkpoint-
ing schemes, all the processors in a computation coordinate
to save a globally consistent state. Such schemes are used
by CoCheck [8], Starfish [9], Clip [10] and AMPI [11, 12]
to provide fault tolerant versions of MPI. A non-blocking
coordinated checkpointing algorithm that uses application
level checkpointing is presented in [13]. Communication
induced checkpoint protocols try to combine the advantages
of coordinated and uncoordinated by allowing processors to
take a mix of independent and coordinated checkpoints[14].
However it was found that communication induced check-
point methods did not scale well to large number of proces-
sors [15].

The second category of fault tolerance protocols depend
on stored message logs for recovery. After a processor
crashes, all the messages are resent to the crashed proces-
sor and reprocessed in the same order as before the crash.
This brings the restarted processor to its exact state before
the crash, according to the piecewise deterministic (PWD)
assumption [16]. Message logging can be divided into three
classes based on the frequency with which the message log
is saved to stable storage: pessimistic, optimistic and causal.
Pessimistic log based protocols save each message to stable
storage before processing it. Restart and garbage collection
of old logs are very simple. On the other hand they increase
the message latency by saving each message to stable stor-
age before processing it. The overhead can be reduced by
using specialized hardware [17] or by storing the message
log in the sender’s memory [18]. MPICH-V1 and V2 [1, 2]
are systems that provide fault tolerant versions of MPI by
using pessimistic log based methods. Optimistic protocols

save the message logs temporarily in volatile storage before
sending them all to stable storage [16]. Though optimistic
schemes have a lower message latency overhead than pes-
simistic ones, they are susceptible to cascading rollbacks.
Moreover, garbage collection and recovery are more com-
plicated. Causal logging stores message logs temporarily in
volatile storage but prevents cascading rollbacks by tracking
the causality relationships between messages [19]. Track-
ing causality and recovering from faults are complicated op-
erations in causal message logging protocols. Manetho[19],
MPICH-Vcausal [20] and the protocol in [21] are examples
of causal logging systems. A discussion about MPI and its
relation to fault tolerance can be found in [22].

Object based virtualization[3], used in Charm++ [5] and
Adaptive-MPI(AMPI)[4], encourages the user to view his
computation as a large number of interacting objects. These
objects are also referred to as virtual processors. The user
decomposes his computation into virtual processors with-
out caring about the number of physical processors avail-
able. The Charm++ runtime system is responsible for map-
ping the virtual processors to physical processors, and can
change this mapping during the execution of a program.
Virtual processors interact with each other by sending mes-
sages that are delivered by the runtime system without the
user needing to know about the receiver’s physical location
[23]. The Charm++ runtime system can perform measure-
ment based dynamic load balancing and communication op-
timizations. The Charm++ runtime system supports multi-
ple checkpoint based fault tolerance protocols[12, 11] and a
basic message logging based protocol [24].

3 Protocols

Our fault tolerance protocol is entirely software based
and doesn’t depend on any specialized hardware. It however
makes the following assumptions about the hardware. i)
The processors in the system are fail-stop [25]. This means
that when a processor crashes it remains halted and other
processors may detect its crash. ii) All communication be-
tween processes is through messages over the network. iii)
The PWD assumption should hold. It is assumed that the
only non-deterministic events affecting a processor are mes-
sage receives.

We bring together the ideas of sender side message log-
ging and object based virtualization to develop a fault toler-
ance protocol that provides fast recovery from faults. Vir-
tualization affords us a number of potential benefits with
respect to our message logging protocol. First, it makes
applications more latency tolerant. This helps us hide the
increased latency due to the sender side message logging
protocol. It is also the primary idea behind faster restarts
since it allows us to spread the work of the restarting pro-
cessor among other processors. We treat the virtual proces-
sors, and not the physical processors, as the communicating

2

entities that send and receive messages. Since an object’s
state is modified only by the messages it receives, we can
apply the PWD assumption to virtual processors instead of
physical processors. After a crash, if a virtual processor re-
executes messages in the same sequence as before, it can
recover its exact pre-crash state.

