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Abstract

Modern parallel cosmological simulators are an important component in the study of the
formation of galaxies and planetary systems. However, existing simulators do not scale ef-
fectively on more recent machines containing hundreds and thousands of processors. The
parallel programming lab at University of Illinois, in collaboration with the Department
of Astronomy at University of Washington, has developed a new parallel simulator called
ParallelGravity which is based on the Charm++ infrastructure. The work on the simulator
has been supported by the National Science Foundation. This simulator provides a powerful
runtime system that automatically maps computation to physical processors. The simula-
tor scales to a large number of processors with astronomical datasets containing millions of
particles using Charm++ features, in particular its measurement-based load balancers. In
this thesis, we describe some optimization techniques that have been implemented as part
of the simulator. We implement a new scheme for organizing force computation and new
techniques for particle space decomposition. The new force computation scheme uses the
idea of an interaction list introduced in [12]. The performance comparison of particle decom-
position techniques is done and the effect of Charm++ features like run-time load balancing
is investigated on different types of particle decompositions. By the addition of features like
the ones presented in this thesis, we aim to complete a production version of the code and

make ParallelGravity a powerful resource for the astronomy community.
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Chapter 1

Introduction

In the past, the N-body problem in astrophysics dealt with the evolution of the Solar System.
Over the last few decades most of the attention and computing resources in astrophysics has
been focused on cosmological N-body simulations with huge number of particles for studying

the formation and evolution of large scale structure in the universe.

1.1 Motivation

Galaxies are the most distinctive objects in the universe, containing almost all the lumi-
nous material. They are remarkable dynamical systems, formed by non-linear collapse and
a drawn-out series of mergers and encounters. Since the formation is a highly non-linear
process, it is, in general, not analytically tractable. Therefore, the only way to compare
the consequences of a theory with the observed distribution of galaxies is via a numerical
simulation of structure formation. The widely accepted theory of the formation of structure
is the gravitational collapse of initially small fluctuations in the mass density. N-body simu-
lations are commonly used to follow the dynamics of this collapse. These require significant
computing resources both in terms of floating-point operations and memory capacity. This
motivates the development of improved numerical algorithms as well as the use of parallel
computing for performing such simulations.

Thus, parallel cosmological simulators are an important component in the study of the



formation of galaxies and planetary systems. Galaxy formation is indeed a challenging
computational problem, requiring high resolutions and dynamic timescales. For example,
to form a stable Milky Way-like galaxy, tens of millions of resolution elements must be
simulated to the current epoch. Locally adaptive timesteps may reduce the CPU work by
orders of magnitude, but not evenly throughout the computational volume, thus posing a
considerable challenge for parallel load balancing. No existing N-body/Hydro solver can
handle this regime efficiently.

The study of planet formation requires modeling the pairwise accretion of smaller bodies
into proto-planets. In order to follow this process, it is necessary to predict collisions (and
near misses), and resolve the consequences of such collisions, whether they be mergers,
fragmentations, or something in between. The computational challenge is to find an adaptive
timestep scheme that is stable over millions of dynamical times yet that can handle close
encounters accurately and is suitable for simulations involving millions of planetesimals.
There are algorithms that are present to solve this problem, but implementing them on
existing systems has always been a hard problem.

The scientific payback from such studies can be enormous. There are a number of out-
standing fundamental questions about the origins of planetary systems which these simula-
tions would be able to answer. What is the relationship between hot Jupiters and terrestrial-
like planets? Do asteroid belts form around other stars (if so, this could be trouble for the
Terrestrial Planet Finder, as dust may overwhelm the planet’s signal)? How common are
other small body reservoirs such as Kuiper Belts and Oort clouds? How effective are plane-
tary systems at cleansing small bodies and thus mitigating sterilizing impacts on any terres-
trial planets? What is the origin of the spin of the terrestrial planets? Answering questions

like these will open the way to a whole new world of knowledge about the universe.



1.2 Overview

To evolve a self gravitating system realized as a large number of particles, we must determine
the gravitational acceleration on a given particle due to the mass of all other particles.
The simple approach of calculating all pairwise interactions between the particles scales as
O(N?), as N is increased. There have been two basic approaches to reduce this scaling,
enabling large scale simulations to take place. One of the approaches rely on the speed of
FFT algorithms and include the particle-mesh kind of methods. The second approach uses
multipole expansions to approximate the gravitational effect of distant mass.

One of the most widely used methods in the second approach (described above) was
proposed by Barnes and Hut [2]. Their scheme uses a hierarchical representation of the mass
implemented as some form of tree structure. This tree is traversed and the forces between
particles are computed exactly or by approximations, depending on the distance between
the given particles. This approach achieves reduction in the complexity of the problem from
the original O(N?) to O(Nlog N), where N is the number of particles.

Based on Barnes and Hut method, various cosmological simulators have been created re-
cently. PKDGRAV [4], developed at the University of Washington, can be considered among
the state-of-the-art in that area. However, PKDGRAV does not scale efficiently on newer
machines with thousands of processors. In this work, we talk about a new N-body cosmo-
logical simulator that utilizes the Barnes-Hut tree topology to compute gravitational forces.
Our new simulator, named ParallelGravity, is based on the Charm-++ runtime system [5].
We leverage the object based virtualization [6] inherent in the Charm+-+ runtime system to
obtain automatic overlapping of communication and computation time, as well as to per-
form automatic runtime measurement-based load balancing. ParallelGravity advances the
state-of-the-art in N-Body simulations by allowing the programmer to achieve higher levels
of resource utilization with moderate programming effort. In addition, the use of Charm—++

has enabled ParallelGravity to efficiently scale on large machine configurations.



1.3 Related Work

There have been numerous studies on the N-Body problem, which involves the evolution of
interacting particles that are under the effects of Newtonian gravitational forces. Given the
power of hierarchical methods for N-Body simulations, such methods have been adopted for
quite some time by the astronomy community [7].

One of the most popular codes currently in the astronomy area is PKDGRAV [4]. PKD-
GRAV is a parallel hierarchical tree-structured code used to conduct cosmological simulations
on shared-memory and distributed-memory systems. It is portable across different commu-
nication substrates (e.g. MPI, PVM, etc.), and contains support for adaptive decomposition
of work among the processors. In its current production version, PKDGRAV has been used
in simulations of systems with millions of particles, and has been shown to scale well on
up to hundreds of processors. One restriction in PKDGRAV’s current version, however,
arises from its limited load-balancing capability. This effectively prevents scaling the code
efficiently on newer machines with thousands of processors.

Other cosmological simulators have been in use as well. Among these, two of the major
codes are GADGET [10], developed in Germany, and falcON [3], developed at the University
of Maryland. However, despite claiming a good scalability with the number of particles, fal-
cON is a serial simulator. Meanwhile, GADGET originally had some of the same limitations
of PKDGRAYV when scaling to a large number of processors. This has been addressed in a
more recent version of their code (GADGET-2), but there are not yet results reported with

more than around one hundred processors [11].

1.4 Thesis Contribution and Organization

The main contributions of this thesis are:



e New Scheme for computing forces We describe a new scheme for computing gravita-

tional forces utilizing the Barnes-Hut tree topology.

e Space Decomposition Methods Different schemes for decomposition of the particle space
leading to construction of different types of Barnes-Hut tree have been implemented

and analyzed.

Chapter 2 talks about the major features of ParallelGravity. It also describes all the
optimizations that we have applied to our simulator. Chapter 3 describes the new scheme
for computing forces followed by the performance results. Chapter 4 gives a description of
the three space decomposition techniques. Performance comparison results have also been

presented. Chapter 5 outlines the conclusions and future directions of work.



Chapter 2

ParallelGravity

In this chapter, we describe the N-body cosmological simulator called ParallelGravity that
we have developed to leverage the features of the Charm++ runtime system. Our goal in
developing this new application is to create a full production cosmological simulator that
scales to thousands of processors.

This new simulator is capable of computing gravitational forces generated by the inter-
action of a very large number of particles, integrating those forces over time to calculate the
movement of each particle. Since most of the running time of the application is devoted to
force computation, our focus has been in optimizing this aspect of the code.

Since the gravitation field is a long range force, the total force applied to a given particle
has contributions from all the other particles in the entire space. The algorithm we applied is
based on a Barnes-Hut tree topology [2], which enables achieving an algorithmic performance
of O(NlogN). The tree generated by this algorithm is constructed globally over all the
particles, and distributed across elements that are named TreePieces. This distribution
depends on the type of decomposition of particle space and on the type of tree constructed.
Decomposition of particle space and the types of trees are discussed in detail in chapter 4.

At the leaves of the tree are the particles, which are grouped by spatial proximity into
buckets of a user-defined size. While walking the tree to compute forces, a single walk is
performed for all the particles contained in a given bucket. The new scheme discussed in

chapter 3 is different from the original ParallelGravity code in terms of the way in which



forces are calculated while walking the tree.

In the following section, we start with a general description of Charm+-+ features and
show how these features were applied to the ParallelGravity code. All the major features im-
plemented in ParallelGravity are then described in section 2.2. This is followed by a detailed
description of all the optimizations that have been applied to the original ParallelGravity
code (section 2.3). The performance gains (as against the original ParallelGravity version)

achieved by making use of these optimizations have also been outlined.

2.1 Charm++ and Virtualization

Our new ParallelGravity code is based on the Charm++ [5] infrastructure. Charm++ is a
parallel C++ library that implements the concept of processor virtualization: an application
programmer decomposes his problem into a large number of components, or objects, and the
interactions among those objects. The objects, called chares in Charm++ nomenclature, are
automatically mapped to physical processors by the Charm-++ runtime system. Typically,
the number of chares is much higher than the number of processors. By making the number
of chares independent of the number of existing processors, Charm++ enables execution
of the same code on different machine configurations. This separation between logical and
physical abstractions provides higher programmer productivity, and has allowed the creation
of parallel applications that scale efficiently to thousands of processors, such as the molecular
dynamics NAMD code [8].

The execution model of Charm-++ is message-driven. This means that computations in
Charm++ are triggered based on arrival of associated messages from remote processors. This
message-driven execution turns out to be a very useful mechanism for hiding communica-
tion latency in the system. It allows adaptive overlap of computation and communication
which results in great performance benefits for the parallel applications. Charm-++ provides

system calls to asynchronously create remote chares and to asynchronously invoke functions



on remote chares by sending messages to those chares. Such functions are called entry meth-
ods in Charm++ terminology. This asynchronous message passing is the basic interprocess
communication mechanism in Charm+-+. There is a scheduler for each Charm++ program
which chooses a message from the available pool of messages and executes the computations
associated with that message.

The Charm++ runtime system has the ability to migrate chares across processors during
execution of an application. This migration capability is used by the powerful measurement-
based load-balancing mechanism of Charm++ [13]. The runtime system can measure various
parameters in the chares, such as computational load or communication frequency and vol-
ume. Charm++ provides a family of load balancers, targeting optimization of a variety of
metrics. The user simply needs to select her desired balancers at application launch. The
metrics being optimized can be computation load, communication volume or both. During
execution, the selected balancers will collect the measured chare values for the appropri-
ate metrics, and dynamically remap chares across the available processors in a way that
execution performance is optimized. This dynamic optimization capability is critical for ap-
plications such as particle system simulators, where particles can move in space and cause
overloading on a given processor as the simulation progresses, while other processors become

underutilized.

2.2 Major ParallelGravity Features

One of the early decisions in the design of ParallelGravity was to select where to compute
the forces applied to a bucket of particles. Historically, there has been two main methods for
that: (a) distributing the computation of the forces on that bucket across all processors, with
each processor computing the portion of the forces given by its subtrees, or (b) gathering
at the processor owning that bucket all the data needed to compute the forces on it. We

decided to adopt the second scheme, since the capabilities of Charm++ could be further
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Figure 2.1: Control flow of the execution of an iteration of force calculation

exploited, as explained later in this section.

In our implementation of ParallelGravity, each TreePiece is a Charm++ chare. Thus,
TreePieces are dynamically mapped to physical processors by the Charm++ runtime system.
The overall structure of how the code works is shown in Figure 2.1, and described in the
next paragraphs.

To perform the computation of the forces on its particles, a TreePiece processes its buckets
independently. For each bucket, the TreePiece must walk the overall tree and compute the
forces due to all other particles. During the walk, visited nodes may be local (i.e. owned by
this TreePiece) or non-local. For local nodes, the force computation can proceed immediately.
For non-local nodes, a retrieval must be carried out, to bring the corresponding data into the
TreePiece. A non-local node may reside either at another TreePiece of the same processor,
or at a remote processor. In the first case, we use a direct data transfer between chares. In
the second case, data must be requested to the remote processor. While waiting for remote
data to arrive, the TreePiece can process other buckets.

Instead of repeating fetches of the same remote node for different bucket walks, we can
use the property that buckets close in space will require similar remote portions of data.

Therefore, we can buffer the imported data and have it used by all buckets in the TreePiece



before discarding it. Because in Charm++ we may have more than one chare in a single
processor, we implemented this optimization at the processor level so that remote data is
used by the buckets of all the TreePieces. This has been realized using a Charm+-+ group,
which we call CacheManager.

The purpose of the CacheManager is to serve all requests made by the TreePieces, and
provide a caching mechanism to hide the latency of interprocessor data fetching. The Cache-
Manager implements a random access to the cached data through the use of a hash table.
To reduce the overhead of table lookup, the imported data is reconstructed into a local tree.
Thus, once entering a subtree, TreePieces can iterate over direct pointers, until another cache
miss occurs. Upon detecting a miss, the CacheManager will fetch the remote data and use
callbacks to notify the requesting TreePiece when the data arrives. More advanced features
provided by the CacheManager are presented in the next section.

Because Charm-++ executes chare methods in a non-preemptive fashion, a long sequence
of consecutive tree walks might potentially prevent a processor from serving incoming data
requests from other processors. In order to provide good responsiveness to incoming requests,
we partitioned the processing of tree walks with a fine granularity. The grainsize is a runtime
option, and corresponds to the number of buckets that will walk the tree without interruption.
After that number of walks is performed, the TreePiece will yield the processor, enabling
the handling of existing incoming data requests.

While dividing the computation into fine grains, we also distinguish between local and
global computation. Local computation is defined as the interaction with the particles present
in the same TreePiece. In contrast, global computation is defined as the interaction with the
rest of the tree, i.e. the computation that involves non-local nodes. In particular, because
this global computation is performed on the imported sections of the tree, it is on the more
critical path. To express this different criticality, we utilized the prioritization mechanism
embedded into Charm++4-. This mechanism allows establishing a total order of priority for the

different operations performed by a TreePiece: the highest priority is assigned to accepting

10



requests arriving from other processors, followed by sending replies to such requests, and
finally the two types of computation (local and global), with the local one having the lowest
priority. The Charm++ runtime system will schedule these operations according to such

priorities.

2.3 Optimizations

After having a basic version of ParallelGravity in place, we studied its performance and
added a number of optimizations to the code. Some of these optimizations were designed
to exploit Charm+-+ aspects that enable high performance, whereas others were aimed at
specific characteristics of particle codes. In this section, we describe the various optimiza-
tions that we have added, and present, in each case, the performance improvement that we

obtained by applying such techniques to real cosmological datasets.

2.3.1 Software Cache Mechanism

As mentioned in Section 2.2, the CacheManager not only reduces the number of messages
exchanged to fetch remote data, but also hides the latency of fetching data from other pro-
cessors. We evaluated the effectiveness of the CacheManager on various real datasets running
on varying numbers of processors. Our results show that the CacheManager dramatically
reduces the number of messages exchanged. The performance improvement due to sending
a much lower number of messages, combined with the latency-hiding effects of the Cache-
Manager, produces a sharp reduction in the execution time of ParallelGravity. Thus, the

software cache mechanism is absolutely necessary to obtain good parallel performance.

2.3.2 Data Prefetching

We talk about two kinds of prefetching that we have implemented in ParallelGravity. The

first kind is really not prefetching. It involves fetching something more than what is needed,
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which will most likely be used sometime in the future. We start with the description of the
first kind in the following paragraph.