Our protocol has three major components: message log-
ging, checkpointing, and restart. Although all three compo-
nents are very closely related, we describe them as separate
protocols for the sake of clarity. As we shall see, processor
virtualization has a significant impact on all components.
We discuss the protocol for single faults in the first three
subsections. Next, we extend the protocol to deal with mul-
tiple faults. Finally, we describe the fast restart protocol in
the last subsection.

3.1 Message Logging Protocol
We design the message logging protocol such that, after

a crash, a Charm++ object processes the same messages in
the same order as before the crash. We also make sure that
a Charm++ object does not reprocess a message that it has
already processed. As described below, we achieve this by
associating a sequence number and a ticket number with
each message. Each Charm++ object is given a uniqueid.
Every object maintains a table called theSNTablethat keeps
track of the number of messages sent to different objects.
The SNTable is used to assignsequence numbers(SN) to
messages. Each message sent by an object is stored in the
object’smessage log. The receiver of a message assigns it
a ticket number(TN) and processes messages in increasing
order of TNs. An object stores the highest TN processed by
it asTNProcessed. An object stores the highest TN assigned
by it asTNCount. An object stores the sender’s id, SN and
TN for each message received since the last checkpoint in a
table called theTNTable.

Figure 1. Messages in the remote mode of the
message logging protocol

When the sender(P) and receiver(Q) objects are on dif-
ferent processors, the message logging protocol is said to
operate in theremotemode. As seen in Figure 1, the sender
P sends a request for a ticket, consisting of P’s id and the
message’s SN, to Q. On receiving the request, Q looks up
the sender id and the SN in the TNTable. If Q finds that it
has already assigned a TN to this SN from P, it replies with
that TN. If the TN has already been processed by Q, the

returned TN is marked as old. (Both of these may happen
after a restart.) If there is no matching entry in the TNTable,
the receiver increments TNCount and returns this value as
the TN. It also adds an entry for the tuple P, SN and TN to
the TNTable. When P receives a TN in reply, it assigns the
TN to the message stored in its log. If the received TN is not
marked as old it sends the message containing the TN to Q.
The time between the sender starting to send a message and
the receiver sending a message of its own as a result of pro-
cessing the sender’s message is increased by the the round
trip time of a short message. This overhead is the same as
in the sender side message logging protocols of [18, 2].

If we were to use the above protocol for messages be-
tween two objects on the same processor, the log of a mes-
sage and its receiver would exist on the same processor.
If this processor crashes, it will become impossible to re-
execute the messages in the correct sequence. Therefore,
we define alocal mode of the message logging protocol
to deal with this case. This mode logs the sender id, re-
ceiver id, SN and TN for a message between objects on the
same processor in theremote message logmaintained on
thebuddyprocessor. The sender fetches the TN from the re-
ceiver through a method invocation and then sends the log
to the buddy processor. The sender sends the message to
the receiver only after receiving an acknowledgment from
the buddy that it has logged the message in the remote mes-
sage log. As a result, the latency for a message to a local
object becomes the same as that of a message to a remote
object.

3.2 Checkpoint Protocol
The checkpoint of a processor can be stored on the global

file system, in the memory, or on local disk of a remote pro-
cessor. The storage location does not really affect the rest
of the protocol. In this paper, we chose to implement an
in-memory checkpoint. Storing a checkpoint in the mem-
ory of a remote processor is much faster than storing it in a
remote storage server [12], as long as adequate memory is
available. As the message logging protocol already requires
that each processor have a buddy, storing the checkpoint on
this same processor simplified the implementation.

The state of a Charm++ object consists of user data, a
small amount of runtime system data, as well as TNCount,
TNProcessed, SNTable and the messages in the message
log that were sent to objects on the same processor (the rea-
son for this is explained in Section 3.3). In our design it is
possible for objects on a processor to take their checkpoints
independent of each other. However, by checkpointing all
the objects on a processor at the same time, we can aggre-
gate checkpoint data to reduce overhead. The checkpoint
protocol also provides a mechanism to perform garbage col-
lection on the message logs.

A processor, say A, packs up the state of all the objects
on it and sends it to its buddy processor, say B. Each object

3

on A also stores its TNProcessed at the time of checkpoint
asTNCheckpointed. B stores the new copy of A’s check-
point, deletes the old copy and sends an acknowledgment
to A. On receiving the acknowledgment, the TNTable of
each object on A can garbage collect entries with TN less
than TNCheckpointed. Each object on A sends out garbage
collection messages containing TNCheckpointed to all ob-
jects that had sent it messages since its previous checkpoint.
When an object Y receives a garbage collection message
from object X on processor A, it removes all messages to X
in its message log that have a TN lower than the TNCheck-
pointed. A similar garbage collection message is sent to
processor B, so B can remove old entries from the remote
message log. Garbage collection is done lazily so that it
interferes as little as possible with the application.

We have to deal with an interesting trade-off between
memory and speed while deciding when to checkpoint.
If the checkpoint period is too low, the message logs on
senders are garbage collected frequently. This saves mem-
ory but increases the time cost because of frequent check-
points. If the period is too high, the message logs on senders
become large though the checkpointing cost is lower. The
rate of expected failure is also an important factor in de-
ciding the checkpoint period. Checkpoints might also be
performed when the message logs become larger than a par-
ticular size.

Storing the checkpoint in memory is not a problem for
applications with a small checkpoint state such as molec-
ular dynamics. However, if the application is memory in-
tensive the checkpoint can be stored in the local disk of the
buddy processor. If there are no local disks in the system,
the checkpoint can be stored on the cluster’s file system.
Even message logs can be lazily moved to local disk or the
file system to keep the memory overhead low. Of course,
moving checkpoints and message logs to disks from mem-
ory will slow down restart.

3.3 Restart Protocol
We assume that a pool of spare processors is available

to the parallel job. When the crash detector finds out that a
processor, say C, has crashed, it restarts a Charm++ process
on a spare processor. Then the new Charm++ process cor-
responding to C requests its buddy processor D for its pre-
vious checkpoint and the remote message log. C recreates
all the objects that used to exist on it from the checkpoint
data. C then broadcasts to all processors, including itself, a
request to resend the necessary logged messages.

When a processor receives a request to resend logged
messages, each object resident on it looks in its message
log for messages sent to the objects recreated on C. If such a
message has a TN it is resent; otherwise a new ticket request
is issued for that message. It is important that each restarted
object on C also resend the messages in its message log that
were sent to other objects on C. This is necessary to ensure

correctness in the case when an object U on C sends a mes-
sage to another object V on C, such that the message is sent
before C checkpoints but is processed by V after the check-
point. We can correctly restart V’s execution after the crash
only if U resends the message after restart. When assign-
ing TNs during restart, both the TNTable and the remote
message log obtained from processor D are checked for a
message with the same sender id, receiver id and SN. This
makes sure that a restarted object processes all messages in
the same sequence as earlier.

When an object W restarts on processor C it collects a
list of the TNs of all the messages resent to it. W then adds
to this list the TNs of messages in the remote message log
obtained from C’s buddy D. After sorting this list it might
find that some TNs in the middle are missing. These miss-
ing TNs correspond to TNs that were handed out by W be-
fore processor C crashed, but they failed to reach the pro-
cessors of the requesting objects. Some TNs handed out
to later requests, however, got to their destinations before
C crashed. Though this might seem like a rare condition,
it occurs frequently in applications with large numbers of
messages. When W has to hand out new TNs it hands out
these missing TNs first before continuing with TNs higher
than TNCount. W should not skip handing out any TN since
W would not able to process any message with a TN higher
than the skipped one.