As in PKDGRAV, we can take the principle of the software cache one step further by
fetching not only the node requested by a TreePiece, but pro-actively also part of the subtree
rooted at that node. The user can specify the cache depth (analogous to the concept of cache
line in hardware) as the number of levels in the tree to recursively prefetch. The rationale
for this is that if a node is visited, most probably its children will be visited as well. This
mechanism of prefetching more data than initially requested helps to reduce the total number
of messages exchanged during the computation. Since every message has both a fixed and a
variable cost, prefetching reduces the total fixed cost of communication. On the other hand,
a cache depth of more than zero might cause some data to be transferred but never used,
thus increasing the variable part of the cost. Our performance results show that there is an
optimal value of cache depth, at which the execution time is minimal. The optimal point is
achieved when the fixed cost and the variable cost of transferring data over the network are
in balance.

If a TreePiece requested data to the CacheManager only when required by the tree-
walk computation, the CacheManager might not have it. This would trigger a fetch of the
data from the remote node, but at the same time it would suspend the computation for
the requesting bucket until the moment of data arrival. Both the interruption of the tree
walk and the notification from the CacheManager incur an overhead. To limit this effect,
we developed a prefetching phase which precedes the real tree-walk computation. During
this phase, we traverse the tree and prefetch all the data that will be later used during the
computation in the regular tree walk. This prefetching phase can work with different cache
depths.

From our experiments, we observed that the prefetching phase improves performance for
all considered values of cache depth. This is due to the increased hit rate of the cache. The

hit rate increases to near 100% with the prefetching phase from about 90% without any

12



prefetching.

We define the relevance as the ratio between the number of nodes fetched and used,
and the total number of nodes fetched. Ratios closer to 1.0 represent a better relevance.
We observe that relevance decreases with increasing cache depth, leading to unnecessarily
higher memory consumption. Nevertheless, this higher memory consumption due to caching
is limited to a fraction of the total memory footprint for moderate values of cache depth. At
a very low value of relevance, the cost of fetching a large amount of extra data is not offset
by the benefit of having the data already present in the software cache when it is requested.
This is why we observed a rise in the execution time for large values of cache depth. The
prefetching phase does not affect the relevance, since it does not change which data items
are transferred. Prefetching simply causes those data transfers to occur earlier.

Thus, we see that using the prefetching phase along with a small but non-zero value of
cache depth improves performance. In the following subsections, we will assume that the

prefetching phase is active, and a reasonable value of cache depth is used.

2.3.3 Remote Chunks

We take the idea of prefetching to a higher level for the purpose of performance improvement.
Instead of having a single prefetching phase, we’ll have multiple prefetching phases.

We divide the remote computation into parts which we call chunks. In each prefetching
phase, we prefetch a single remote chunk. This is followed by the computation of buckets with
that chunk. Prefetching of the next chunk is carried out in parallel with the computation of
previous chunk.

Our results show an improvement with remote chunks, but the full effects on the entire
execution time are more complex and will require more detailed studies to be fully charac-

terized.
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2.3.4 Tree-in-Cache

In Section 2.2 we introduced the concept of local and global computation.We pointed that
the global work is on the critical path, and that the local work can be used to hide the latency
of data transfers. From this, it is clear that we should have as much local work as possible.
One point to notice is that in the Charm++ environment we fragment the particle dataset in
more TreePieces than the number of physical processors available. This over-decomposition
reduces the amount of local work per TreePiece. In some of our experiments, when increasing
the number of processors beyond one hundred, the local work became insufficient to maintain
the processor busy during the entire computation.

By noticing that during the force computation there is no migration of TreePieces, we
can consider collectively all the TreePieces residing on a given processor. We can attribute to
local computation not only the work related to nodes/particles present in the same TreePiece,
but also the work related to particles and nodes present in other TreePieces in the same
processor. This is implemented by having each TreePiece registering to the CacheManager
at the beginning of the computation step. The CacheManager will then create a superset
tree including all the trees belonging to the registered TreePieces. Each TreePiece will now
consider as local work this entire tree. During this operation, only the nodes closest to the
root of the tree will be duplicated. According to our tests with datasets of a few million
particles, less than one hundred nodes were duplicated.

Our experiments show that the percentages of local and global work changed consid-
erably before and after this optimization. In our tests, this new scheme enabled scaling
the computation up to hundreds of processors. However, when reaching the limit of one
thousand processors, even the extra work from co-resident TreePieces becomes insufficient.
The solution proposed in section 2.3.3, of splitting the global walk into multiple sub-walks
(remote chunks), seems to provide the necessary infrastructure to scale beyond the limit of

thousand.
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Chapter 3

New Scheme for organizing force
computation

In this chapter, we describe a faster scheme for calculating gravitational forces that has been
implemented in ParallelGravity. This scheme has been implemented over and above all the
basic features and optimizations that have been described in chapter 2. The implementation

is based on the scheme involving interaction lists that was introduced in Stadel’s thesis [12].

3.1 Overview

After having preceded the computation with a prefetching phase and making many types of
optimizations to the code, we explored a faster algorithm (presented in [12]) for gravitational
force computation. The new algorithm is based on the same principle of the CacheManager:
two buckets close in space will tend to interact similarly with a given remote node.

In the regular ParallelGravity algorithm, whenever a bucket walk visits a tree node, a
fundamental test is carried out. In this test, we check the spatial position of the bucket in
respect to the particles in that node. If the bucket is sufficiently far from the node, the forces
on the bucket due to the entire subtree rooted at that node are immediately computed, using
the subtree’s center of mass. Otherwise, ParallelGravity opens the node, i.e. it recursively
traverses the subtree rooted at that node. Thus, the threshold used to decide if a node is

close enough to the bucket represents the opening criteria for deciding whether the visited
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node must be opened or not, for the bucket being considered.
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Figure 3.1: Illustration of opening criteria of a node

Figure 3.1 illustrates the opening radius r for a node X. The multipole of node X is
placed on the interaction list of a bucket, if the bucket lies outside of the opening radius
r of the node. Only bucket c¢ satisfies this condition. Both the buckets, a and b satisfy
the opening criteria and must open the node into two sub-nodes for future consideration.
Bucket a lies completely inside the opening radius whereas bucket b is intersected by the
opening radius. Some of the particles in bucket b would have accepted the multipole of node
X, but the benefits of amortizing the tree walk over all particles of a bucket far outweighs
such a consideration. We observe that the multipole of X is acceptable to all the buckets
of ancestor node d. This observation forms the basis of the algorithm described later. Note
that the opening radius of a node is given by some constant factor times the distance from
the center-of-mass (CM) to the most distant corner of the node.

Instead of checking the opening criteria at a given node for each bucket independently,
we can modify the algorithm and do that check for various local buckets at once. We can
do this collective check using the buckets’ ancestors in the local tree. These ancestors will

be local nodes containing particles which are close in space. If an ancestor needs to open a
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visited node, that node will be opened for every bucket that is a descendent of such ancestor.
On the other hand, if a node is far enough for that ancestor, this node will be far enough for
all the ancestor’s buckets too. In this second case, we can directly compute the interaction
between the node and all these local buckets. Checking the opening criteria can also give
a third answer, which is uncertainty, due to the greater distribution of the particles in the
space. This means that the node will open for some buckets under this ancestor, and not
for others. In this case we will need to split our ancestor and look at a smaller ancestor
(containing less number of buckets) to get the answer.

By grouping the checking for various local buckets, we can reduce the total number of
checks for opening nodes. A potential problem in this modified algorithm is that it may
cause less effective usage of the hardware cache: because the computation of interactions
proceeds for various local buckets, one bucket’s data may flush another bucket’s data from
the hardware cache. We can reduce the number of hardware-cache misses by storing all the
nodes that interact with a given bucket in a bucket’s interaction list, and perform the entire
computation of forces on that bucket at the end of the tree walk. Note that this is different
from the original ParallelGravity code. In the original version, the force computation on a
bucket takes place as we walk the tree for that bucket. That is, when we reach a node with
whom forces need to be computed, we compute them there itself.

Interaction lists result in performance improvement, also due to the following two reasons.
Firstly, modern compilers may keep a particle’s data inside CPU registers while computing
interactions with the nodes in the list. Also, there is a minimal amount of change in the
interaction lists as we move from one bucket to another. This results in an increase in cache

utilization of the processor and consequently, better performance.
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3.2 Basic Algorithm

The entire algorithm is structured as two tree walks. Outer walk is the one over the tree
containing all the buckets owned by the local TreePiece (or the local tree) and inner one
over the global tree covering the whole space. Our aim is to compute force interactions for
buckets of the local tree. Force computation takes place when we reach a bucket in the local
tree.