3.4 Multiple Simultaneous Failures
The protocol discussed in the previous subsections

works for consecutive crashes only if a second processor
crashes after the system has recovered from the previous
crash. We now extend the protocol to allow it to deal with
most multiple failures. Let us say, a processor H crashes and
starts recovering. Now, another processor, say I, crashes and
rolls back to a state such that, it needs messages from ob-
jects on H that were sent before H’s last checkpoint. Rolling
H back further than I in order to recover I’s state is out of
the question because, we want to avoid cascading rollbacks
of any sort. Therefore, we need the logs of messages that
were sent by objects on H to objects on processor I. How-
ever, these logs are not available as the logs of messages
sent to objects on other processors are not part of an ob-
ject’s checkpoint. This problem can be solved by making
the logs of messages to objects on other processors and the
TNTable part of the checkpoint state of Charm++ objects.

Another problem is that there might be messages, from
objects on H, that objects on I had processed before I’s
crash, but their logs were lost when H crashed and rolled
back to its previous checkpoint. We modify the remote
mode such that, instead of sending a ticket request to the
receiver, the sender sends the message itself with sender id
and SN attached. The receiver assigns the message a TN
and sends the sender id, receiver id, SN and TN tuple to its
buddy processor to be logged in the remote message log.

4

After the buddy acknowledges the receipt of the data, the
message is processed in increasing order of TN at the re-
ceiver. During restart this logged data about all messages
since the last checkpoint is brought back from the buddy
and resent messages are assigned TNs by looking up their
sender, received ids and SNs in this log. We implement this
improvement, but let the users turn it off to avoid the over-
head of checkpointing message logs, if they think that the
chances of simultaneous failures are low.

The only case in which our solution might fail occurs
when processor G crashes just after its buddy processor F
has crashed and restarted. As F no longer has G’s check-
point, G cannot restart. The probability of such a pair of
crashes happening can be reduced by having G checkpoint
as soon as F restarts. This shortens the length of the time
window during which a crash might cause an irrecoverable
error. This situation arises because unlike [1, 2] we do not
use an idealized stable storage. It can be proven that despite
this, the protocol reduces the probability of unrecoverable
error by several orders of magnitude [24].

3.5 Fast Restart

Figure 2. Messaging when processor C sends
object W to restart on processor E

After processor C crashes and is restored from its check-
point, we can redistribute the objects on it among other pro-
cessors to speed up recovery. We designed a fast restart
protocol that would make sure that if there were crashes
while distributing objects among other processors, all mi-
grating objects would get recreated and there would be only
one copy of each. Let processor C decide to send object W
to processor E for restarting. Processor D is the buddy of
processor C while processor F is the buddy of processor E.
Figure 2 shows the messages exchanged by different pro-
cessors and the actions taken on receiving those messages.
Processor C informs its buddy D of the decision. Processor
D marks W as potentially migrated. After processor D has
acknowledged the receipt of this short message, processor
C sends a copy of W’s checkpoint to both processors E and
F. After receiving the object W, processor F stores it in the
checkpoint of E and sends acknowledgments to C, D and E.
Processor E stores the checkpoint and sends acknowledg-
ments to C and D. Processor E starts re-executing messages
for W only after it has received the acknowledgment from

F. C deletes its copy of W after hearing from both E and F.
D also marks W as migrated after it has heard from E and F.
At this point W has migrated from processor C to E and if
E crashes it will be recreated on E from its checkpoint on F.

During a fast restart if C crashes again before D has re-
ceived the acknowledgments from E and F, D asks if W and
its checkpoint exist on E and F respectively. E stops pro-
cessing messages for W after being asked this question. If
both answer in the positive, D does not recreate W on C and
asks E to continue with the execution of messages for W. If
not, it recreates W on C and asks E and F to throw away W
and its checkpoint. The case in which E but not F has re-
ceived W and E crashes can be resolved by continuing with
W’s execution on C after confirming that F does not indeed
have W’s checkpoint.

Though the fast restart protocol is more complicated than
the basic one, the speed up in recovery gained by dividing
the work among multiple processors more than makes up
for the additional overhead. So, fast restart can significantly
shorten the recovery time for an application.

We do a rough analysis of our fast restart protocol. We
compare the completion time of an application running the
fast restart protocol with the same application running a tra-
ditional checkpoint/restart protocol. Let the mean time be-
tween failure for the system bem time units. Let the sys-
tem checkpoint everyc time units (not including the check-
point duration itself). Let duration of a checkpoint bed.
Let the runtime of the application without any fault toler-
ance support bet0. So time to complete the application
with checkpointstc = t0 + t0

c d. If there aren faults,
the worst case runtime under the checkpoint scheme will be
t′c = tc + n(c + kc) wherekc is the constant overhead
for restarting in the checkpoint scheme. On an average, we

expectn = t′c
m faults during a run, sot′c = t0(1+

d
c)

1− c+kc
m

.

t′c goes rapidly to infinity asm approachesc + kc. For
the message logging protocol, runtime without faults is
tml = α(t0 + t0

c d) whereα is the ratio of increase in run-
time due to the message logging protocol. If the number
of objects per processor isv andkml the overhead of fast
restart, then the runtime with faults can be calculated to be

t′ml = αt0(1+
d
c)

1−
c
v

+kml
m

. The runtime for the message logging

protocol goes to infinity rapidly asm approachescv + kml.
As long askml is not much larger thankc, this is smaller
thanc + kc This shows that our fast recovery protocol can
deal with higher rates of failure than the checkpointing pro-
tocol. Moreover the performance of the fast protocol is bet-
ter than the checkpoint protocol as long asα <

m−(c
v +kml)

m−(c+kc)

4 Experiments
We evaluate the performance of the basic and fast recov-

ery protocols and characterize the applications most suit-
able to our scheme. We test our protocol on a cluster of 16

5

Virtual processors Basic Fast
per processor Restart Time(s) Restart Time(s)

2 28.45 18.31
4 28.21 13.45
8 28.17 9.57
16 29.37 7.58

Table 1. Restart performances on 16 proces-
sors

Figure 3. Different phases of the Basic and
Fast restart protocols

dual Opteron (Processor 244) machines with 1 GB of mem-
ory and 1 GB of swap, connected by Gigabit switched eth-
ernet. We use gcc 4.0.1 and gfortran as the C++ and Fortran
compilers respectively.

4.1 Restart Performance

We use a 7-point stencil with 3D domain decomposition
written in MPI to evaluate the performance of the restart
protocols. In each iteration a Charm++ object gets data
from its neighbors on all 6 sides and performs some compu-
tation. We ran the stencil code with two versions of AMPI,
one with the fault tolerance protocol (AMPI-FT) and the
other without (AMPI). In the case of AMPI-FT we check-
pointed every 30 seconds. We simulate a fault on a proces-
sor by sending SIGKILL to a process running on it. Af-
ter a processor crashes, the iteration time for objects on the
surviving processors increases as those objects wait for the
objects on the restarted processor to catch up. We use the
maximum increase in iteration runtime over all the surviv-
ing objects as a measure of the restart time for both the ba-
sic and fast restart protocols. Table 1 shows the time taken
for basic and fast restart for different numbers of virtual
processors per processor. We ran the stencil code on 16
processors and triggered a fault 27 seconds after a check-

point. We checkpointed every 30 seconds. Higher num-
bers of objects per processor allowed the fast restart to dis-
tribute work among more processors and led to significantly
shorter restart times. Table 1 demonstrates that even having
just two objects per processor reduces the restart time sig-
nificantly. Thus, the recovery time for fast restart is much
lower than the time between the crash and the previous
checkpoint.