The algorithm is based on the observation that two nearby buckets will show only a
small number of differences in their interaction lists, namely in the closest particles and in
the closest nodes. The algorithm uses two rules to walk the local tree top down in a single
pass for all the buckets, making minimal required number of changes to the interaction lists.
The rules being: If an ancestor is contained entirely by the opening radius of a node i.e. the
node needs to be opened, the node will be opened for all the descendent buckets of such an
ancestor. Also, if an ancestor lies entirely outside the opening radius of a node i.e. node is far
enough for that ancestor, then the node is far enough for all the ancestor’s buckets too and
the multipole of the node is acceptable to all the buckets. This means that we can directly
compute the interactions between the node and the buckets, due to the subtree rooted at
the node, using subtree’s center of mass.

The algorithm recursively descends the local tree from the root node to the buckets
in a depth-first fashion. This tree walking procedure produces two interaction lists, a cell
list (c-list) and a particle list (p-list), which are subsequently evaluated to determine the
gravitational force on the given bucket. Cell list contains all the nodes and particle list
contains all the particle buckets with whom force computation will take place. A checklist
of nodes which still need to be considered for inclusion on either of the interaction lists
is processed by the algorithm for an ancestor before descending deeper in the tree. If the
opening radius of a node on the check list entirely contains the current ancestor we are

considering then we remove the node and add its two child nodes to the end of the check
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list. If the opening radius of the node does not intersect the ancestor, it is removed from the
check list and added to the current interaction list. If neither of these two cases apply, then
the node remains on the check list and is considered when we proceed deeper in the local
tree. Once we have processed whole of the check list in this fashion, we recursively descend
the tree to current ancestor’s children. When we have descended to a bucket, we open the
check list node if the opening radius of the node intersects the bucket. This means if the
bucket lies entirely within or is intersected by the opening radius, the node is opened. This
condition ensures that we end up removing all the nodes from the check list and we have a
complete interaction list for the bucket at the end.

Algorithm 1 presents pseudo-code for the recursive form of the algorithm described above.
The for loop in the algorithm is not fixed since checkList gets modified within the loop itself.
Note that ’interactList.plist’ stands for the particle interaction list and ’interactList.clist’
stands for the node interaction list. Also, ancestor — lower and ancestor — upper refer
to the two children of ancestor. Other functions used in the algorithm are briefly described

below.

e intersect(x,y): It finds out if the opening radius of node y intersects node x.
e isBucket(x): It returns true if the node x is a bucket.

e contained(x,y): It returns true if node x is contained entirely within the sphere in-

scribed by the opening radius of y.

e calculateGravity(part,interact): It carries out actual force computation between the

particles of the bucket (part) and the interaction lists.
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Algorithm 1: Walk(ancestor,checkList,interactList)
begin

for c € checkList do
if intersect(ancestor, c) then
if isBucket(ancestor) \/ contained(ancestor, c) then
check List = checkList — c;
if isBucket(c) then

| interactList.plist = interactList.plist + particles(c);

else

| checkList = checkList + children(c);

else
check List = checkList — c;

interactList.clist = interactList.clist + moments(c);

end

if isBucket(ancestor) then

| calculateGravity(particles(ancestor), interact List);

else
\; Walk(ancestor — lower, checkList, interact List);

Walk(ancestor — right, check List, interactList);

end

3.3 Implementation

The new algorithm for force computation using interaction lists has been implemented as
part of ParallelGravity, the parallel N-body cosmological force simulator developed using

Charm++. The new version of ParallelGravity has a compile-time option, by specifying
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which, we can compile the new algorithm instead of the original force computation algorithm
of ParallelGravity. The implementation of the algorithm is iterative in nature, as against
the recursive form of the algorithm presented in algorithm 1. The iterative implementation
is somewhat complex as compared to the straightforward recursive algorithm, but has gains
associated with it. It avoids memory explosion and does away with the function calling
overhead of a recursive implementation. Moreover, with the existing implementation of tree
walk in ParallelGravity, we found it easier to implement our algorithm in an iterative fashion.

The basic top-level flow of our implementation is similar to the original algorithm. Like
before, the force computation is divided into local computation, interaction with particles in
the same TreePiece and global computation, interaction with the rest of the global tree. So, we
have separate check lists and interaction lists for local computation and global computation.
From now onwards, we’ll have a single interaction list to stand for both node and particle
interaction lists.

By keeping only one check list and one interaction list for the entire TreePiece, it is not
possible to implement our algorithm iteratively. The reasoning for this is described here. As
we go from one bucket to another while walking the local tree in our recursive algorithm,
both check list and interaction list undergo changes. For example, when we go from bucket
node A to bucket node B in figure 3.2, we undo all the insertions and deletions that take
place in the check list and the interaction list in the path from A to internal node C' and
then, make all the changes in the lists while walking from C' to B. To keep track of all these
changes, we need to keep a check list and an interaction list at each level of the tree. The
check list and the interaction list for a child are constructed by making changes to the check
list of the parent.

As we walk the local tree, new nodes are added to the check list which is at the current
level of the tree. The check list of level [ is constructed by making changes to the check list of
level [ —1. When we reach level [, we parse the nodes contained in the check list at level [ —1,

either adding them to the check list at level [ or to the interaction list at level . When we
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Figure 3.2: Implementation of Interaction list scheme

reach a bucket, the check list at the previous level is parsed to add nodes (or particles) only
to the interaction list at the bucket level. Figure 3.2 shows a tree owned by a TreePiece with
both check lists and interaction lists at all the levels. When going from bucket A to bucket
B, we go up to their common ancestor C' and then, walk down the branch to B starting with
the check list present at C. To calculate the actual forces on reaching a bucket, we traverse
the interaction lists at all the levels of the tree starting from the root to the bucket.

We process the buckets in order in our implementation to prevent the memory from
exploding. Since we need to build the entire list of interaction that a bucket requires for
the computation, if we are to process more than one bucket simultaneously, the memory
consumption will quickly explode. For this reason, we process the buckets in depth-first
order, as the tree walk visits them, and for each we add to its interaction list only the
nodes that are present in the local processor. Those that are missed will be computed later
during the regular callback from the cache. This allows us to reduce the memory to a single

interaction list at a time. It is clear that the best case is obtained when no nodes are missed
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Table 3.1: Characteristics of the parallel systems used in the experiments

System Number Procs CPU CPU Memory Type of
Name of Procs | per Node Type Clock | per Node | Network
Tungsten, NCSA 2,560 2 Xeon 3.2 GHz 3 GB Myrinet
BlueGene/L, EPCC 2,048 2 Power440 | 700 MHz | 512 MB Torus
HPCx, HPC-UK 1,536 16 Powerb 1.5 GHz 32 GB | Federation

during the walk, and further justify the previous optimizations (discussed in chapter 2).

3.4 Results

In this section, we present results for our new scheme of force computation which uses

interaction lists. We compare the results with the results from the original version of Paral-

lelGravity.

In our experiments, we used the parallel systems described in Table 3.1, and the following

particle datasets:

e lambs: Final state of a simulation of a 71Mpc® volume of the Universe with 30% dark

matter and 70% dark energy. 1443 particles, i.e. nearly three million particles, are

used (3M). Three subsets of this dataset are obtained by taking random subsamples of

size thirty thousand (30K), three hundred thousand (300K), and one million particles

(1M), respectively.

e dwarf: A snapshot at z = .3 of a multi-resolution simulation of a dwarf galaxy forming

in a 28.5Mpc® volume of the Universe with 30% dark matter and 70% dark energy.

The effective resolution in the central regions is equivalent to 2048 particles in the

entire volume. The total dataset size is nearly five million particles.

First, we performed small experiments to compare the open criterion calls for original

algorithm and algorithm with interaction lists.