Figure 3 can be used to understand the factors limiting
the performance of our restart protocol. Figure 3 compares
the time spent in different phases of the basic and fast restart
protocols. The basic restart case was run with 16 objects
on 16 processors and the fast restart protocol was run with
numbers of objects per processor varying from 2 to 16. The
time to launch a new process is constant across the different
runs. The overhead for retrieving the checkpoint increases
with increasing number of objects, because retrieving the
checkpoint also includes retrieving the remote message log
from the buddy, and as the number of objects per proces-
sor increases, the number of entries in the remote message
log also increases. The cost of recreating the objects is low
and more or less constant across the different runs. The
overhead of redistributing the objects across different pro-
cessors increases slowly with the number of objects per pro-
cessor. Larger numbers of objects per processor means that
objects are distributed among more processors and the fast
restart protocol sends out more messages. However, the re-
execution time decreases sharply with increasing number
of objects per processor as the work of the restarted pro-
cessor gets distributed among more processors. This de-
crease is far more than the rise in restart overheads due to
higher numbers of objects. As a result, with larger num-
bers of objects per processor the fast restart protocol can
recover much faster than the basic restart. We also found
that the forward path overhead for the stencil application
was around 10% for the 16 processor run (a more detailed
analysis of the forward path cost is presented in Section
4.2). Thus, our protocol provides the stencil application
with fast recovery without imposing an unacceptably high
performance cost.

4.2 Application studies
We want to characterize the applications that are most

suitable to our message logging protocol. We use the NAS
parallel benchmarks to identify the types of applications
that would suffer the least performance penalty in the face
of this increased message latency. We run NPB3.1 with ver-
sions of AMPI with and without the fault tolerance proto-
col. We show data for only four benchmarks due to lack
of space: CG, MG, SP and LU. We run each benchmark
with varying numbers of virtual processors and report the
best performance for a particular number of physical pro-
cessors. We do this for both the AMPI and AMPI-FT cases.
As we are trying to measure the overhead of the message

6

(a) MG class B (b) SP class B

(c) CG class B (d) LU class B

Figure 4. Performance of the MG, SP, CG and LU class B benchmarks

MG with AMPI MG with AMPI-FT LU with AMPI LU with AMPI-FT
Computation Time 68.18 % 68.29 % 86.56 % 87.81%
Idle Time 25.56 % 22.75 % 12.41 % 48.28%
Message Send 4.34 % 5.01 % 0.62 % 2.30 %
Ticket Request Send 4.54 % 0.63%
Ticket Send 1.37 % 1.01%
Local Message Protocol 2.10 % 0.00%

Table 2. Overhead of the protocol expressed as a percentage of the runtime of AMPI for MG and CG
on 8 processors

logging protocol, we do not take any checkpoints during
the execution of the benchmarks.

Figures 4(a) and 4(b) show that the performance penalty
is low for the MG and SP benchmarks respectively. The
performance penalty for CG in Figure 4(c) is moderate,
whereas that for LU in Figure 4(d) is significant. The dif-
ferent performance penalties imposed by AMPI-FT on each
benchmark can be explained if we consider the number

of instructions executed per send by each benchmark. As
shown in [26] both LU and CG have low instructions per
send whereas MG and SP have much higher instructions
per send. This means that the increase in message latency
forms a smaller fraction of the computation time per mes-
sage for MG and SP than for LU and CG. So the overall per-
formance penalty is lower for MG and SP. SP has a higher
performance penalty compared to MG since SP sends more

7

and larger messages than MG [26].
In Table 2 we look at the cpu overheads associated with

different parts of the message logging protocol. For the high
granularity benchmark MG, the cpu overhead of the mes-
sage logging protocol is the primary source of increased
execution time. However, in case of the low granularity
benchmark LU, a sharp increase in idle time is responsible
for increasing the overall execution time (idle time is the
time spent waiting for messages). The increased message
latency due to message logging means that objects have to
wait longer for messages. MG manages to overlap compu-
tation with the wait for messages by using multiple virtual
processors per processor. LU fails to do so since it has too
little computation per message.

5 Conclusions and Future Work

We presented a protocol for fault tolerant computation
that combines sender side message logging with virtual-
ization to provide fast restarts. We evaluated it and found
that the fast restarts took much less time than the time in-
terval between the crash and the previous checkpoint. We
think that this is a very important feature for large systems
that may suffer from frequent partial failures. This allows
an application to make much faster progress in the face of
failures than traditional fault tolerance protocols. We be-
lieve we can speed up the fast restart even more by hav-
ing the buddy of a restarting processor distribute the objects
among different processors rather than shipping the check-
points to the restarting processor and then distributing them.
We would also like to study different strategies for distribut-
ing the objects among the remaining processors to get the
fastest possible restart. The NAS benchmarks did not have
to undergo any modification to use our fault tolerance pro-
tocol. We also found that our protocol is very well suited to
applications with large computational granularity per mes-
sage. The latency tolerance provided by virtualization lets
us scale in cases where other pessimistic message logging
protocols have difficulty doing so. We also found that the
cpu overhead of the protocol imposes a performance penalty
in high granularity applications, whereas the increased mes-
sage latency causes performance degradation in low granu-
larity applications.

In the future, we want to analyze the performance of
low granularity applications. We believe that reducing the
number of protocol messages might help the performance
of such applications. In the future, we intend to evaluate
the performance penalty of our protocol for real applica-
tions. We expect that many large real applications will have
a lower penalty than the small NAS benchmarks. We also
plan to extend our protocol so that it can deal with the mi-
gration of virtual processors in the middle of a computation
for load balancing. We expect to be able to borrow ideas
from the fast restart protocol to come up with a scheme that

would survive crashes in the middle of a migration. It will
have to be robust so that it always creates exactly one copy
of every object after a crash. This will allow us to fully
leverage all benefits of virtualization such as dynamic mea-
surement based load balancing.

References

[1] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak,
C. Germain, T. Herault, P. Lemarinier, O. Lodygensky,
F. Magniette, V. Neri, and A. Selikhov, “Toward a scalable
fault tolerant mpi for volatile nodes,” inProceedings of SC
2002, IEEE, 2002.

[2] A. Bouteiller, F. Cappello, T. H́erault, G. Krawezik,
P. Lemarinier, and F. Magniette, “MPICH-V2: A fault tol-
erant MPI for volatile nodes based on the pessimistic sender
based message logging programming via processor virtual-
ization,” in Proceedings of SC’03, November 2003.

[3] L. V. Kal é, “Performance and productivity in parallel pro-
gramming via processor virtualization,” inFirst Intl. Work-
shop on Productivity and Performance in High-End Comput-
ing (HPCA 10), (Madrid, Spain), February 2004.

[4] C. Huang, O. Lawlor, and L. V. Kalé, “Adaptive MPI,” in
Proceedings of LCPC 03, (College Station, TX), October
2003.

[5] L. V. Kal é and S. Krishnan, “Charm++: Parallel program-
ming with message-driven objects,” inParallel Program-
ming using C++(G. V. Wilson and P. Lu, eds.), pp. 175–213,
MIT Press, 1996.

[6] M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson,
“A survey of rollback-recovery protocols in message passing
systems,” Tech. Rep. CMU-CS-96-181, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, USA,
Oct. 1996.

[7] Y. M. Wang, Space reclamation for uncordinated check-
pointing in message-passing systems. PhD thesis, University
of Illinois U-C, Aug 1993.

[8] G. Stellner, “CoCheck: Checkpointing and process migra-
tion for MPI,” in Proceedings of the 10th International Par-
allel Processing Symposium, pp. 526–531, 1996.