These experiments were performed on a

single processor of the HPCx system. Note that the number of opening criterion calls are
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Table 3.2: Number of checks for opening criteria, in millions
‘ H lambs 1M ‘ dwarf 5M ‘
Original algorithm 120 1,108
Modified algorithm 66 440

independent of the number of processors, so they don’t change with increase in the number
of processor, though minor variations in the number do occur. Table 3.2 shows the number
of checks that are observed with the two algorithms, executing on the HPCx system with
our two datasets. As claimed in section 3.1, we see that the number of open criterion calls
decrease with the new interaction lists version of the code. The decrease in the number of
calls is pretty significant. For the lambs dataset, the decrease is about 45% and for the dwarf

dataset, the decrease is about 60%.

8192 T T
Without Interaction Lists —+—

4096 ]

Processors x Time per step(seconds)

2048 ' ' ' '
8 16 32 64 128 256

Number of Processors
Figure 3.3: Comparison between regular ParallelGravity and ParallelGravity with interaction

lists on BlueGene with the dwarf dataset

We performed comparisons between the regular ParallelGravity version and the Parallel-
Gravity version with interaction lists on large parallel machines like BlueGene/L and HPCx.

We show the results obtained on these machines in the following plots for both our datasets,
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the lambs 1M and the dwarf 5M particle dataset. The vertical axis of the shown plots is the
product of the execution time per iteration and the number of processors in the simulation.
The horizontal axis is the number of processors. Horizontal lines represent perfect scalability.
So, scalability of the code is dependent on how horizontal the line is, in the plot. Also, note

that both the axis in the plots have log scales.
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Figure 3.4: Comparison between regular ParallelGravity and ParallelGravity with interaction
lists on HPCx with the dwarf dataset

Figure 3.3 plots the execution times of both the algorithms on BlueGene/L for the dwarf
5M dataset. We see that both the algorithms scale pretty well and the version with inter-
action lists scales as well as the original version on BlueGene/L. Also, ParallelGravity with
interaction lists has a performance improvement over the entire range of processors. We
don’t show beyond 256 processors because both the algorithms don’t scale well after that,
since there is not adequate work available for each processor and hence, the gain is reduced.
Also, when going from 128 processors to 256 processors, we can clearly see the scaling be-

coming worse. We observe that the performance improvement for interaction lists is around

10% for the entire range which is pretty good.
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Figure 3.5: Comparison between regular ParallelGravity and ParallelGravity with interaction
lists on HPCx with the lambs dataset

Figures 3.4 and 3.5 show the execution times of both the versions of the code on HPCx
for the two datasets, dwarf 5M and lambs 1M. Both the codes pretty well on HPCx too. As
seen for BlueGene/L; interaction lists version has a constant performance improvement over
the original version for the entire range of processors. We don’t scale beyond 256 processors
for lambs 1M dataset and 512 processors for the dwarf 5M dataset since we run out of work.
In fact, the scaling begins to worsen towards the end when going from 128 to 256 processors
in figure 3.5. In both these plots too, the performance improvement for interaction lists is
around 10%.

Hence, all the results show pretty decent improvement for the new scheme over the
original force computation scheme. This performance improvement is partly due to the good
cache utilization achieved with interaction lists, partly due to up-gradation of bucket data

in the processor registers and partly due to reduction in the number of open criterion calls.
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Chapter 4

Comparison of Particle
Decomposition Techniques

This chapter describes three different particle-space decomposition techniques which lead to
construction of different types of trees and compares them. These techniques, along with
the trees, have been implemented in ParallelGravity. The user can choose between these
different techniques by specifying a runtime option to ParallelGravity.

The program flow of ParallelGravity has a well-defined structure. Firstly, the particle
data is loaded onto the processors. Since the number of particles run into millions, it is
usually not feasible to load all the data onto a single processor. So, the data is split among
all the TreePieces and loaded. The loading of the data is followed by space domain decom-
position of particle-space. The third phase is the building of the Barnes and Hut trees for
all the TreePieces. This chapter talks about the second and the third phase. After tree
building finishes, we go into the gravitational force computation phase which is the core of
the simulator. In the last phase, we update the particle positions, velocities and energies.
This sequence of phases forms first iteration of our simulator. In the subsequent iterations,
we carry out all but the particle loading phase. They are carried out in the same order. We
need to perform particle decomposition and tree building again and again, since the spatial
positions of the particles change after every iteration and consequently, the previous space

decomposition becomes invalid making the tree incorrect too.

27



We see that particle-space decomposition along with tree-building forms a very signifi-
cant part of our simulator. Hence, we have implemented various space decomposition tech-
niques and tree-building techniques and studied their performance on different kinds of input
datasets.

The central data structure in ParallelGravity is a tree which forms the hierarchical rep-
resentation of the mass (or particle) distribution in space. Each node of this tree represents
a rectangular sub-volume of the total simulation volume, containing the particles, center-of-
mass, and higher moments of the mass distribution in the enclosed volume. The root-node
represents the entire simulation volume, and as we proceed deeper into the tree we get a
finer representation of the mass distribution where children represent smaller sub-volumes
of the total volume. Each node is divided into sub-nodes until we reach the leaves of the
tree which are buckets and contain only a few particles. The tree we construct, in our case,
is a binary tree, although some tree-codes use a oct-tree. We intend to implement oct-trees
in ParallelGravity in future.

The space decomposition techniques that we have implemented are: Space Filling Curve
(SFC) Decomposition, Oct-tree Decomposition, and Orthogonal Rectangular Bisection (ORB)
Decomposition. There are two types of binary trees implemented by us: Spatial Binary trees
and ORB trees. Note that in the following discussion, we’ll use the word domain decompo-
sition interchangeably with space decomposition.

During domain decomposition, we divide the particles into spatially local regions of ap-
proximately equal work. As outlined in [12], using a data structure for domain decomposition
that does not coincide with the hierarchical tree for gravity calculation, leads to poor memory
scaling with large number of processors and/or difficult book-keeping. Hence, the efficiency
is greatly improved if the tree data structure matches the domain decomposition structure.
So, we use ORB trees with ORB decomposition and Spatial Binary Trees with SFC and
Oct-tree decomposition.

SFC decomposition along with the spatial binary tree was implemented as part of the
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original version of ParallelGravity. Oct-tree decomposition, ORB decomposition and ORB
Trees have been implemented as part of this thesis. We now describe each of the decompo-

sition techniques in detail followed by our experimental results.

4.1 SFC Decomposition

SFC stands for Space-Filling Curve. A Space-Filling Curve [9] is a continuous mapping from

a d-dimensional space to a 1-dimensional space written as
f: N> N

The d-dimensional space (or cube) is mapped onto a line such that the line passes through
each point in the volume of the cube, entering and exiting the cube only once. A point in the
cube can be described by its spatial coordinates, or by the length along the line, measured
from one of its ends. In our case, we map our 3-dimensional space to the SFC curve. A
particle in the space is described by its 3-dimensional coordinates. SFC imposes a total
ordering on the particles based on the particle keys we generate from the spatial position of
the particles. In our implementation, particle keys are 63-bit numbers in which 21 bits are
derived from spatial position of the particle in each dimension. The key is constructed by
mixing these 21 bits from each dimension.

The hierarchical tree structure which is suitable for SFC decomposition is the Spatial
Binary Tree. A spatial binary tree is the tree constructed when we spatially bisect the
bounding box containing all the particles in the volume. Since the box is spatially bisected,
the number of particles in the resulting sub-boxes are usually not equal. One of the resulting
sub-boxes can even be empty. The spatial binary tree goes well with SFC decomposition as
well as Oct-tree decomposition of the particles which is discussed in the next section.

The keys assigned to the particles have a very nice property. From the prefix of the
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TreePiece 1 TreePiece 2 TreePiece 3

Figure 4.1: Distribution of a tree across TreePieces (top levels). White nodes are owned by
one TreePiece, black nodes are placeholders for remote nodes, gray nodes are shared among
multiple TreePieces.

particle keys (discussed above), we are able to determine which node the particle belongs to.
The particle key (or a prefix of the key) traces the path of the particle from the root of the
global spatial binary tree to the bucket.

A contiguous portion of the SFC curve is assigned to each TreePiece. The number of
particles assigned to each TreePiece is the same. The resulting tree is shown in figure 4.1.
The figure shows the global tree constructed over all the particles and the distribution of the
particles among TreePieces. We see that some of the internal nodes are replicated in more
than one TreePiece.

Figure 4.2 shows a simple example of a SFC assigning particles to TreePieces. As men-
tioned above, a contiguous portion of the curve is assigned to each TreePiece. In the figure,
SFC curve is shown with the structure of the spatial binary tree in the background. The SFC
curve is divided into 4 portions which are equal in terms of the number of particles. The
tree goes deeper only in 2 of the 4 top-level boxes since it needs to determine the SFC curve
splitting points. Those two boxes have a denser concentration of particles as compared to
the other two. The figure shows each portion of the curve which is assigned to a different

TreePiece in a separate pattern. The different patterns are shown in the legend.
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Figure 4.2: Assignment of particles to TreePieces according to Space Filling Curve (SFC)
4.2 OCT-Tree Decomposition

In Oct-tree decomposition, the particles are decomposed based on the nodes of a spatial
binary tree covering the entire space. So, the decomposition data structure coincides com-
pletely with the hierarchical gravity tree data structure. We perform particle decomposition,
first in z-dimension, followed by y-dimension and finally, in z-dimension. The decomposition
tries to distribute the particles approximately equally among all the TreePieces. To do this,
it bisects some parts of the space, containing higher densities of particles, more than the
others. Note that we call this Oct-tree decomposition just to denote that it is based on the
decomposition of a spatial tree. It doesn’t mean that an oct-tree is constructed out of the
decomposed sets of particles in the tree-building phase.

Figure 4.3 shows an example of a simple Oct-tree decomposition. The space bisecting
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Figure 4.3: Assignment of particles to boxes according to Oct-tree Decomposition

cuts are also shown. The number of particles in each of the sub-boxes are not equal, as
expected. Note that there is a 5 cut for one of the boxes which has 5 particles which is
much higher then the combined total of 3 particles which the neighboring box has after 3"
cut. The 5 cut bisects the box so that the two sub-boxes have 2 and 3 particles. There is
no cut after the 3" cut for the neighboring box as the number of particles is already low.
A convenient property that is present in Oct-tree decomposition and absent in SFC de-
composition is described here. For the spatial binary tree built out of the particle distribution
derived from Oct-tree decomposition, an entire subtree always belongs to the same TreePiece
and nothing else goes into that TreePiece. This can be seen in figure 4.4, which shows the
distribution of particles for Oct-tree decomposition. As a result of this convenient property,

only some top-level internal nodes are replicated in more than one TreePiece. The number of
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Figure 4.4: Distribution of a tree across TreePieces (top levels). White nodes are owned by
one TreePiece, black nodes are placeholders for remote nodes, gray nodes are shared among
multiple TreePieces.

internal nodes replicated in this case are not as many as is the case with SFC decomposition.

The particle keys used in Oct-tree decomposition are the same ones that we used in SFC
decomposition. There are two purposes that a particle key solves in Oct-tree decomposition.
Firstly, a particle key identifies the path from the root of the tree to the bucket in which the
particle is contained. Secondly, a particle key also makes the sorting of the particles implicit
when spatially decomposing a box in Oct-tree decomposition. One just needs to sort the
particle keys once in the beginning. During Oct-tree decomposition, no more sorting phase
is needed since the particles are always sorted spatially after the initial sorting.

To implement Oct-tree decomposition in ParallelGravity, we implemented a Oct decom-
poser algorithm which carries out the Oct-tree decomposition and tries to balance the par-
ticles in the sub-boxes. Our algorithm obtains a loose bound on balancing of the particle
distribution. The algorithms which can guarantee a tighter bound are more complex to
implement and involve a larger running overhead.

The outline of the algorithm we employ is shown as a pseudo-code in algorithm 2. The
algorithm calculates a set of splitter keys based on an initial estimate of the sub-boxes. The
keys are broadcasted to all the TreePieces and the total number of particles within each sub-
box are evaluated using a global reduction. There is a Charm++ chare object which controls
this broadcast and reduction of data. Once we have the counts within each box, a function

called weightBalancer (shown in algorithm 3) is invoked, that recalculates the new boxes
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balancing the particle counts. The function balances the boxes of the entire space in many
iterations. In each iteration, the function tries to find the heaviest box and two sibling boxes
that are the lightest. The heaviest box is the box with the maximum number of particles
and the lightest siblings are the sibling boxes in which the sum of the number of particles is
minimum. If the function succeeds in finding both the heaviest box and the lightest sibling
boxes and if the number of particles in the heaviest box is greater than the number in lightest
siblings, the heaviest box is bisected and the two sibling boxes are coalesced together. The
weightBalancer continues doing this in all subsequent iterations until the heaviest box it

finds has lower number of particles than the lightest siblings.

Algorithm 2: OctDecomposer(nodeKeys)
begin

while 1 do
//Convert the Node Keys to spatial boundary keys to be broadcasted;
boundaryKeys = convertNodesT oSplitters(nodeKeys);
//Evaluate the particle counts in all the TreePieces and do the reduction;
binCounts = treeProxy.evaluate Boundaries(boundary Keys);
newNodeKeys = weight Balancer(nodeK eys, binCounts);
if newNodeKeys == nodeKeys then

| break;

else

| nodeKeys = newNodeKeys;

end

Convergence is guaranteed. If some box got bisected in one step, it was the heaviest
at that point of time. No other box, including the lightest box being created, was heavier

than it. The function doesn’t converge if there are oscillations, which means the bisected

34



box should get joined at some later point of time. But this can’t happen since the box will
definitely be heavier (or at most equal in weight) than any heaviest box at a later time.
This means that the box won’t get joined at a later time at all. Similar argument is valid
for the lightest box too. Therefore, there are no oscillations. The weightBalancer gives a
good balancing of the particle counts in practice, though it is tough to arrive at a theoretical

bound on the distribution of the particles.

Algorithm 3: weightBalancer(nodeKeys,weights)
begin

while 1 do
heaviest = findH eaviest(nodeK eys, weights);
for n € nodeKeys do

| curLightest = findLightest Parent(cur Lightest, n, n.next);

if heaviest > curLightest then
nodeK eys.erase(heaviest);
nodeK eys.add(heaviest.left, heaviest.right);

node K eys.erase(cur Lightest.le ft, cur Lightest.right);

| nodeKeys.add(curLightest);

else

| break;

end

4.3 ORB Decomposition

ORB stands for Orthogonal Rectangular Bisection. An ORB decomposition step divides a
simulation volume into two sub-volumes having approximately equal number of particles.
ORB decomposition decomposes the entire simulation volume recursively until we have sub-

volumes for each TreePiece of approximately equal number of particles. The decomposition
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Figure 4.5: Distribution of particles according to ORB Decomposition

is always carried out in the longest dimension of the current simulation sub-volume. Though
the number of particles are similar in each of the sub-boxes, the sizes of the boxes can vary
significantly since the particle densities are variable in real datasets. The strategy of always
decomposing the longest dimension makes the sizes of the boxes more even, as compared to
strategy of decomposing the box along the three dimensions in serial circular order.

Figure 4.5 shows a simple example of 2-dimension ORB decomposition. We see that the
number of particles in each of the 8 sub-boxes are equal whereas the shapes of the boxes are
very different.

The gravity tree structure which is most suitable for ORB decomposition is an ORB tree.
An ORB tree is constructed by bisecting the number of particles for each sub-volume of
particles, which is similar to what ORB decomposition does. The top-level distribution of

the particles for ORB tree built out of ORB decomposition is same as the one for Oct-tree
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decomposition. Figure 4.4 shows this distribution. The entire subtree below an internal
node belongs to only one TreePiece, so, internal nodes are not replicated in more than one
TreePiece.

The particle keys that we used in 4.1 and 4.2 are no longer valid for ORB decomposition.
It is because the keys had been constructed using spatial position of the particles and they
traced the path of the particle from the global root to the bucket in the spatial binary
tree. Hence, they had acted as domain splitters to split the particles in spatial binary tree.
Whereas in our case, the bisector of the box is not determined by the particle splitter keys
and consequently, those keys don’t give us any information about the path of the bucket
from the root. Hence, they don’t identify which box our particle belongs to, which was the
main purpose a particle key served for SFC and Oct-tree decomposition.