[9] A. Agbaria and R. Friedman, “Starfish: Fault-tolerant dy-
namic MPI programs on clusters of workstations,”Cluster
Computing, vol. 6, pp. 227–236, July 2003.

[10] Y. Chen, J. S. Plank, and K. Li, “Clip: A checkpointing tool
for message-passing parallel programs,” inProc. of the 1997
ACM/IEEE conference on Supercomputing, pp. 1–11, 1997.

[11] C. Huang, “System support for checkpoint and restart of
Charm++ and AMPI applications,” Master’s thesis, Dep. of
Computer Science, University of Illinois, Urbana, IL, 2004.

[12] G. Zheng, L. Shi, and L. V. Kalé, “FTC-Charm++:
An in-memory checkpoint-based fault tolerant runtime for
Charm++ and MPI,” inIEEE International Conference on
Cluster Computing, September 2004.

8

[13] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill,
“Automated application-level checkpointing of mpi pro-
grams,” inPrinciples and Practice of Parallel Programming,
June 2003.

[14] D. Briatico, A. Ciuffoletti, and L. Simoncini, “A distributed
domino-effect free recovery algorithm,” inIEEE Interna-
tional Symposium on Reliability, Distributed Software, and
Databases, pp. 207–215, December 1984.

[15] L. Alvisi, E. N. Elnozahy, S. Rao, S. A. Husain, and A. D.
Mel, “An analysis of communication induced checkpoint-
ing,” in Symposium on Fault-Tolerant Computing, pp. 242–
249, 1999.

[16] R. Strom and S. Yemini, “Optimistic recovery in distributed
systems,”ACM Transactions on Computer Systems, vol. 3,
no. 3, pp. 204–226, 1985.

[17] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle,
“Fault tolerance under unix,” inACM Transactions on Com-
puter Systems, pp. 1–24, February 1989.

[18] D. B. Johnson and W. Zwaenepoel, “Sender-based message
logging,” in The 7th annual international symposium on
fault-tolerant computing, IEEE Computer Society, 1987.

[19] E. N. Elnozahy and W. Zwaenepoel, “Manetho: Transpar-
ent rollback-recovery with low overhead, limited rollback,
and fast output commit,”IEEE Transactions on Computers,
vol. 41, no. 5, pp. 526–531, 1992.

[20] A. Bouteiller, B. Collin, T. Herault, P. Lemarinier, and
F. Cappello, “Impact of event logger on causal message log-
ging protocols for fault tolerant mpi,” inIPDPS’05, p. 97,
2005.

[21] I. Lee, H. Y. Yeom, T. Park, and H.-W. Park, “A lightweight
message logging scheme for fault tolerant mpi.,” inPPAM,
pp. 397–404, 2003.

[22] W. Gropp and E. Lusk, “Fault tolerance in message passing
interface programs,”International Journal of High Perfor-
mance Computing Applications, vol. 18, no. 3, pp. 363–372,
2004.

[23] O. S. Lawlor and L. V. Kaĺe, “Supporting dynamic parallel
object arrays,”Concurrency and Computation: Practice and
Experience, vol. 15, pp. 371–393, 2003.

[24] S. Chakravorty and L. V. Kalé, “A fault tolerant protocol
for massively parallel machines,” inFTPDS Workshop at
IPDPS’2004, (Santa Fe, NM), IEEE Press, April 2004.

[25] R. D. Schlichting and F. B. Schneider, “Fail-stop proces-
sors: An approach to designing fault-tolerant computing
systems,”ACM Transactions on Computer Systems, vol. 1,
no. 3, pp. 222–238, 1983.

[26] W. E. Cohen, R. K. Gaede, and W. D. Garrett, “Intercon-
nection network independent characterization of communi-
cation traffic in the nas benchmarks via processor perfor-
mance monitoring hardware.”

9