For ORB decomposition, the particles contained in the box to be split, have to be sorted
in the longest dimension before decomposition. There is no scheme which can assign keys to
particles and meet this sorting requirement of ORB decomposition. Though ORB decom-
position can be carried out easily without any requirement of particle keys, we designed a
new methodology to assign keys to particles in ORB decomposition to help us in identify
particles during the gravity force calculation phase. To assign keys to particles in ORB
decomposition, we first have to assign keys to nodes as and when they are constructed in the
tree-building phase. When we reach buckets, we calculate the number of particles in each
bucket and assign keys to them based on the number. The prefix of the particle key is the
key of the bucket node with the trailing part being the particle number of the particle in the
bucket.

We now describe the ORB decomposition algorithm that we have implemented as part of
ParallelGravity. We follow it up by the description of the tree-building phase. At every step
in the algorithm, we always bisect the longest dimension of the simulation box. Also, when
each TreePiece builds its local part of the ORB tree (in the tree-building phase), bisection

takes place at the longest dimension only. The ORB decomposition algorithm has been
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outlined in algorithm 4. The main controller is a Charm++ chare object which initiates
the decomposition. The algorithm does log(n) iterations where n is the number of boxes
which the algorithm produces. This is also made equal to the number of TreePieces. In each
iteration, the number of boxes increase by a factor of 2.

At the start of each iteration, the chare calculates the potential splitting positions p;
in the longest dimensions d; for all the current boxes, for ¢ varying from 1 to the current
number of boxes n.. It broadcasts these p; to all the TreePieces. The TreePieces evaluate
the counts of particles in each box based on these p; values. This is followed by a reduction
of these counts to the main chare. On receiving these global counts, the chare determines
if the counts of both the sibling boxes for each p; are equal within a tolerance value. If the
counts are equal for all the p; values, then we are done with this iteration and we proceed to
the next iteration. Before proceeding, we update the data structures to increase the number
of current boxes to 2 x n.. In case the counts are unequal for at least one p;, the p; values
for which the counts are unequal, are updated and the new p; values are again broadcasted
to the TreePieces which again evaluate the new positions and reduce the new found particle
counts. This goes on till we are able to find a good estimate of all p; values for which counts
of sibling boxes are almost equal. After log(n) iterations, we have the required number of
boxes and then, we initiate the data movement phase. Each TreePiece has the knowledge
of the splitter positions and knows exactly what particles it has to send to each TreePiece.
We could have carried out the data movement phase after every iteration but it would have
resulted in much larger volumes of data being exchanged among processors leading to higher
communication latencies. Having data movement at the end does make the implementation

more complex but the gains in communication cost which we get, are too lucrative to ignore.
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Algorithm 4: ORBDecompose(initialBox,numTreePieces)

begin

boxes[l] = initial Box;
ne =1;
for iteration < 1 to lognumTreePieces do
for i — 1 to n. do
< pi, d; >= getSplittersInLongest Dim(boxes|i));
end
//particleCounts is twice the size of p and d;
//Evaluate the particle counts in all the TreePieces and do the reduction;
particleCounts = treeProxy.evaluate ParticleCounts(p, d);
while !nextlteraion do
if countsEqualWithinT olerance(particleCounts) then
boxes = getNewBozes(p,d);
Ne = N * 2;

nextlteration = true;
end

else
for i — 1 to n. do
pi = updateSplitters(p;, boxes|i]);
end
particleCounts = treeProxy.evaluate ParticleCounts(p);

end
L end

tree Proxy.broadcast Final Splitters();

//Carry out the data movement phase here;

end

We start building the ORB tree for each TreePiece from the global root. The global
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root has the whole space as its bounding box. We go on building the tree till we reach
the root of the subtree which is completely local. As shown in 4.4, the nodes above the
root of the subtree are either remote nodes (black) or nodes that are shared among multiple
TreePieces (gray). Starting from the root of the subtree which is local, we start decomposing
the particles in a similar fashion as we did in ORB decomposition. Only difference is that
since all the particles being decomposed are local, we don’t have to broadcast and reduce
data. Once we split a box, we squeeze both the boxes based on the particles contained in

them. Squeezing produces a significantly better tree structure.

4.4 Comparison Results

In this section, we present the comparison results of the three types of domain decomposition
we described in the previous sections.

The particle decomposition phase is more complex for ORB as compared to SFC and
Oct-tree. In SFC and Oct-tree, simple histogramming over all the TreePieces is performed
to arrive at the correct splitter keys. Oct-tree, in addition, has the weightBalancer which
tries to balance the count of particles in all the boxes. The weightBalancer performs pretty
well in practice and each call to weightBalancer usually takes O(n) time. Also, for SFC and
Oct-tree, the particles are sorted based on their key values within each TreePiece before the
decomposition phase begins. In ORB decomposition, we increase the number of boxes by a
factor of 2 in each iteration. This bisection is quite complex to implement, since we have
to find the correct bisector in each TreePiece. To make things easier, we do a O(nlogn)
implementation where particles are sorted according to the longest dimension and then, the
bisector is found. In theory, it is possible to implement the bisection in O(n) time using a
median-finding algorithm but given the complexity of implementing such an algorithm, we
do a O(nlogn) implementation. We intend to implement a O(n) algorithm sometime in the

future.

40



The tree-building phase is really simple for a spatial binary tree. At each level of the tree,
we just need to find the splitting particle which splits the box into two spatial equal boxes.
This is a O(logn) operation. So, the whole tree-building process is a O((logn)?) process.
Building ORB tree is a little more complex. At each level of the tree, we need to find the
particle at n/2 or n/2 + 1 position in the longest dimension. This is a O(n) algorithm in
practice. Hence, the whole tree takes O(nlogn) to build. The ORB tree is a more balanced
tree as compared to the spatial binary tree. It usually has an equal number of particles in
all its buckets and an equal number of buckets for each TreePiece. The ORB tree is more
memory-efficient since the number of tree nodes are less and tree is mostly balanced. ORB
tree has been considered optimal for nearest neighbor finding, multi-dimensional key searches
and some other applications, though it can perform really badly in gravity calculations for
certain particle distributions as described in [1]. On the other hand, spatial binary trees
result in more accurate forces due to a reduction in the higher order multipole moments [1].
Also, they don’t suffer from bad performance for certain particle distributions. So, spatial

binary trees are much better for gravity force calculation.

4.4.1 Improvement in Data Prefetching

The data prefetching phase described in section 2.3.2 improves performance for all types
of decomposition. This is due to the increased hit rate of the cache. While executions
without the prefetching phase generate a cache hit rate of about 90%, with the prefetching
active the hit rate rises to 95-97% for SFC decomposition, and 100% for Oct-tree and ORB
decomposition. The greater accuracy in prefetching for Oct-tree and ORB decomposition is
due to the better prefetching algorithm we developed, given the constraint that prefetching
must be lightweight. Better prefetching algorithm can be owed to the fact that we know the
exact box in which the particles are contained for a TreePiece in case of Oct-tree and ORB
decomposition. Although Oct-tree and ORB decomposition provides a clear benefit in terms

of cache hit rate over SFC, the full effects on the entire execution time are more complex
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and will require more detailed studies to be fully characterized.
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Figure 4.6: Comparison between SFC, Oct-tree, and ORB decomposition on BlueGene/L
for the dwarf dataset

4.4.2 Scaling and Performance comparisons

We now present the scaling comparisons between the three types of particle space decom-
positions. We time the gravity calculation phase of ParallelGravity for all of these domain
decompositions. The simulator has been run on large parallel machines like BlueGene/L
and HPCx and it shows pretty good scaling till hundreds of processors for almost all the
decompositions. We use both our datasets of 1 million and 5 million particles. As earlier,
vertical axis is the product of the number of processors and the time per step. The horizontal
axis represents the number of processors.

Figure 4.6 shows the comparison of the three techniques on BlueGene/L for the dwarf5M
dataset. A horizontal line means perfect scaling. We see that all of them scale pretty well
till 256 processors. The scaling worsens after 256 processors and is not shown. For ORB

decomposition, scaling worsens a little for 256 processors as compared to the others. We
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Figure 4.7: Comparison between SFC, Oct-tree, and ORB decomposition on BlueGene/L
for the lambs dataset

observe that Oct-tree decomposition is the best among the three decomposition techniques.
Since Oct-tree decomposition results in TreePieces with most uneven amount of computation,
it makes use of the Charm++ measurement-based load balancers to a great extent to achieve
the best performance. This is discussed further in section 4.4.3. During the whole range,
Oct-tree decomposition performs better than SFC decomposition by about 25% to 35% and
Oct-tree is better than the ORB decomposition by around 60%. ORB decomposition doesn’t
perform as well as we had expected. We did some initial investigations to ascertain the reason
for this. We found that ORB does much more computation as compared to Oct-tree and SFC
for the same dataset. Oct-tree and SFC do almost similar computation since the underlying
tree is same for them. More computation in case of ORB can be attributed to the ORB
tree. ORB tree has a higher number of particles per bucket on average as compared to
Oct-tree and SFC. The bounding boxes of the nodes of the tree are more uneven in case of
ORB which leads to higher opening radii and hence, more computation. These are some

possible reasons which we thought might be responsible for the poor performance of ORB.
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Table 4.1: Number of interactions, in millions

‘ H Particle-Node ‘ Particle-Particle ‘
SFC or Oct-tree Decomposition 387 205
ORB Decomposition 503 320

The exact contribution of all the factors which cause this bad performance for ORB needs
further investigation.

Table 4.1 illustrates the fact that ParallelGravity with ORB decomposition does more
computation than the one with SFC (or Oct-tree) decomposition. The results presented are
from executions of ParallelGravity on 8 processors of BlueGene/L with lambs1M dataset.
We see that the number of particle-particle interactions and particle-node interactions are
more in case of ORB than SFC or Oct-tree. One particle-particle interaction stands for
the interaction of a particle in the bucket (being considered) with a particle in space. One
particle-node interaction stands for the interaction of a particle in the bucket with a node
in space. ORB decomposition does 23% more particle-node and 36% more particle-particle
interactions. This rise in the number of interactions for ORB gets translated to a greater
gravity calculation time.

Figure 4.7 shows the comparison on BlueGene/L for the lambs1M dataset. We see pretty
decent scaling for all of them till 128 processors. Oct-tree performs better than the other
two. ORB has the worst performance. Oct-tree is better than SFC by around 10% to 20%
during the whole range. Oct-tree is better than ORB by about 30% during the entire range.

Figures 4.8(a) and 4.8(b) show the performance comparisons between Oct-tree and SFC
decompositions on HPCx machine for dwarfsM and lambs1M datasets, respectively. We
don’t show the performance results for ORB in this case. Both, Oct-tree and SFC, show
similar scalability. Scalability with the dwarf5M dataset is better than lambsIM. Oct-tree
performs better than SFC by a margin of about 5% in both the cases. This is lower than

what we observed for BlueGene/L.
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Figure 4.8: Comparison between SFC and Oct-tree decomposition on HPCx for the (a) dwarf
dataset and (b) lambs dataset
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4.4.3 Effect of Load Balancers

In this section, we discuss the effect of the Charm++ automatic load balancing framework
on our decomposition schemes. The code instrumentation and the migration of chares in the
system are totally automated, and do not require any programmer intervention. Oct-tree
decomposition gains the most from load balancing because of its highly unbalanced compu-
tation as compared to the others. ORB and SFC decomposition show smaller gains from
load balancing. Computation for SFC is more or less balanced, so gain is very little. ORB
has quite unbalanced computation in certain cases but gains observed from load balancing

have been small. We need to further investigate the reason of these small gains.
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Figure 4.9: Comparison between regular ParallelGravity version and ParallelGravity with
interaction lists with Oct-tree decomposition before and after load balancing on BlueGene
for the dwarf dataset

Figure 4.9 shows the effect of load balancing on both the versions of the code for Oct-tree
decomposition. The improvement from load balancing is similar in both the cases. We see
that there is a super-linear speedup at certain points before load balancing. It is due to

the fact that before load balancer kicks in, the decomposition of work on each processor is
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not balanced due to Oct-tree decomposition which results in varying amounts of particles
and computation for each TreePiece. The decomposition is more balanced for some number
of processors than others which appears as super-linear speedup. Once the load balancer
kicks in, it balances the work more or less in all the processors resulting in a performance
improvement of about 15% to 35% for both the versions of the code. Both the versions also
show pretty good scaling.
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Figure 4.10: Comparison between SFC and Oct-tree decomposition before and after load
balancing on BlueGene for the dwarf dataset

We compared the performance scaling in the case of Oct-tree decomposition (before and
after load balancing) with that in SFC. Figure 4.10 shows the results. The performance
improvement seen in Oct-tree decomposition as a result of load balancing makes it perform
much better than SFC decomposition. Load balancers make very little improvement to SFC
decomposition. So, we don’t plot it here. SFC decomposition is inherently load balanced
and doesn’t need any runtime load balancing. That is why SFC has been used extensively
in literature in the past. State of the art cosmological simulators like PKDGRAV [4] also

use SFC decomposition. Better performance for Oct-tree decomposition using Charm-++
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powerful runtime load-balancing shows us a way of improving the current state-of-the-art

cosmological simulators.

Figure 4.11: Effect of Load Balancer for the dwarf dataset on 64 BlueGene processors

To further analyze the improvements from the load balancers, figure 4.11 displays a view
from our Projections performance analysis tool, a component of Charm++. The view cor-
responds to five timesteps of a simulation with Oct-tree decomposition on 64 BlueGene/L
processors. The horizontal axis represents time, while each horizontal bar represents a pro-
cessor. Darker colors represents higher utilization, with black as full utilization and white
as idleness. One can see that even starting from a very unbalanced situation on the first
time-step, after two timesteps the load balancer improves performance quite significantly,
approaching almost perfect balance. The gray region at the beginning of each time-step,
where utilization is lower, corresponds to the communication overhead due to data prefetch-
ing. The time spent by the application in load balancing and in domain decomposition is
hardly visible in the figure. It corresponds to the period between the end of the longest bar
in one time-step and the beginning of the gray region of the next time-step. That time in

negligible.
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It is relevant to notice that the dwarf dataset is highly clustered at the center of the
simulation space, and its spatial distribution of particles is very uneven. This non-uniform
particle distribution is reflected by the varying processor utilization in the first time-step
of the simulation. Situations like this present the biggest challenge to obtain load balance

across processors. Nevertheless, the Charm++ load balancers achieved very good balance.
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Chapter 5

Conclusions and future work

In this thesis, we have presented some optimization techniques for a new parallel cosmological
simulator named ParallelGravity. Our design was guided by the goal of achieving good
scalability on modern parallel machines, with thousands of processors. The interaction
list scheme for force computation was implemented using Charm++ virtualization. This
virtualized implementation shows similar scalability as the original algorithm and leads to a
performance improvement of about 10% in the force computation time.

Our experimental results for the comparison of various particle decomposition techniques
show that Oct-tree decomposition is the best for gravity force computation however, all the
techniques achieve good scalability. Oct-tree achieves this best performance by exploiting
the Charm++ automatic load balancing framework to a greater extent than other decom-
position techniques. This shows us that Oct-tree decomposition, implemented along with
runtime load balancing, might be a way to improve the current state-of-the-art cosmological
simulators.

In essence, by employing various optimizations, including the ones presented in the the-
sis, the gravity calculation phase in ParallelGravity was shown to scale very well up to
large number of processors with real astronomical datasets. This level of scalability places
ParallelGravity as a potentially powerful resource for the astronomy community.

Despite ParallelGravity’s good observed scalability, we intend to study other load bal-

ancing schemes and parallelization techniques that may provide even further benefits. The
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implementation of oct-trees is being considered. Researchers have faced problems with oct-
trees in the past because of the difficulty of load balancing the computation with them.
However, we expect our powerful Charm-++ load balancing framework to achieve a good
load balance with oct-trees too. We also need to further investigate the reasons for not-so-
good performance of certain optimizations in the current code. In particular, reasons for the
bad performance of the simulator with ORB decomposition have to be found out. The effect
of the load balancers on ORB decomposition also needs to be further investigated. Moreover,
ParallelGravity still needs to incorporate several additional features to become a production-
level simulator. We are working on adding support for more physics, such as fluid-dynamics
and periodic boundaries, as well as providing multiple time-stepping. In addition, as we
start our tests on thousands of processors, we are also analyzing the performance of other

phases of the simulation, such as the construction of the particle tree.
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